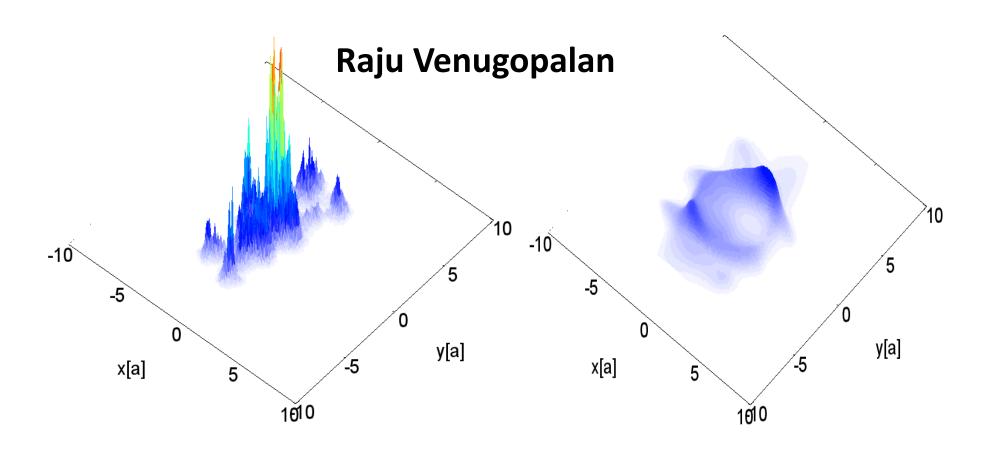
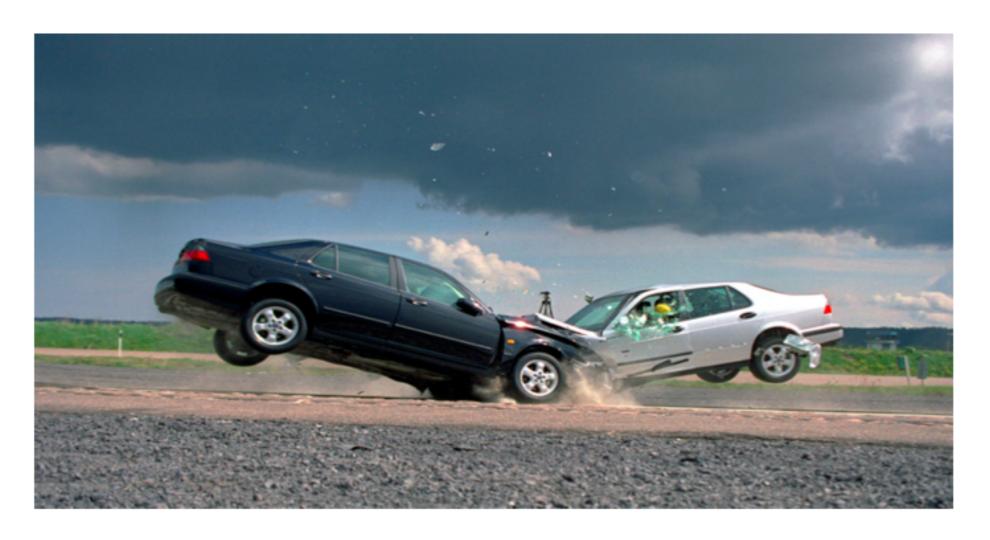
The Glasma: coherence, evolution, correlations



Outline of lectures

- ♦ Lecture I: QCD and the Quark-Gluon Plasma
- Lecture II: Gluon Saturation and the Color Glass Condensate
- Lecture III: Quantum field theory in strong fields. Factorization. the Glasma and long range correlations
- Lecture IV: Quantum field theory in strong fields.
 Instabilities and the spectrum of initial quantum fluctuations
- ◆ Lecture V: Quantum field theory in strong fields. Decoherence, hydrodynamics, Bose-Einstein Condensation and thermalization
- Lecture VI: Future prospects: RHIC, LHC and the EIC

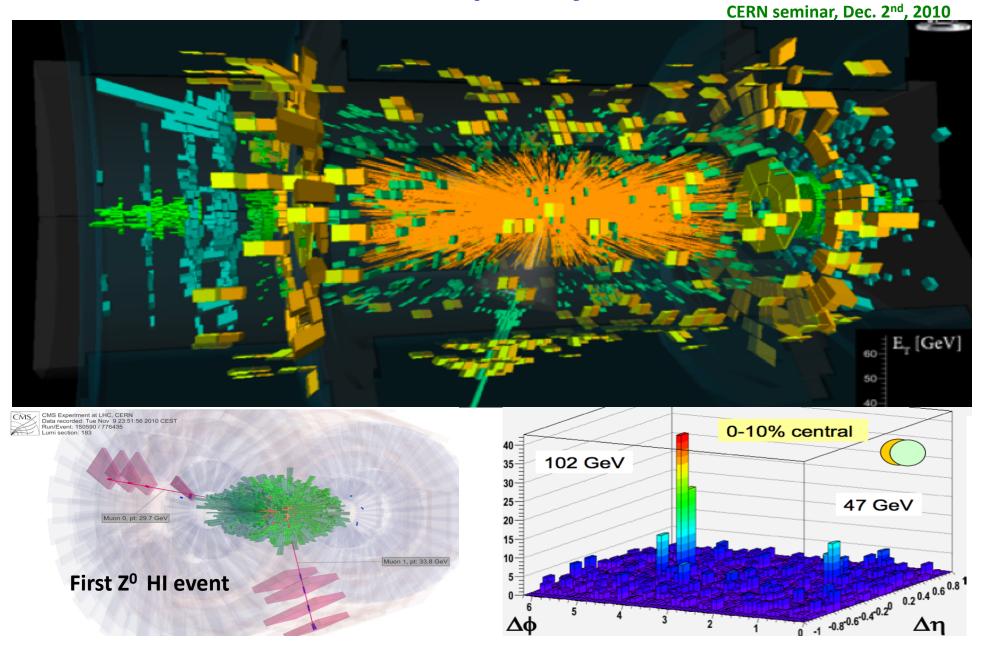
Traditional picture of heavy ion collisions



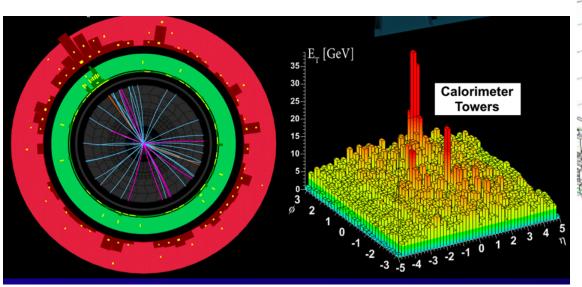
*@\$#! on *@\$#!

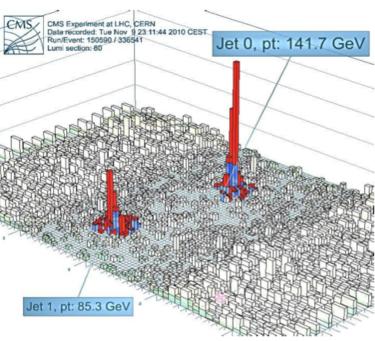
Well known physicist (circa early 1980s)

A contemporary view

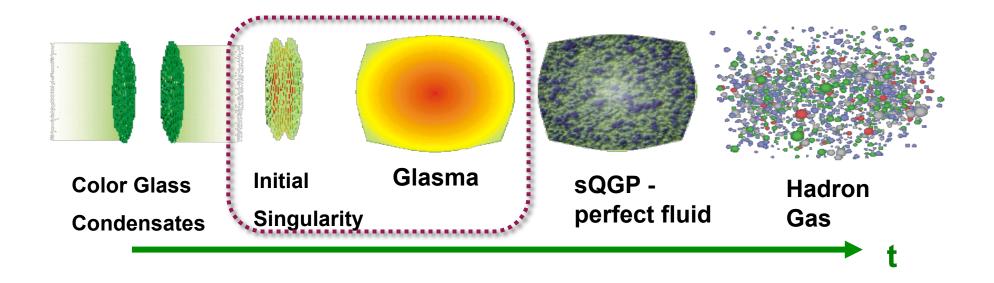


LHC jets!



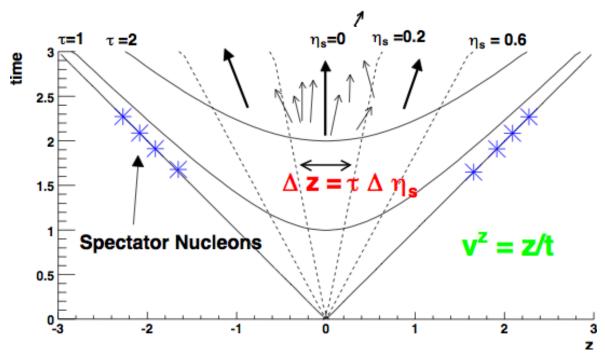


Standard model of HI Collisions



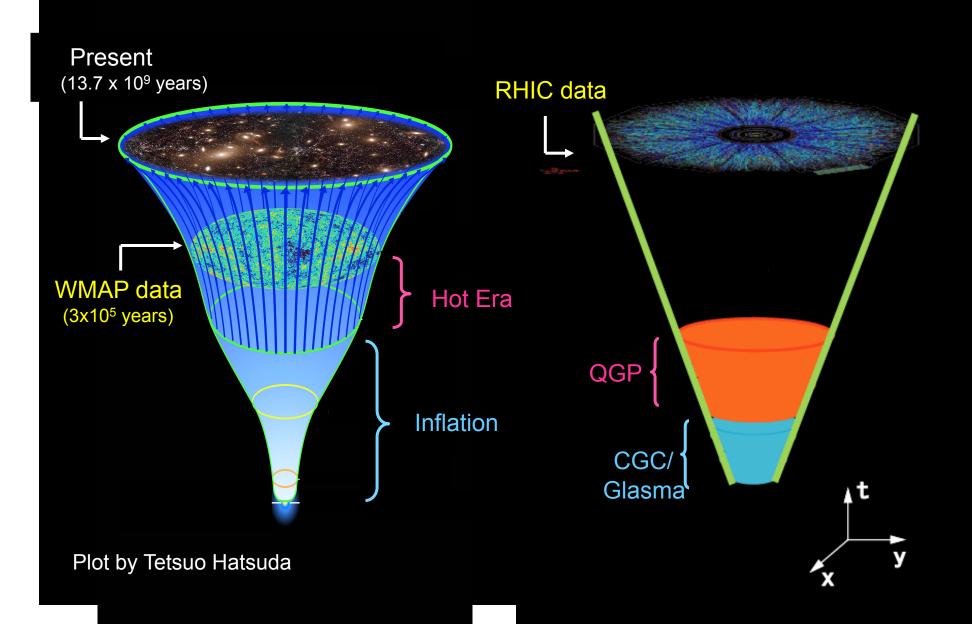
Glasma (\Glahs-maa\): *Noun:* non-equilibrium matter between Color Glass Condensate (CGC)& Quark Gluon Plasma (QGP)

Forming a Glasma in the little Bang



- Problem: Compute particle production in QCD with strong time dependent sources
- ❖ Solution: for early times (t ≤ $1/Q_S$) -- n-gluon production computed in A+A to all orders in pert. theory to leading log accuracy

Gelis, Lappi, RV; arXiv: 0804.2630, 0807.1306, 0810.4829



Big Bang vs. Little Bang

Decaying Inflaton with occupation # 1/g²

Decaying Glasma with occupation # 1/g²

Explosive amplification of low mom. small fluctuations (preheating)

Explosive amplification of low mom. small fluct. (Weibel instabilities)

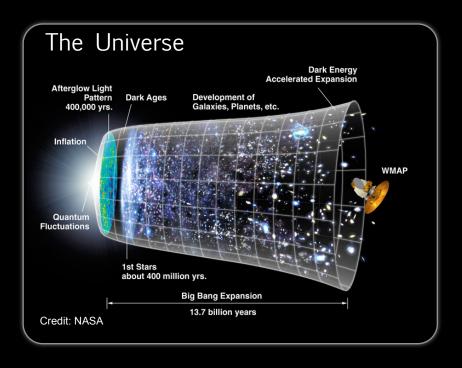
Int. of fluctutations/inflaton
-> thermalization ?

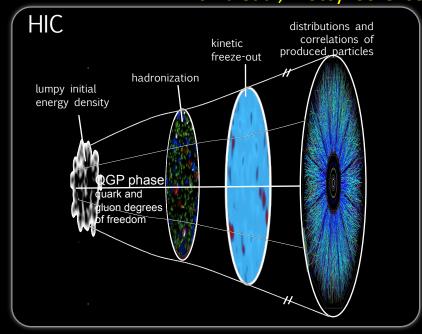
Int. of fluctutations/Glasma
-> thermalization ?

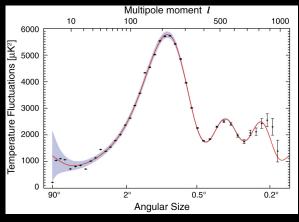
Other common features: topological defects, turbulence?

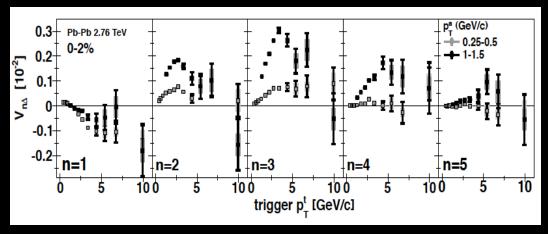
Another Analogy with the Early Universe

Mishra et al; Mocsy-Sorensen







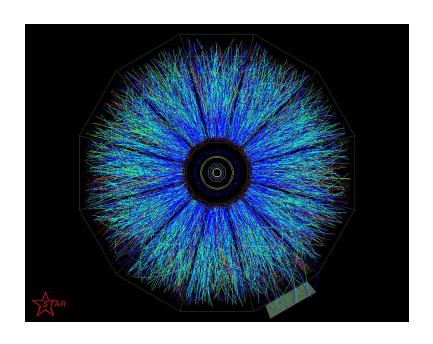


WMAP

HIC-ALICE

THE LITTLE BANG

How can we compute multiparticle production *ab initio* in HI collisions?



-perturbative VS non-perturbative,

Always non-perturbative for questions of interest in this talk!

strong coupling VS weak coupling

AdS/CFT? Interesting set of issues... not discussed here

Multiparticle production for strong time dependent sources:

Gelis, RV; NPA776 (2006)

$$\frac{b_1}{g^2} = \frac{\frac{1}{2} - \frac{1}{1}}{1 + \frac{1}{6} - \frac{1}{1}} + \frac{1}{6} - \frac{1}{6} + \frac{1}{6} - \frac{1}{6} + \frac{1}{6} - \frac{1}{6} + \frac{1}{6} - \frac{1}$$

$$\frac{b_2}{g^2} = \frac{1}{6} + \frac{1}{6} +$$

$$\frac{b_3}{g^2} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \cdots$$

$$P_{n} = e^{-\frac{1}{g^{2}} \sum_{r} b_{r}} \sum_{p=1}^{n} \frac{1}{p!} \sum_{\alpha_{1} + \dots + \alpha_{p} = n} \frac{b_{\alpha_{1}} \dots b_{\alpha_{p}}}{g^{2p}}$$

 $oldsymbol{b_r}$ - probability of vacuum-vacuum diagrams with r cuts

"combinants"

Observations:

- P_n is non-perturbative for any n
 and for coupling g << 1 no simple power counting in g
- II) Even at tree level, P_n is not a Poisson dist.
- III) However, vacuum-vacuum contributions cancel for inclusive quantitites $(\langle n^p \rangle = \Sigma n^p P_n / \Sigma P_n)$ and one has systematic power counting for these...

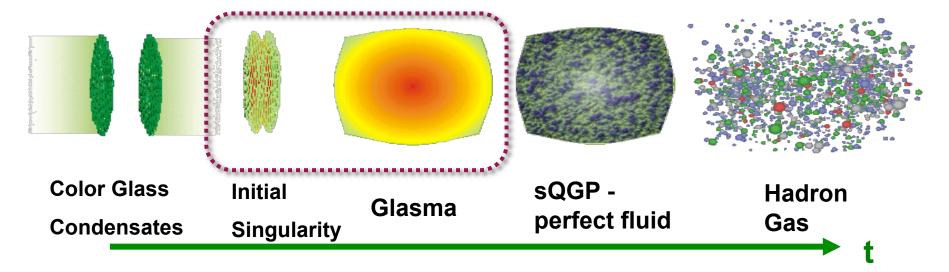
Power counting

LO: $1/g^2$, all orders in sources $(g\rho_{1,2})^n$

NLO: O(1), all orders in $(g\rho_{1,2})^n$

At NLO, large logs: $g^2 \ln(1/x_{1,2})$ – can be resummed to all orders and factorized into evolution of wave functions

Quantum decoherence from classical coherence



Computational framework

Schwinger-Keldysh: for strong time dependent sources ($\rho \sim 1/g$), initial value problem for inclusive quantities

For eg., Schwinger mechanism for pair production, Hawking radiation, ...

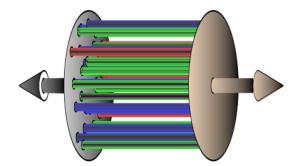
The Glasma at LO: Yang-Mills eqns. for two nuclei

 $O(1/g^2)$ and all orders in $(g\rho)^n$

$$D_{\mu}F^{\mu\nu,a} = \delta^{\nu+}\rho_1^a(x_{\perp})\delta(x^{-}) + \delta^{\nu-}\rho_2^a(x_{\perp})\delta(x^{+})$$

Glasma initial conditions from matching classical CGC wave-fns on light cone

Kovner, McLerran, Weigert; Krasnitz, RV; Lappi Lappi, Srednyak, RV (2010)



$$\nabla \cdot E = \rho_{\text{electric}}$$

$$\nabla \cdot B = \rho_{\text{electric}}$$

 $ho_{
m electric} = ig[A^i, E^i]$ $ho_{
m magnetic} = ig[A^i, B^i]$

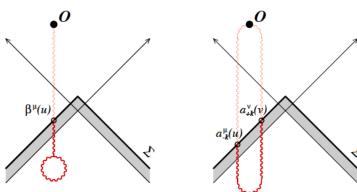
Boost invariant flux tubes of size with || color E & B fields- generate Chern-Simons charge

However, this results in very anisotropic ($P_T >> P_L$) pressure for $\tau \sim 1/Q_S$

RG evolution for 2 nuclei

Gelis, Lappi, RV (2008)

Log divergent contributions crossing nucleus 1 or 2:

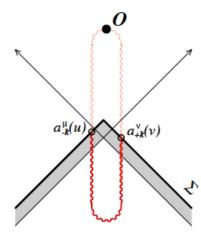


$$\mathcal{O}_{\mathrm{NLO}} = \left[\frac{1}{2} \int_{\vec{u}, \vec{v}} \mathcal{G}(\vec{u}, \vec{v}) \, \mathcal{T}_u \mathcal{T}_v + \int_{\vec{u}} \beta(\vec{u}) \, \mathcal{T}_u \right] \mathcal{O}_{\mathrm{LO}}$$

$$\mathcal{G}(ec{u},ec{v})$$
 and $eta(ec{u})$ can be computed on the initial Cauchy surface $\mathcal{T}_u = rac{\delta}{\delta A(ec{u})}$ linear operator on initial surface

Contributions across both nuclei are finite-no log divergences => factorization

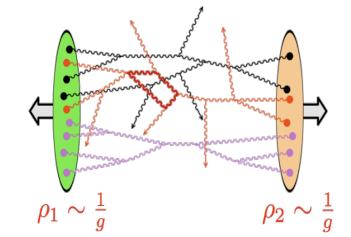
$$\mathcal{O}_{\mathrm{NLO}} = \left[\ln \left(\frac{\Lambda^+}{p^+} \right) \mathcal{H}_1 + \ln \left(\frac{\Lambda^-}{p^-} \right) \mathcal{H}_2 \right] \mathcal{O}_{\mathrm{LO}}$$



Factorization + temporal evolution in the Glasma

$$T_{\mathrm{LO}}^{\mu
u} = rac{1}{4} g^{\mu
u} F^{\lambda \delta} F_{\lambda \delta} - F^{\mu \lambda} F_{\lambda}^{
u} \quad \mathrm{O}\left(rac{Q_S^4}{g^2}
ight)$$

 ϵ =20-40 GeV/fm³ for τ =0.3 fm @ RHIC



NLO terms are as large as LO for α_s ln(1/x): small x (leading logs) and strong field (gp) resummation

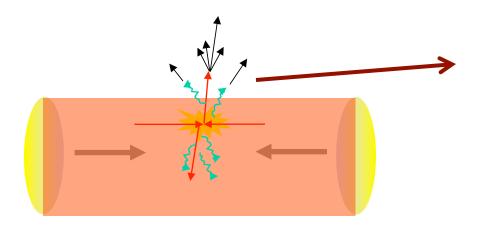
Gelis, Lappi, RV (2008)

$$\langle T^{\mu\nu}(\tau,\underline{\eta},x_{\perp})\rangle_{\text{LLog}} = \int [D\rho_1 d\rho_2] W_{Y_1}[\rho_1] W_{Y_2}[\rho_2] T_{\text{LO}}^{\mu\nu}(\tau,x_{\perp})$$
$$Y_1 = Y_{\text{beam}} - \eta \; ; \; Y_2 = Y_{\text{beam}} + \eta$$

Glasma factorization => universal "density matrices W" ⊗ "matrix element"

Long range rapidity correlations

Some notation: Δη-ΔΦ



Di-hadron correlations

associated

trigger

Rapidity: a measure of velocity (denoted by y or η) additive under Lorentz boost

Δη – measure of angular separation along beam direction

Large Δη means particles are flying off in opposite directions along beam axis

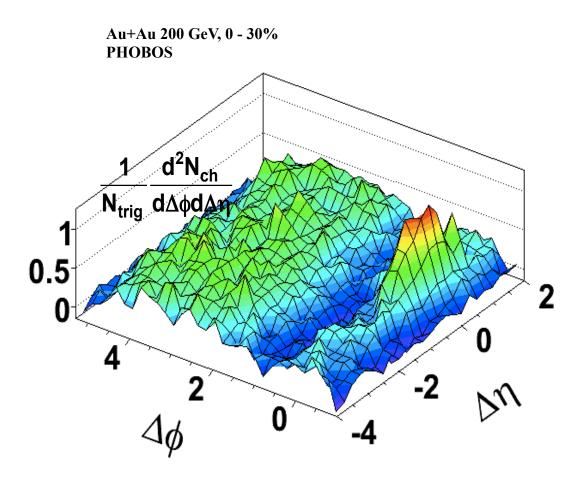
Long range rapidity correlations as chronometer



$$\tau \le \tau_{\text{freeze-out}} \exp\left(-\frac{1}{2}|y_A - y_B|\right)$$

Long range rapidity correlations are sensitive to Glasma dynamics at early times

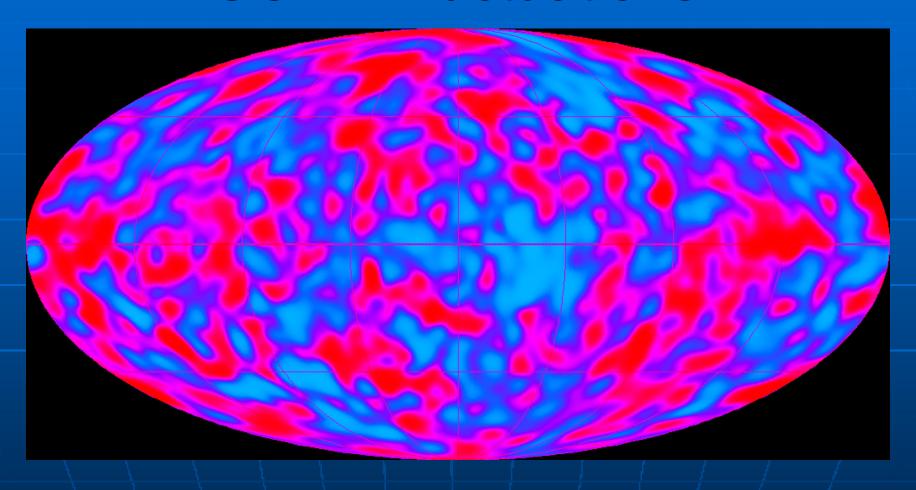
Really long range correlations



These structures reflect dynamics of strong gluon fields at times < 3 •10⁻²⁴ seconds

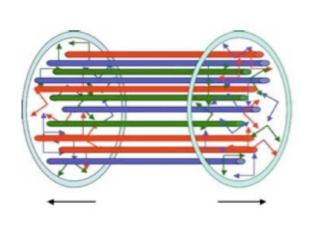
An example of a small fluctuation spectrum...

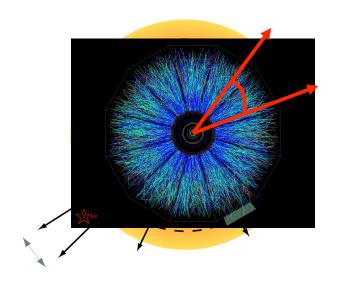
COBE Fluctuations



 $\delta t/t$ < 10^{-5} , i.e. much smoother than a baby's bottom!

The Ridge: Glasma flux tubes+ Radial flow





Glasma flux tubes provide the long range rapidity correlation

Dumitru, Gelis, McLerran, RV; Gavin, McLerran, Moschelli Lappi, Srednyak, RV (2010)

Radial ("Hubble") flow of the tubes provides the azimuthal collimation

Voloshin; Shuryak

See Inside

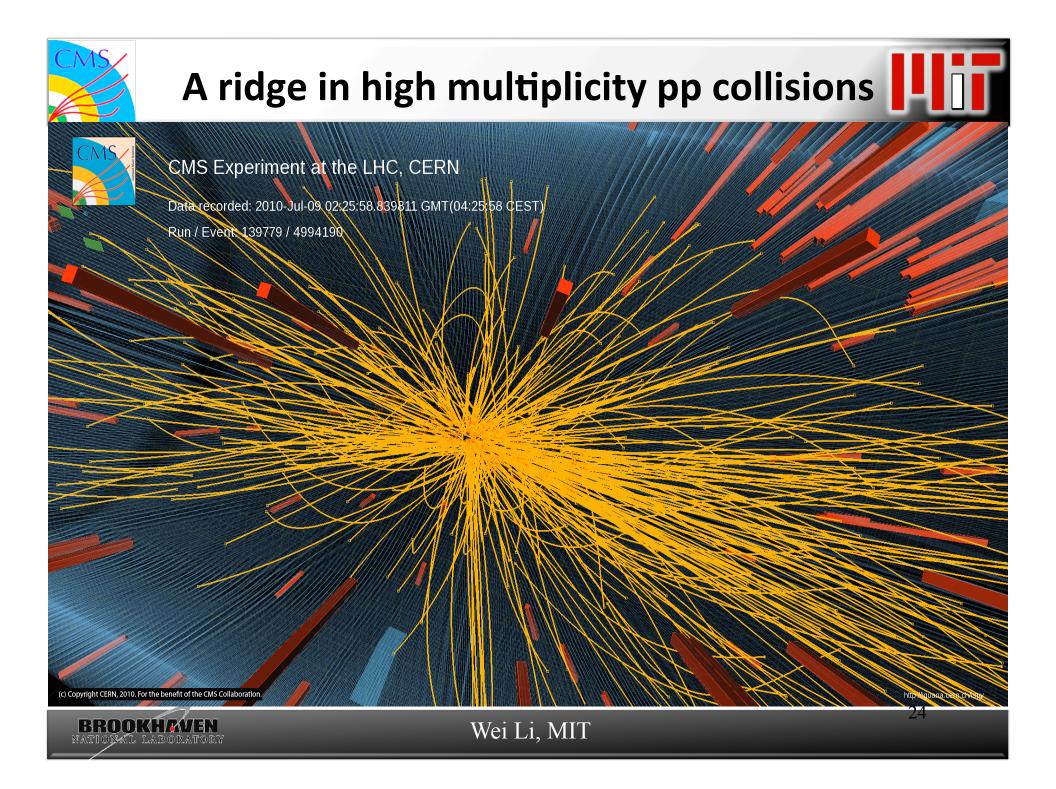
Particles That Flock: Strange Synchronization Behavior at the Large Hadron Collider

Scientists at the Large Hadron Collider are trying to solve a puzzle of their own making: why particles sometimes fly in sync

Scientific American, February (2011)

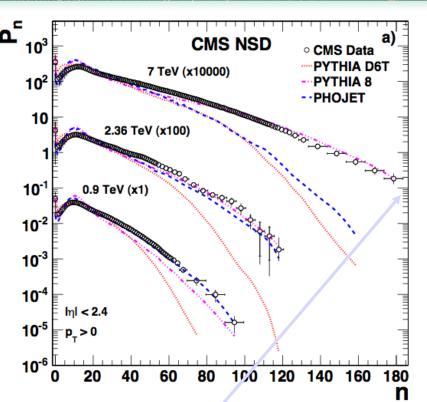
The high-energy collisions of protons in the LHC may be uncovering "a new deep internal structure of the initial protons," says Frank Wilczek of the Massachusetts Institute of Technology, winner of a Nobel Prize

"At these higher energies [of the LHC], one is taking a snapshot of the proton with higher spatial and time resolution than ever before"



High Multiplicity pp collisions

CMS Experime High Multiplicity events are rare in nature



Very high particle density regime

Is there anything peculiar happening there?

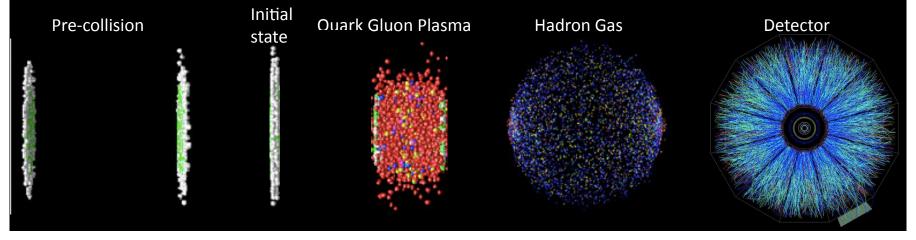
) Copyright CERN, 2010.

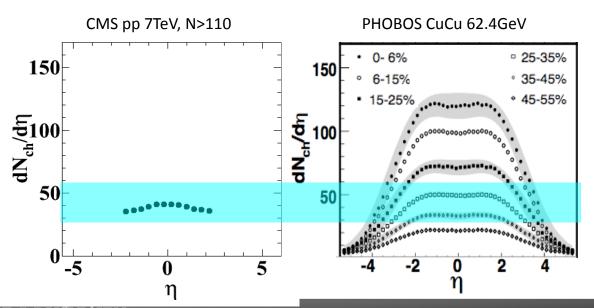
BROOKHAVEN NATIONAL LABORATORY

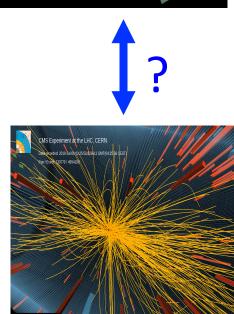
Wei Li, MIT

puliguana.cem.ch

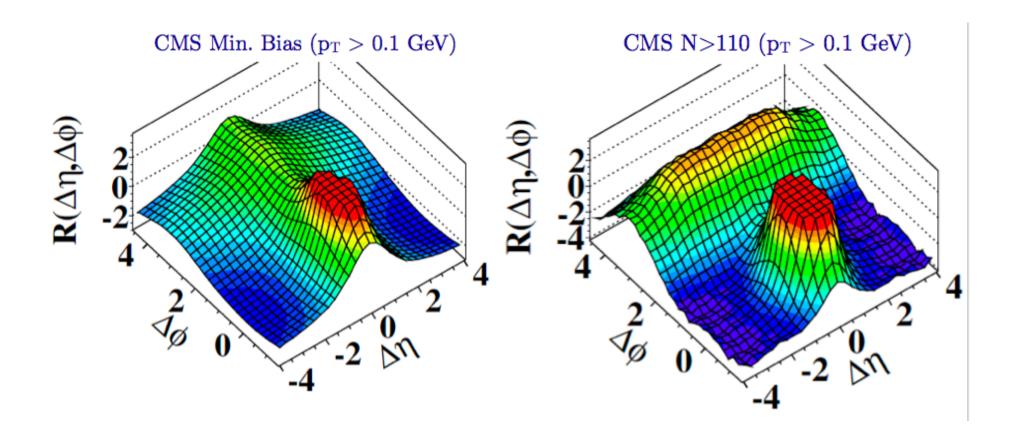
Relativistic Heavy Ion Collisions



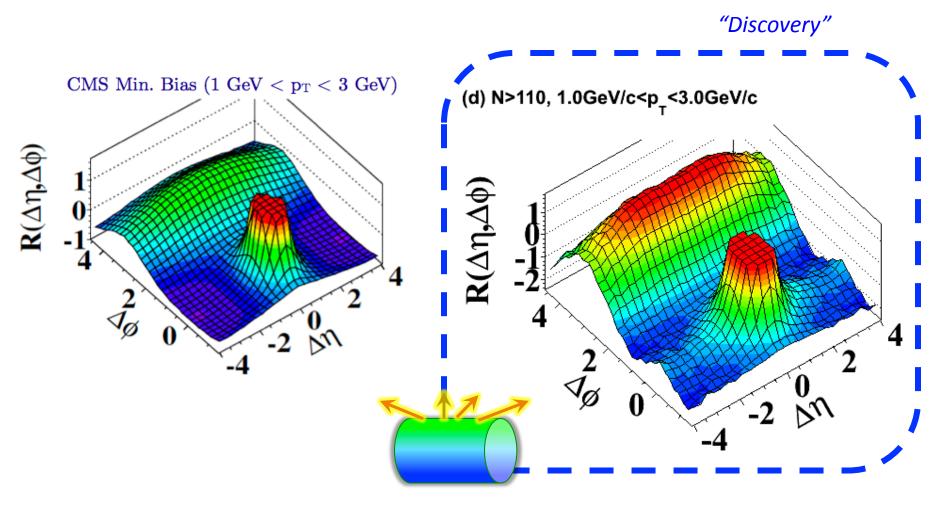




Two particle correlations: CMS results

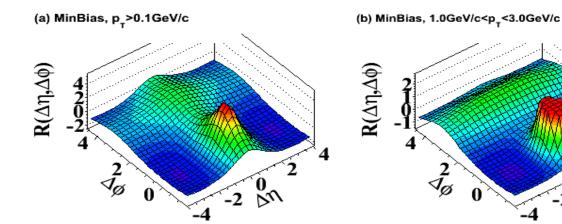


Two particle correlations: CMS results



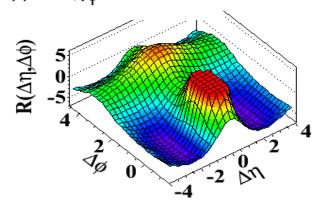
♦ Ridge: Distinct long range correlation in η collimated around $\Delta Φ \approx 0$ for two hadrons in the intermediate 1 < p_T, q_T < 3 GeV

Comparing to MC models

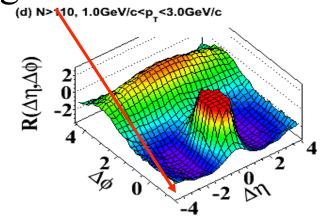


PYTHIA8, v8.135

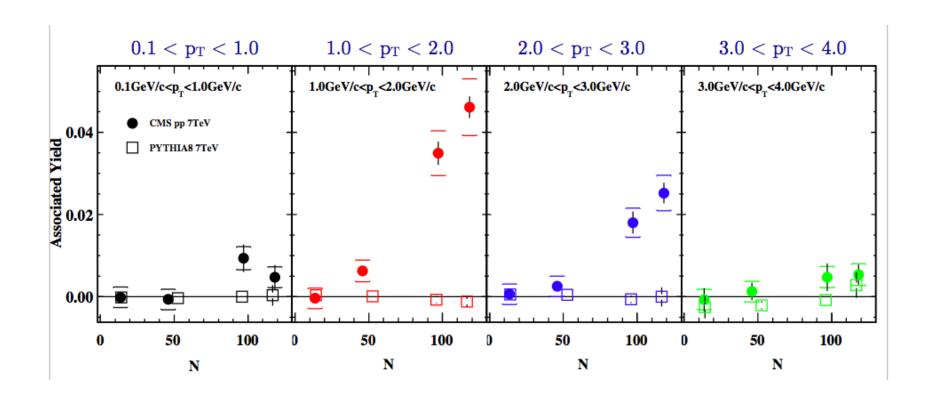
(c) N>110, p_T>0.1GeV/c



No ridge in MC!



Two particle correlations: p_⊤ systematics

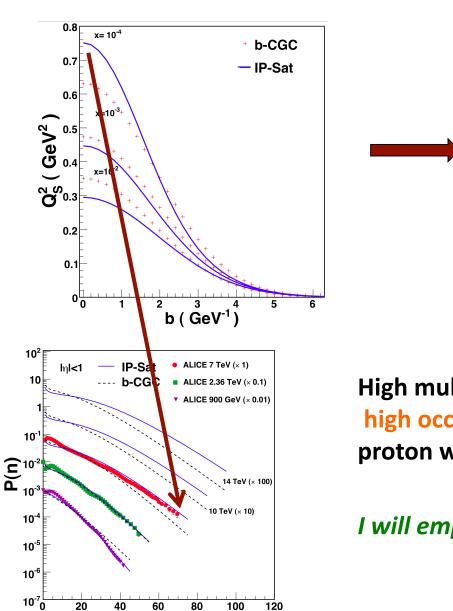


• Signal not present for p_T , $q_T > 3$ GeV

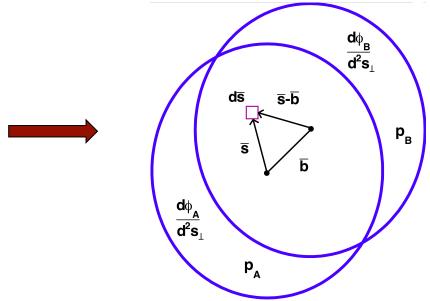
What's the underlying dynamics?

- Large number of models with a range of speculations
- ◆ A similar ridge was seen in heavy ion collisions @ RHIC (and now in HI collisions @ LHC) -is it hydrodynamic flow?
- ◆ I will argue that the p+p ridge is an intrinsic QCD effect providing a snapshot of frozen wee (small x) multi-parton correlations in the proton wave function
- ♦ In contrast, the A+A ridge is entirely due to hydrodynamic flow...

High multiplicity events in p+p



n

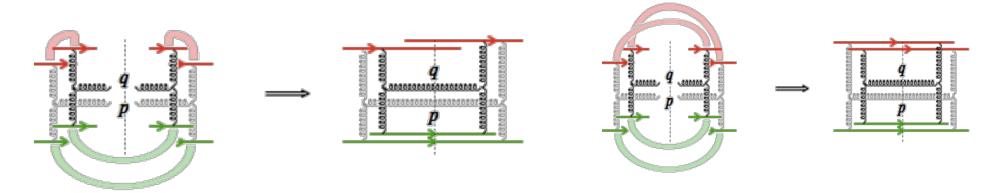


High multiplicity events likely correspond to high occupation numbers $(1/\alpha_s)$ in the proton wave functions for $p_T \le Q_s$

I will emphasize this point further shortly

The saturated proton: two particle correlations

Correlations are induced by color fluctuations that vary event to event - these are local transversely and have color screening radius $\sim 1/Q_s$

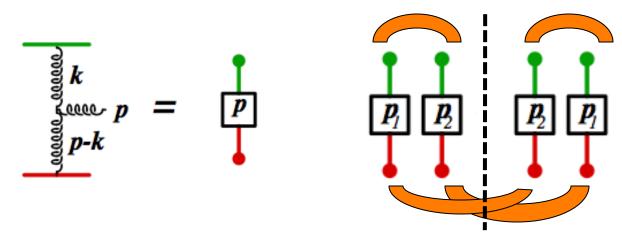


These graphs (called "Glasma graphs"), which generate long range rapidity correlations, are highly suppressed for $Q_S << p_T$

However, effective coupling of sources to fields with $k_T \le Q_S = 1/g$ ("saturation")

Power counting changes for high multiplicity events by α_s^8 ! These graphs become competitive with usual pQCD graphs

2-particle particle correlations



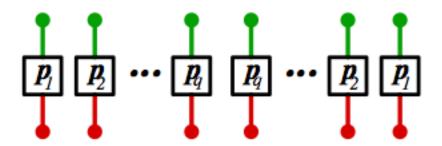
Dumitru, Gelis, McLerran, RV Dusling, Fernandez-Fraile, RV

Glasma flux tube picture: two particle correlations proportional to ratio $1/Q_S^2/S_T$

Only certain color combinations of "dimers" give leading contributions ...iterating combinatorics for 2, 3, n...gives

2-particle particle correlations

Gelis, Lappi, McLerran



Multiplicity distribution: Leading combinatorics of dimers gives the negative binomial distribution

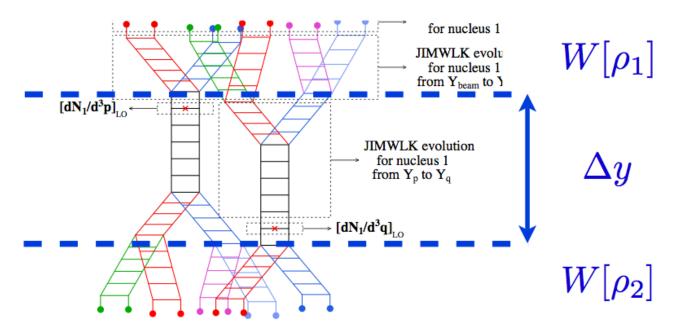
$$P_n^{\text{N.B.}}(\bar{n},k) = \frac{\Gamma(k+n)}{\Gamma(k)\Gamma(n+1)} \frac{\bar{n}^n k^k}{(\bar{n}+k)^{n+k}}$$

$$k=\zeta\frac{(N_c^2-1)Q_S^2S_\perp}{2\pi} \qquad \qquad \text{k = 1: Bose-Einstein} \\ \mathbf{k}=\mathbf{\infty}: \text{Poisson}$$

Yang-Mills computation shows picture is robust for 2 part. Corr. and gives $\zeta \sim 1/3 - 3/2 \dots O(1)$ Lappi, Srednyak, RV

Long range di-hadron correlations

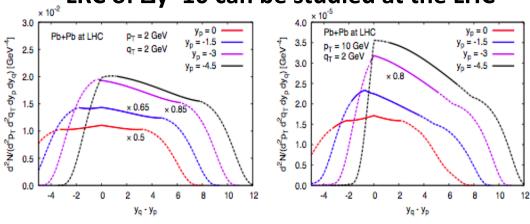
Gelis, Lappi, RV (2009)



Dusling, Gelis, Lappi, RV, arXiv:0911.2720

Au+Au 0-30% (PHOBOS) 1.2 p+p (PYTHIA) 1 1Ntrig dNch/d∆n 0.8 $p_T^{trig} = 2.5 \text{ GeV}$ prassoc = 350 MeV 0.6 0.4 0.2 0 -5 -3 -2 0 Δη

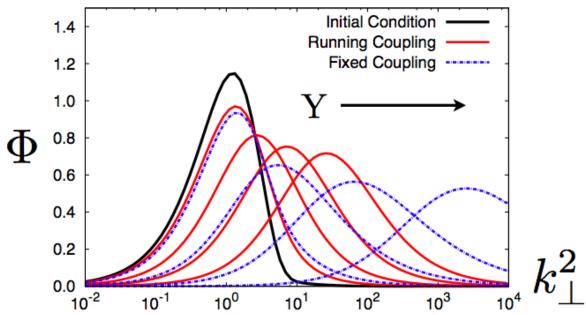
LRC of Δy^{10} can be studied at the LHC



Long range di-hadron correlations

RG evolution of two particle correlations (in mean field approx) expressed in terms of "unintegrated gluon distributions"

$$C(\mathbf{p}, \mathbf{q}) \propto \frac{g^4}{\mathbf{p}_{\perp}^2 \mathbf{q}_{\perp}^2} \int d^2 \mathbf{k}_{1\perp} \Phi_{A_1}^2(y_p, \mathbf{k}_{1\perp}) \Phi_{A_2}(y_p, \mathbf{p}_{\perp} - \mathbf{k}_{1\perp}) \Phi_{A_2}(y_q, \mathbf{q}_{\perp} - \mathbf{k}_{1\perp})$$
+ permutations

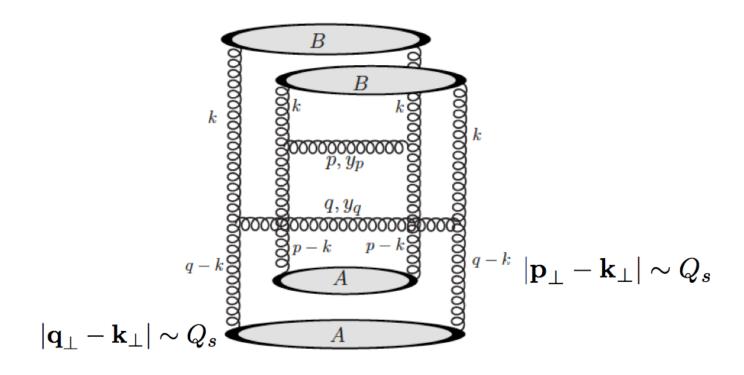


Caveat: Contribution of higher 4-pt. Wilson line correlators not included

Dumitru, Jalilian-Marian; Kovner, Lublinsky (2011)

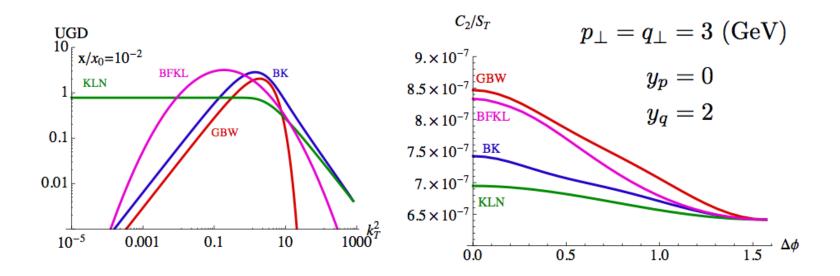
The p+p ridge: azimuthal corr. from Glasma graphs

Dumitru; Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, RV



For $p_T = q_T$, the largest contribution to two particle correlation is from $\Delta \Phi \approx 0$, π

Systematics of the correlation



♦ Near-side correlation sensitive to diffuseness of wavefunction

Quantitative description of pp ridge

$$\frac{d^2N}{d\Delta\phi} = K \int_{-2.4}^{+2.4} d\eta_p \, d\eta_q \, \mathcal{A}\left(\eta_p, \eta_q\right) \\ \mathcal{A}\left(\eta_p, \eta_q\right) = \theta\left(\left|\eta_p - \eta_q\right| - \Delta\eta_{\min}\right) \theta\left(\Delta\eta_{\max} - \left|\eta_p - \eta_q\right|\right) \\ \times \int_{p_T^{\min}}^{p_T^{\max}} \frac{dp_T^2}{2} \int_{q_T^{\min}}^{q_T^{\max}} \frac{dq_T^2}{2} \int d\phi_p \int d\phi_q \, \delta\left(\phi_p - \phi_q - \Delta\phi\right) \\ \times \int_0^1 dz_1 dz_2 \frac{D(z_1)}{z_1^2} \frac{D(z_2)}{z_2^2} \frac{d^2N_{\text{Glasma}}^{\text{corr.}}}{d^2p_T d^2q_T d\eta_p d\eta_q} \left(\frac{p_T}{z_1}, \frac{q_T}{z_2}, \Delta\phi\right) \\ \text{Try soft and hard fragmentation functions:}$$

$$N_{\mathrm{trig}} = \int_{-2.4}^{+2.4} \!\! d\eta \! \int_{p_T^{\mathrm{min}}}^{p_T^{\mathrm{max}}} \!\! d^2 \mathbf{p}_T \! \int_0^1 \!\! dz \frac{D(z)}{z^2} \frac{dN}{d\eta \, d^2 \mathbf{p}_T} \left(\frac{p_{\mathrm{T}}}{z} \right) \label{eq:Ntrig}$$

$$\text{Assoc. Yield} = \frac{1}{N_{\text{trig}}} \int_0^{\Delta\phi_{\text{min.}}} \!\!\! d\Delta\phi \frac{d^2N}{d\Delta\phi} - \left. \frac{d^2N}{d\Delta\phi} \right|_{\Delta\phi_{\text{min.}}}$$

fragmentation functions:

$$D_1 = 3(1-x)^2 / x$$

 $D_2 = 2(1-x) / x$

Only parameter fit to yield data is K = 2.3

Dependence on transverse area cancels in ratio...

Subtracts any pedestal "phi-independent" correlation

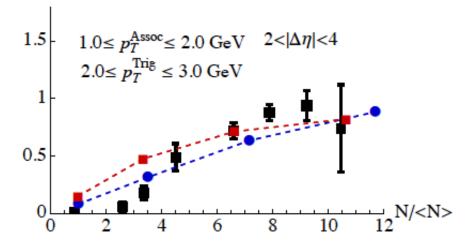
Quantitative description of pp ridge

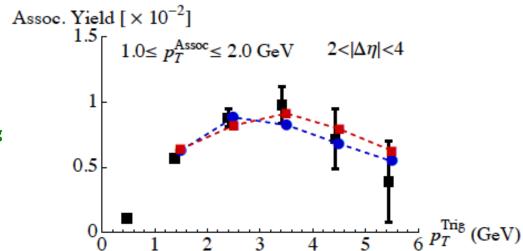
Dusling, RV, 1201.2658

Assoc. Yield [$\times 10^{-2}$]

CMS preliminary data

Assoc. yield with centrality





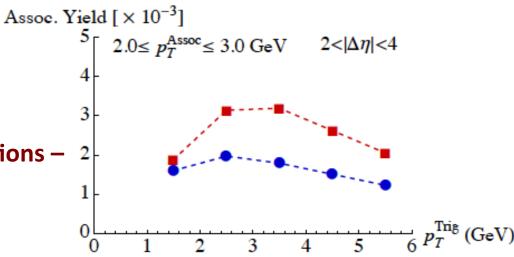
Assoc. yield with p_T^{Trig}

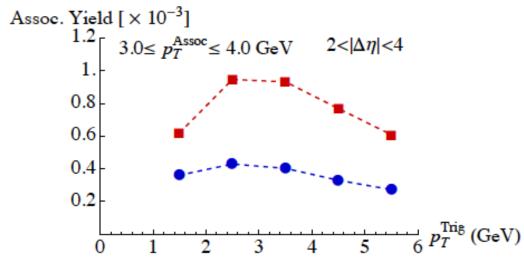
Quantitative description of pp ridge

Dusling, RV, 1201.2658

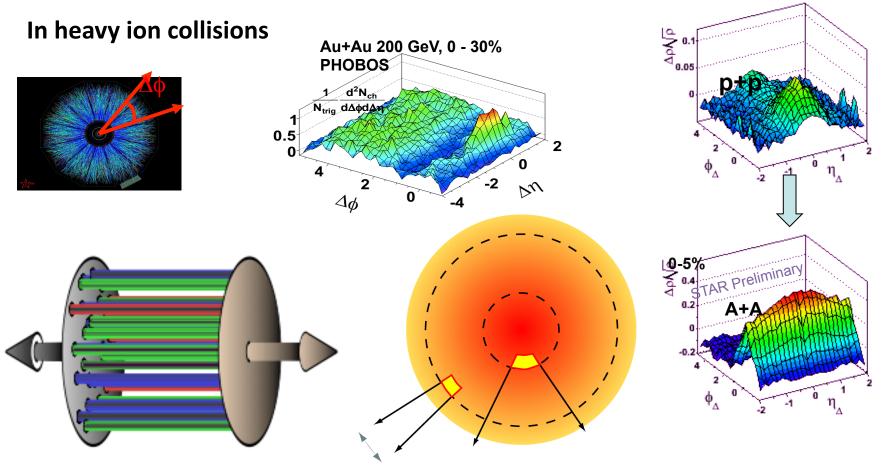
Predictions:

Yields for higher p_T^{Assoc.} are sensitive to fragmentation functions – not known at forward rapidities





What about flow in p+p?



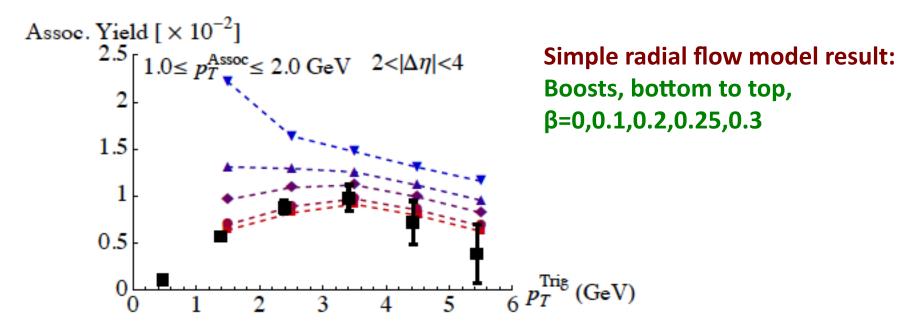
Glasma flux tubes provide the long range rapidity correlation

Dumitru, Gelis, McLerran, RV; Gavin, McLerran, Moschelli

Radial ("Hubble") flow of the tubes provides the azimuthal collimation

Voloshin; Shuryak

What about flow in p+p?



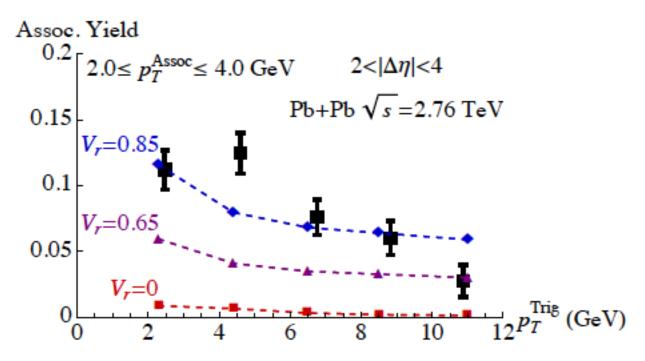
With increasing flow, the pedestal gets collimated

Associated yield reflects the p_T dependence of the Glasma pedestal

Can accommodate only very small re-scattering / flow contribution

A+A ridge is all flow

Preliminary CMS data



Theory issues

- ◆ Collimation in Glasma graphs is from N_c² suppressed graphs.

 Intrinsic leading N_c four point correlators give no collimation (Dumitru, Jalilian-Marian, Petreska) ?? pomeron loop effects ? (Kovner-Lublinsky)
- Multiple-scattering and evolution of two-gluon correlations can be computed for dense-dense sources systematically

```
(Gelis, Lappi, RV; Lappi, Schenke, RV, in progress)
```

 More systematic "global" analysis of single (and double ?) inclusive distributions can constrain even simpler models