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Outline of lectures

@ Lecture I: QCD and the Quark-Gluon Plasma
@® Lecture II: Gluon Saturation and the Color Glass Condensate

@ Lecture llI: Quantum field theory in strong fields. Factorization.
the Glasma and long range correlations

@ Lecture IV: Quantum field theory in strong fields.
Instabilities and the spectrum of initial quantum fluctuations

@ Lecture V: Quantum field theory in strong fields. Decoherence,
hydrodynamics, Bose-Einstein Condensation and thermalization

@ Lecture VI: Future prospects: RHIC, LHC and the EIC



Talk Outline

€ Motivation: the unreasonable effectiveness of hydrodynamics
in heavy ion collisions

An ab initio weak coupling approach:

» Paradigm: Classical coherence in nuclear wavefunctions
» Quantum fluctuations: Factorization, Evolution, Decoherence

» lIsotropization, Bose-Einstein Condensation, Thermalization ?

HI theory draws concretely on concepts in perturbative and non-perturbative QCD, string
holography, reaction-diffusion systems, topological effects, plasma physics, thermodynamics and
stat. mech, quantum chaos, Bose-Einstein condensates, pre-heating in inflationary cosmology



Strong flow = (nearly) ideal hydrodynamics
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v, measures how efficiently hot matter converts spatial
anisotropies to momentum anisotropy
— most efficient way is hydrodynamics



Strong flow = (nearly) ideal hydrodynamics
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v, at RHIC and the LHC is large
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Strong flow = (nearly) ideal hydrodynamics
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v, at LHC in agreement
with (slightly) viscous
relativistic hydrodynamics

Takes a long time ~ R/c;

to build up v,
Flow must set in very
early (£1fm)



Quantum decoherence from classical coherence

Color Glass Initial sQGP - Hadron
Condensates Singularity perfect fluid Gas

Glasma (\Glahs-maa\): Noun: non-equilibrium matter
between CGC and QGP

Computational framework Gelis,RV NPA (2006)

Quantum field theory for strong time dependent sources (p ~ 1/g),

For eg., Schwinger mechanism for pair production in QED,
Hawking radiation on Black Hole horizon, ...



Quantum fluctuations in classical backgrounds: |

Gelis,Lappi,RV: 0804.2630
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Factorized into energy evolution of wavefunctions

p"=0 (small x !) modes that are coherent with the nuclei can be
factorized for inclusive observables - JIMWLK factorization

(TH (7,1, 2 1)) LLog = / [Dp1dpa] Wy, [p1] Wy, [p2] T{ o (7, z1)
Yl — Ybeam —n, Y2 — Ybeam + n

The W’s are universal “functional density matrices”
and can be extracted from DIS or hadronic collisions



Classical features of the Glasma

Solutions of Yang-Mills equations
produce (nearly) boost invariant gluon
field configurations: “Glasma flux tubes”

Lumpy gluon fields are color screened in
transverse plane over distances ~ 1/Q,
- Negative Binomial multiplicity
distribution.

0.8
“Glasma flux tubes” have non-trivial

| longitudinal color E & B fields at early times
’ --generate Chern-Simons topological charge
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Quantum fluctuations in classical backgrounds: li

Romatschke,Venugopalan
Fukushima,Gelis,McLerran
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p" # 0 (generated after collision) modes grow exponentially
with proper time can have to be resummed to all orders

\/7 ™ So called “secular divergences”
g exp QST known in condensed matter physics

The Boltzmann equation is a specific example...



Glasma spectrum of initial quantum fluctuations

TMV(ZU) & @;MV@:)

Exponentiate and resum these Gs(up,w)
Parametrically suppressed

T (x)

Leading quantum corrections to all orders give:
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Gauge invariant Gaussian spectrum of quantum fluctuations computed ab initio

(in inflation, see Son; Khlebnikov,Tkachev; Kofman,Linde,Starobinsky)



Glasma spectrum of initial quantum fluctuations

Path integral over small fluctuations equivalent to

Az, 7,m) = Aa. (v, T /—d,ukc,,ke ""xe(xl) Hiy(AgT) + c.c

Gaussian random variables

Berry conjecture: High lying quantum eigenstates of classically chaotic systems,
linear superpositions of Gaussian random variables

Srednicki: Systems that satisfy Berry’s conjecture exhibit
“eigenstate thermalization”



Hydrodynamics from quantum fluctuations

Dusling,Epelbaum,Gelis,RV (2011) T T -
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=) Converges to single valued
relation “EOS”




Hydrodynamics from quantum ﬂuctuatlons

Dusling,Epelbaum,Gelis,RV (2011)
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Quasi-particle description?

Epelbaum,Gelis (2011) '
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(] At early times, no quasi-particle description Energy density on the lattice
J May have quasi-particle description at late times.

Effective kinetic “Boltzmann” description in terms of

interacting quasi-particles at late times ?



Quasi-particle occupation number
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System becomes over occupied relative to a thermal distribution...



Bose-Einstein Condensation in HIl Collisions ?

Cold rubidium atoms in a magnetic trap

Gell-Mann’s Totalitarian Principle of Quantum Mechanics:
Everything that is not forbidden is Compulsory



Bose-Einstein Condensation and Thermalization

Blaizot,Gelis,Liao,McLerran,RV: arXiv:1107.5295v2

Assumption: Evolution of “classical” fields in the Glasma can be

matched to a quasi-particle transport description
See also, Mueller, Son (2002)

All estimates are “parametric”: ag<<1

System is over-occupied: n = Q¢*/a,; € = Q%/a
2 neg3t=1/al/4>>1

In a thermal system, n® €3/4=1

If a system is over-occupied near equilibrium and elastic scattering dominates,

it can generate a Bose-Einstein condensate , o
Known also in context of inflation:

Khlebnikov, Tkachev (1996)
Berges et al. (2011)



Bose-Einstein Condensation and Thermalization

/ foa(D) ; ceq / wp fea(D)

feq( ) In a many-body system, gluons develop a mass

eﬁ(wp p)—1 W,o= M= a2 T

If over-occupation persists for i = m, system develops a condensate

1
_ 3
feq(p) = N0 (p) + B (wp—m)—1

3
@ 1/4 . :
Ne = —= (1 — ozS/ ) As a, = 0, most particles go into the condensate
as
It however carries a small fraction
/ T4 T4 .
Ec =M N =X Qg << of the energy density...



Transport in the Glasma

“Landau” equation for small angle 2 = 2 scattering:

df AZA df
—lcon ~ ;2 Oy {p2 [d—p + X—‘Zf(p)(l + f(p))] }

This is satisfied by a distribution where

1 1 A
fro—ip<As ~—"2 Ag<p<A ~0:A<p
ags as P

N\ and A are dynamical time dependent scales determined
by the transport equation



Transport in the Glasma
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When A = ag A, the system thermalizes;
one gets the ordering of scales: A=T, m=ANA;=a'2T, A;=oT



Thermalization: from Glasma to Plasma

Fixed box: Energy conservation gives A3 A = constant

From moments of transport eqn.,, T, =N/ A2t
" 3/7 ANV
From these two conditions, A ~ (), <?> A~ Q, (t_>
0

Thermalization time: {iperm. ~ 0 ( )
S \&s

Also, Kurkela, Moore (2011)

Entropy density s = A3 increases and saturates at t as T3

therm

We showed that system is strongly interacting with itself due to
coherence of fields



Thermalization: from Glasma to Plasma

Expanding box :matter is now strongly self interacting for fixed momentum

anisotropy 15
to * 0<6<1/3
gg(t) ~ (to) n
t (44+6)/7 " (1426)/7
ean(P) T ases(f)

1 (TO>7/<3—5>
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For 6= -1, recover fixed box results...

Thermalization time t

A condensate can still form in the expanding case for 6 > 1/5



What about plasma instabilities ?

Another mechanism for isotropization, hydrodynamics, thermalization

Anisotropy
A d=In(§)/1n(0)
Plasma Instabilities
& Kurkela, Moore(2011)
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M Needs careful study to gauge impact

on scaling solutions

/\ Likely weak anisotropy relevant:



Summary

@ Presented ab initio picture of collective features of multi-
particle production and thermalization in heavy ion
collisions

€ Thermalization is a subtle business even in weak coupling
€ Hydrodynamics is unreasonably effective because it requires
rapid decoherence of classical fields and strong self-

interactions, not thermalization

@ Exciting possibility of a transient Bose-Einstein Condensate
interesting phenomenological consequences



THE END



Photon & di-lepton emission in HI collisions

e Photons: excess at transverse momenta 1-3 GeV; strong N__ .2

part
dependence o
McLerran et al: distributions

sensitive to anisotropy 6
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Photon & di-lepton emission in HI collisions

e Di-leptons: excess in region pT <M; M <0.5
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Role of inelastic processes ?

5 ) 5 A Wong (2004)
9 < Mueller,Shoshi,Wong (2006)

1 ' 1 3

Power counting for n =» m processes contributions to the collision integral

Vertices contribute a "2

Factor of (A;/ag)"*™2 from distribution functions
Screened infrared singularity: (1/A A4
Remaining phase space integrals A"™m->

Net result is T, ..

“N/N2=1

elas

At most parametrically of the same order as elastic scattering.
So a transient Bose-Einstein condensate can form.

Dusling,Epelbaum,Gelis,RV, in progress

Numerical simulations will be decisive Blaizot, Liao, McLerran



