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Outline of lectures

@ Lecture I: QCD and the Quark-Gluon Plasma
@® Lecture II: Gluon Saturation and the Color Glass Condensate

@ Lecture IlIl: Quantum field theory in strong fields. Factorization.
the Glasma and long range correlations

@ Lecture IV: Quantum field theory in strong fields.
Instabilities and the spectrum of initial quantum fluctuations

@ Lecture V: Quantum field theory in strong fields. Decoherence,
hydrodynamics, Bose-Einstein Condensation and thermalization

@ Lecture VI: Future prospects: RHIC, LHC and the EIC



Traditional picture of heavy ion collisions

*@S#! on *@S#!

Well known physicist (circa early 1980s)



A contemporary view

CERN seminar, Dec. 2", 2010
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LHC jets!

CMS Experiment at LHC, CERN
Data recorded: Tue Nov 9 23:11:44 2010 CEST
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Standard model of HI Collisions
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Glasma (\Glahs-maa\): Noun: non-equilibrium matter between
Color Glass Condensate (CGC)& Quark Gluon Plasma (QGP)



Forming a Glasma in the little Bang
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** Problem: Compute particle production in QCD with
strong time dependent sources

% Solution: for early times (t < 1/Qg) -- n-gluon production computed
in A+A to all orders in pert. theory to leading log accuracy
Gelis, Lappi, RV; arXiv : 0804.2630, 0807.1306, 0810.4829



Big Bang Little Bang

Present
(13.7 x 10° years) RHIC data

WMAP data
(3x10° years)

N
QGP
> Inflation
CGC/{
J Glasma

Plot by Tetsuo Hatsuda




Big Bang vs. Little Bang

Decaying Inflaton > Decaying Glasma

with occupation # 1/g with occupation # 1/g2
Explosive amplification Explosive amplification
of low mom. small <> of low mom. small fluct.
fluctuations (preheating) (Weibel instabilities)

Int. of fluctutations/inflaton

Int. of fluctutations/Glasma
-> thermalization ? <>

-> thermalization ?

Other common features: topological defects, turbulence ?



Another Analogy with the Early Universe

Mishra et al; Mocsy- Sorensen

/ The Un|Ve Fse \ (HIC distributions and \

kinetic correlations of
produced_particles
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13.7 billion years

Credit: NASA
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THE LITTLE BANG

How can we compute multiparticle
production ab initio in HI collisions ?

. . Always non-perturbative
’ for questions of
interest in this talk!

strong coupling VS weak coupling

AdS/CFT ? Interesting set of issues... not discussed here



Multiparticle production for strong time dependent sources:
Gelis, RV ; NPA776 (2006)

b,r. - probability of vacuum-vacuum diagrams with r cuts
“combinants”



Observations:

1) P_ is non-perturbative for any n
and for coupling g << 1 - no simple power countinging

I) Even at tree level, P, is not a Poisson dist.

lll) However, vacuum-vacuum contributions cancel for inclusive quantitites
(<nP>=XnPP [/ZP,)
and one has systematic power counting for these...

Power counting

LO: 1/g?, all orders in sources (gp, ,)"
NLO: O(1), all orders in (gp, ,)"

At NLO, large logs : g* In(1/x, ,) — can be resummed to all orders and factorized
into evolution of wave functions



Quantum decoherence from classical coherence

Color Glass Initial sQGP - Hadron
Condensates Singularity perfect fluid Gas

Computational framework

Schwinger-Keldysh: for strong time dependent sources (p ~ 1/g),
initial value problem for inclusive quantities

For eg., Schwinger mechanism for pair production, Hawking radiation, ...



The Glasma at LO:Yang-Mills eqns. for two nuclei
O(1/g?) and all orders in (gp)"

Glasma initial conditions from
matching classical CGC
wave-fns on light cone

Kovner,McLerran,Weigert; Krasnitz, RV; Lappi
Lappi,Srednyak,RV (2010)

Pelectric — Zg[sz Ez]
iglA’, B']

= Pelectric

=  Pmagnetic

Pmagnetic

Boost invariant flux tubes of size with | | color E & B fields- generate Chern-Simons charge

However, this results in very anisotropic (P; >> P ) pressure for t~ 1/Q,



RG evolution for 2 nuclei

Gelis,Lappi,RV (2008) o0 o0

Log divergent contributions

crossing nucleus 1 or 2: B(w)

Oxio = |2 [ i 7,7, + [ @) nJOLo

g (ﬁ, ?7) and 5(6) can be computed on the initial Cauchy surface
0

Tu = — = linear operator on initial surface
Y SA() P )

Contributions across both nuclei are finite-no log
divergences => factorization

AT A~
ONLO = [ln <—+) Hl + ln (—_) 7‘[2
p p

OLo




Factorization + temporal evolution in the Glasma

L1 , 4
TLg = 79" F Y Fxs — FFY o(%)

€=20-40 GeV/fm3 for t=0.3 fm @ RHIC

NLO terms are as large as LO for o In(1/x):
small x (leading logs) and strong field (gp) resummation .5 1appi RV (2008)

(TH (7,1, 2 1)) LLog = / [Dp1dpa] Wy, [p1] Wy, [p2] T{o (T, 1)
Yl — Ybeam — 1, Y2 — Ybeam + n

Glasma factorization => universal “density matrices W” ® “matrix element”



Long range rapidity correlations

Some notation: An-AQ®

i
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Di-hadron
correlations

associated

trigger

Rapidity: a measure of
velocity (denoted by y or n)
additive under Lorentz boost

An — measure of
angular separation
along beam direction

Large An means particles
are flying off in opposite
directions along beam axis



Long range rapidity correlations as chronometer

1
U/ / detection

freeze out

latest correlation

1
T < Tfreeze—out €XP (_ilyA — yB’>

Long range rapidity correlations are sensitive to Glasma dynamics at early times

Dumitru, Gelis, McLerran, RV, arXiv 0804.3858



Really long range correlations

AutAu 200 GeV, 0 - 30%
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These structures reflect dynamics of strong gluon fields at times < 3 °10?* seconds



An example of a small fluctuation spectrum...

COBE Fluctuations

ot/t < 10_5, i.e. much smoother than a

baby’s bottom!




The Ridge: Glasma flux tubes+ Radial flow

Glasma flux tubes provide the long range rapidity correlation

Dumitru, Gelis, McLerran, RV; Gavin, McLerran, Moschelli
Lappi, Srednyak, RV (2010)

Radial (“Hubble”) flow of the tubes provides the azimuthal collimation
Voloshin; Shuryak



reE Particles That Flock:
uff Strange Synchronization
=74 Behavior at the Large
Hadron Collider

Scientists at the Large Hadron Collider are trying to solve a
puzzle of their own making: why particles sometimes fly in
sync

Scientific American, February (2011)

The high-energy collisions of protons in the LHC may be uncovering “a
new deep internal structure of the initial protons,” says Frank Wilczek
of the Massachusetts Institute of Technology, winner of a Nobel Prize

“At these higher energies [of the LHC], one is taking a snapshot of the
proton with higher spatial and time resolution than ever before”



A ridge in high multiplicity
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pp collisions I |[||
CMS Experiment&t the LHC, CERN /
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Wei Li, MIT




II\llll]lll\II\IIIIIII‘IIII!I

CMSNSD . cys pata 2
[ Ry, 7 TeV (x10000) PYTHIA D6T

! I\l\lll ! [[lllll| INES

g - PYTHIA 8
. . --PHOJET

_‘—l
e <

—t
llllLuI ! Vlll'l‘

—
-—¢—4—
iE|

-y -y -
e @ <
w N -

-y
(=]
FS

pT>0

Il[‘ll'lllllllllVll[llll'll‘l[ll']ll_l

20 40 60 80 170 120 140 160 180

— —r

e ©

(=] (4]
° — Twlﬂ‘ll 1 l”'ll"[ T T BALLL & Ha

icle density regime
ANy 1G 'a‘s‘n‘;w ng TnNe

(c) Copyright CERN, 2010. F

Wei Li, MIT




.. Initial
Pre-collision state Ouark Gluon Plasma Hadron Gas Detector
:

CMS pp 7TeV, N>110 PHOBOS CuCu 62.4GeV ?
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R(An,A¢)

Two particle correlations: CMS results

CMS Min. Bias (pr > 0.1 GeV) CMS N>110 (pr > 0.1 GeV)

R(An,AQ)




Two particle correlations: CMS results

“Discovery”

gl ElIl =l Il IIln IIn IS = -

o i /
OMS Min. Bias (1 GeV < pr < 3 GeV) (d) N>110, 1.0GeV/c<p_<3.0GeV/c

R(An,A0)

| \

"7 N A\l
/I""A‘A“\\

R(AN,A()

@ Ridge: Distinct long range correlation in n collimated around A®= 0
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Comparing to MC models

(a) MinBias, pr>0.1 GeV/c (b) MinBias, 1.0GeVIc<pr<3.0GeVIc
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PYTHIAS, v8.135 No ridge in MC!

([C) N>T10U, pT>0.1 GeV/c (d) N>110, 1.OGeVIc<pT<3.OGeVIc
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Two particle correlations: p; systematics

0.1 < pr < 1.0

1.0 < pr < 2.0

2.0 <pr <30

3.0 < pr < 4.0

€ Signal not present for p;, g, > 3 GeV
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What’s the underlying dynamics?

€ Large number of models with a range of speculations

€ A similar ridge was seen in heavy ion collisions @ RHIC (and now in
HI collisions @ LHC) -is it hydrodynamic flow ?

@ | will argue that the p+p ridge is an intrinsic QCD effect - providing a
snapshot of frozen wee (small x) multi-parton correlations in the
proton wave function

€ In contrast, the A+A ridge is entirely due to hydrodynamic flow...



High multiplicity events in p+p

I x=10"

+ b-CGC
— IP-Sat

o%uum.m Ll ‘
0 1 4 5 6
\b(GeV)

® ALICE 7 TeV (x 1)

e High multiplicity events likely correspond to
high occupation numbers (1/a) in the
proton wave functions for p; < Qg

*. 14 TeV (x 100)

"~ 10 TeV (x 10)

I will emphasize this point further shortly
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The saturated proton: two particle correlations

Correlations are induced by color fluctuations that vary event to event -
these are local transversely and have

These graphs (called “Glasma graphs”), which generate long
range rapidity correlations, are highly suppressed for Qg << p;

However, effective coupling of sources to fields with k; < Qg = 1/g (“saturation”)

Power counting changes for high multiplicity events by o8 !
These graphs become competitive with usual pQCD graphs



2-particle » n-particle correlations
Vo NI o Y oerteion

R i
g !
gm;;p = |7 p|(B] [I}]
g | |
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Glasma flux tube picture: two particle correlations
proportional to ratio 1/Q¢%/ S;

Only certain color combinations of “dimers” give leading contributions
...iterating combinatorics for 2, 3, n...gives



2-particle » n-particle correlations

Gelis, Lappi,McLerran
I %”% I 1
pliB| 2| |RB]|-|B||P
1 1

Multiplicity distribution: Leading combinatorics of dimers gives the
negative binomial distribution

. ['(k +n) n" k"
PN.B. L) —
R = M+ 1) (11 k)R
o — C(NCQ —1)Q35S) k=1: Bose-Einstein

\ 2T k = oo : Poisson

Yang-Mills computation shows picture is robust for 2 part. Corr.

and gives ( ~ 1/3 - 3/2 0(1) Lappi,Srednyak,RV



Long range di-hadron correlations

Gelis,Lappi,RV (2009)

for nucleus 1
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Long range di-hadron correlations

RG evolution of two particle correlations (in mean field approx) expressed
in terms of “unintegrated gluon distributions”
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Caveat: Contribution of higher 4-pt. Wilson line correlators not included

Dumitru, Jalilian-Marian; Kovner, Lublinsky (2011)



The p+p ridge: azimuthal corr. from Glasma graphs

Dumitru; Dumitru,Dusling,Gelis,Jalilian-Marian,Lappi,RV
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For p; = q;, the largest contribution to two particle correlation is from A®=0,rt



Systematics of the correlation

CofSr _ _
uGD pL=4q1 =3 (GeV)
X/x=10"2 9.x1077¢
BFKL BK P
| 8.5% 107 o’ Yp =0
8.x1077}
0.1} GBW
75%x 1077
001} 7.x1077
65%1077}
X ki
105 0.001 0.1 10 1000 . . . AS
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@€ Near-side correlation sensitive to diffuseness of wavefunction



Quantitative description of pp ridge

d2N
dAc;/)

+2.4
K/ dnpdnq A(Up,ﬂq)

A(np,nq) = 0|0, —

1 2 A\Tcorr.
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Assoc. Yield = — / ingd N 4N
trig 0 dA¢ d.A¢ Aqf)min.

Subtracts any pedesta

Ill
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Dusling,RV, 1201.2658

nq’ o A77min) 0<A77max - ‘77}? o Uq’)

Try soft and hard
fragmentation functions:

D, =3(1-x)?/ x
D, =2(1-x) / x

Only parameter fit to yield
datais K=2.3

Dependence on transverse
area cancels in ratio...

phi-independent” correlation



Quantitative description of pp ridge
Dusling,RV, 1201.2658
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CMS preliminary data
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Quantitative description of pp ridge

Dusling,RV, 1201.2658

Assoc. Yield [ x 1073]

Predictions: [ 20= pF¥*<30GeV  2<|An|<4
4t
Yields for higher pAss°c are 3 TR
sensitive to fragmentation functions — 2} "_’_'__.---_‘__ Tm
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What about flow in p+p ?

In heavy ion collisions
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Glasma flux tubes provide the long range rapidity correlation

Dumitru, Gelis, McLerran, RV; Gavin, McLerran, Moschelli
Radial (“Hubble”) flow of the tubes provides the azimuthal collimation

Voloshin; Shuryak



What about flow in p+p ?

Assoc. Yield [ X 10_2]

2511 0< P 20 GeV 2<|An|<4 Simple radial flow model result:
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With increasing flow, the pedestal gets collimated
Associated yield reflects the p; dependence of the Glasma pedestal

Can accommodate only very small re-scattering / flow contribution



A+A ridge is all flow

Assoc. Yield
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Theory issues

€ Collimation in Glasma graphs is from N_2 suppressed graphs.

Intrinsic leading N_ four point correlators give no collimation (pumitru,jalilian-
Marian,Petreska) ?? - pomeron Ioop effects ? (Kovner-Luinnsky)

€ Multiple-scattering and evolution of two-gluon correlations can be computed
for dense-dense sources systematically

(Gelis,Lappi,RV; Lappi,Schenke,RY, in progress)

I"

€ More systematic “global” analysis of single (and double ?) inclusive

distributions can constrain even simpler models



