

Lecture II: UCT, February, 2012

Outline of lectures

- Lecture I: QCD and the Quark-Gluon Plasma
- Lecture II: Gluon Saturation and the Color Glass Condensate
- Lecture III: Quantum field theory in strong fields. Factorization and the Glasma
- Lecture IV: Quantum field theory in strong fields.
 Instabilities and the spectrum of initial quantum fluctuations
- Lecture V: Quantum field theory in strong fields. Decoherence, hydrodynamics, Bose-Einstein Condensation and thermalization
- Lecture VI: Future prospects: RHIC, LHC and the EIC

What does a heavy ion collision look like ?

The big role of wee gluons

The big role of wee glue

(Nucleus-Nucleus Collisions at Fantastic Energies) Nucleus-Nucleus Collisions at Fantastic Energies D. .Before leaving this subject it is fun to consider the collision of two nuclei at energies sufficiently high so that in addition to the fragmentation regions, a At LHC, ~14 units in rapidity! central plateau region can develop. Let us consider a central collision of a relatively small nucleus, say carbon, with a big one, say lead. Let us look at this collision in a center-of-mass frame for which the rapidities of both of the nucleus projectiles exceeds the critical rapidity. In such a frame they both possess the fur coat of wee-parton vacuum fluctuations. In such a central collision we see that the collision initially occurs between the fur of wee partons in each of the projectiles. Therefore the number of independent collisions will Bj, DESY lectures (1975) be of order of the area of overlap of the two projectiles; namely the crosssectional area of the smaller nucleus.

The big role of wee glue

❑ What is the role of wee partons ? ✓

□ How do the wee partons interact and produce glue ? ✓

□ Can it be understood *ab initio* in QCD ? ✓

The DIS Paradigm

Bj-scaling: apparent scale invariance of structure functions

QCD ≠ Parton Model Logarithmic scaling violations

$$F_2(x,Q^2) = \sum_{\substack{q=u,c,t \\ d,s,b}} e_q^2 \left(x \, q(x,Q^2) + x \, \bar{q}(x,Q^2) \right)$$

The proton at high energies

"x-QCD"- small x evolution

$$\int_{0}^{1} \frac{dx}{x} (xq(x) - x\bar{q}(x)) = 3 \longrightarrow \text{ # of valence quarks}$$

$$\int_{0}^{1} \frac{dx}{x} (xq(x) + x\bar{q}(x)) \rightarrow \infty \longrightarrow \text{ # of quarks}$$

Structure functions grow rapidly at small x

Where is the glue ?

For x < 0.01, proton dominated by glue-grows rapidly What happens when glue density is large ?

The Bjorken Limit

$$Q^2 \to \infty; s \to \infty; x_{\rm Bj} \approx \frac{Q^2}{s} = \text{fixed}$$

• Operator product expansion (OPE), factorization theorems, machinery of precision physics in QCD

Structure of higher order perturbative contributions in QCD

- Coefficient functions C computed to NNLO for many processes
- Splitting functions P computed to 3-loops

Phase space density (# partons / area / Q²) decreases - the proton becomes more dilute...

BEYOND pQCD IN THE Bj LIMIT

- Works great for inclusive, high Q² processes
- Higher twists important when $Q^2 \approx Q_s^2(x)$
- Problematic for diffractive/exclusive processes
- Formalism not designed to treat shadowing, multiple scattering, diffraction, energy loss, impact parameter dependence, thermalization...

The Regge-Gribov Limit

 $\rightarrow 0$; $s \rightarrow \infty$; $Q^2 (>> \Lambda^2_{\text{OCD}}) = \text{fixed}$ $x_{\rm Bj}$

 Physics of strong fields in QCD, multi-particle production, Novel universal properties of QCD ?

Gluon density saturates at phase space density f = 1 / α_s - strongest (chromo-) E&M fields in nature...

Proton becomes a dense many body system at high energies

Parton Saturation

Gribov, Levin, Ryskin Mueller, Qiu

 Competition between attractive bremsstrahlung and repulsive recombination and screening effects

Maximum phase space density (f = $1/\alpha_s$) =>

$$\frac{1}{2(N_c^2 - 1)} \frac{x G(x, Q^2)}{\pi R^2 Q^2} = \frac{1}{\alpha_S(Q^2)}$$

This relation is saturated for

$$Q = Q_s(x) >> \Lambda_{\rm QCD} \approx 0.2 \,\,{\rm GeV}$$

Parton Saturation:Golec-Biernat --Wusthoff dipole model

Parameters: $Q_0 = 1$ GeV; $\lambda = 0.3$; $x_0 = 3^* \ 10^{-4}$; $\sigma_0 = 23$ mb

Evidence from HERA for geometrical scaling

Golec-Biernat, Stasto, Kwiecinski

Gelis et al., hep-ph/0610435

VIRTUAL PAIR CREATION IN A STRONG BREMSSTRAHLUNG FIELD: A QED model for parton saturation

A H MUELLER

Physics Department, Columbia University, New York, NY 10027, USA and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

Virtual pair creation in a strong, virtual, bremsstrahlung field is considered in QED as a model for parton saturation. In a weak field the virtual pair density increases quadratically in the external field, however, at large values of the field the number density becomes independent of the strength of that field. A similar effect is found in scalar electrodynamics.

1. Introduction

At small values of the Bjorken-x-variable parton (quark and gluon) number densities are expected to grow rapidly [1] However, when, say, the gluon distribution in a hadron, $xG(x, Q^2)$, reaches a value as large as Q^2r^2/α , with r the radius of the hadron, these gluons are so densely packed that one expects scattering and annihilation of partons to become important, thus limiting the ultimate number density to be of the size indicated above [1, 3]

This high density quark-and-gluon system is a most fascinating regime of QCD On the one hand, if $Q^2 \ge 1 \text{ GeV}^2$ the coupling, $\alpha(Q^2)$, is small and the usual non-perturbative condensates are unimportant while, on the other hand, the system is strongly interacting because of the high parton densities. That is, this regime of weak coupling but large numbers of partons is a new regime of QCD Such a high-density parton system occurs in a number of different high-energy processes (i) In deeply inelastic scattering one can directly measure such high-density systems at small x using the virtual photon as a probe [1, 3]. (ii) In the very early stages of a heavy ion collision such a system is produced over a large transverse area [4]. (iii) Two-jet correlations in high-energy reactions can trigger on local hot spots [5], high parton density regions which are smaller than the radius of a normal hadron

So far, it has not been possible to theoretically study this high density, non-equilibrium, regime of QCD directly. Lowest order gluon recombinations have been

High energy QCD as a many body system

¹ Work supported in part by the Department of Energy and NSF Grant PHY82-17853, supplemented by NASA.

Many-body dynamics of universal gluonic matter

How does this happen ? What are the right degrees of freedom ?

How do correlation functions of these evolve ?

Is there a universal fixed point for the RG evolution of d.o.f

Does the coupling run with Q_s^2 ?

How does saturation transition to chiral symmetry breaking and confinement

The nuclear wavefunction at high energies

- At high energies, interaction time scales of fluctuations are dilated well beyond typical hadronic time scales
- Lots of short lived (gluon) fluctuations now seen by probe
 - -- proton/nucleus -- dense many body system of (primarily) gluons
- Fluctuations with lifetimes much longer than interaction time for the probe function as static color sources for more short lived fluctuations

Nuclear wave function at high energies is a Color Glass Condensate

The nuclear wavefunction at high energies

Higher Fock components dominate multiparticle productionconstruct Effective Field Theory

Born--Oppenheimer LC separation natural for EFT.

RG equations describe evolution of wavefunction with energy

Effective Field Theory on Light Front

Bardacki-Halpern Galilean sub-group Poincare group on LF of 2D Quantum Mechanics isomorphism Eg., LF dispersion relation $P^- = \frac{P_{\perp}^2}{2P^+} \longrightarrow Momentum$ Mass Enerav Large x (P⁺) modes: static LF (color) sources ρ^a Small x (k⁺ << P⁺) modes: dynamical fields A_{μ}^{a} McLerran, RV CGC: Coarse grained many body EFT on LF $< P|\mathcal{O}|P > \longrightarrow \int [d\rho^a][dA^{\mu,a}] W_{\Lambda^+}[\rho] e^{iS_{\Lambda^+}[\rho,A]} \mathcal{O}[\rho,A]$ $W_{\Lambda^+}[
ho]$ non-pert. gauge invariant "density matrix" defined at initial scale Λ_0^+

RG equations describe evolution of W with x

JIMWLK, BK

Susskind

The Color Glass Condensate

McLerran, RV Jalilian-Marian,Kovner,Weigert Iancu, Leonidov,McLerran

In the saturation regime:

Strongest fields in nature!

$$E^2 \sim B^2 \sim \frac{1}{\alpha_S}$$

CGC: *Classical* effective theory of QCD describing dynamical gluon fields + static color sources in non-linear regime

- Novel renormalization group equations (JIMWLK/BK) describe how the QCD dynamics changes with energy
- **o** A universal saturation scale Q_s arises naturally in the theory

What do sources look like in the IMF?

Wee partons "see" a large density of color sources at small transverse resolutions

Classical field of a large nucleus

Quantum evolution of classical theory: Wilson RG

Wilsonian RG equations describe evolution of all N-point correlation functions with energy

JIMWLK Jalilian-marian, lancu, McLerran, Weigert, Leonidov, Kovner

Saturation scale grows with energy

Bulk of high energy cross-sections:

- a) obey dynamics of novel non-linear QCD regime
- b) Can be computed systematically in weak coupling

JIMWLK eqn. Jalilian-Marian, Jancu, McLerran, Weigert, Leonidov, Kovner

CGC Effective Theory: B-JIMWLK hierarchy of correlators

At high energies, the d.o.f that describe the frozen many-body gluon configurations are novel objects: dipoles, quadrupoles, ...

Universal – appear in a number of processes in p+A and e+A; how do these evolve with energy ?

Solving the B-JIMWLK hierarchy

□ JIMWLK includes all multiple scattering and leading log evolution in x

- Expectation values of Wilson line correlators at small x satisfy a Fokker-Planck eqn. in functional space
 Weigert (2000)
- This translates into a hierarchy of equations for n-point Wilson line correlators

As is generally the case, Fokker-Planck equations can be re-expressed as Langevin equations – in this case for Wilson lines

> Blaizot, Iancu, Weigert Rummukainen, Weigert

First numerical solutions exist: I will report on recent developments

B-JIMWLK hierarchy: Langevin realization

Numerical evaluation of Wilson line correlators on 2+1-D lattices:

$$\left\langle \mathcal{O}[U] \right\rangle_Y = \int D[U] W_Y[U] \mathcal{O}[U] \longrightarrow \frac{1}{N} \sum_{U \in W} \mathcal{O}[U]$$

Langevin eqn:

Gaussian random variable

7

$$\partial_{Y}[V_{x}]_{ij} = [V_{x}it^{a}]_{ij} \left[\int d^{2}y \ [\mathcal{E}^{ab}_{xy}]_{k} \ [\xi^{b}_{y}]_{k} + \sigma^{a}_{x} \right]$$

$$\mathcal{E}^{ab}_{xy} = \left(\frac{\alpha_{S}}{\pi^{2}}\right)^{1/2} \ \frac{(x-y)_{k}}{(x-y)^{2}} \left[1 - U^{\dagger}_{x}U_{y}\right]^{ab} \qquad \sigma^{a}_{x} = -i\left(\frac{\alpha_{S}}{2\pi^{2}}\int d^{2}z \frac{1}{(x-z)^{2}} \operatorname{Tr}(T^{a} \ U^{\dagger}_{x}U_{z})\right)$$
"square root" of JIMWLK kernel "drag"

Initial conditions for V's from the MV model

Daughter dipole prescription for running coupling

Functional Langevin solutions of JIMWLK hierarchy

Rummukainen, Weigert (2003)

Dumitru, Jalilian-Marian, Lappi, Schenke, RV: arXiv:1108.1764

Multi-parton correlations in nuclear wavefunctions:

Event-by-event rapidity, number and impact parameter fluctuations

Inclusive DIS: dipole evolution

Inclusive DIS: dipole evolution

B-JIMWLK eqn. for dipole correlator

$$\frac{\partial}{\partial Y} \langle \operatorname{Tr}(V_x V_y^{\dagger}) \rangle_Y = -\frac{\alpha_S N_c}{2\pi^2} \int_{z_{\perp}} \frac{(x_{\perp} - y_{\perp})^2}{(x_{\perp} - z_{\perp})^2 (z_{\perp} - y_{\perp})^2} \langle \operatorname{Tr}(V_x V_y^{\dagger}) - \frac{1}{N_c} \operatorname{Tr}(V_x V_z^{\dagger}) \operatorname{Tr}(V_z V_y^{\dagger}) \rangle_Y$$

Dipole factorization:

 $\langle \operatorname{Tr}(V_x V_z^{\dagger}) \operatorname{Tr}(V_z V_y^{\dagger}) \rangle_Y \longrightarrow \langle \operatorname{Tr}(V_x V_z^{\dagger}) \rangle_Y \langle \operatorname{Tr}(V_z V_y^{\dagger}) \rangle_Y \quad \mathbf{N_c} \twoheadrightarrow \infty$

Resulting closed form eqn. is the Balitsky-Kovchegov eqn. Widely used in phenomenological applications

Semi-inclusive DIS: quadrupole evolution

 $\frac{d\sigma^{\gamma^*_{\mathrm{T},\mathrm{L}}A\to q\bar{q}X}}{d^3k_1d^3k_2} \propto \int_{x,y,\bar{x}\bar{y}} e^{ik_{1\perp}\cdot(x-\bar{x})} e^{ik_{2\perp}\cdot(y-\bar{y})} \left[1 + Q(x,y;\bar{y},\bar{x}) - D(x,y) - D(\bar{y},\bar{x})\right]$

 $D(x,y) = \frac{1}{N_c} \langle \operatorname{Tr}(V_x V_y^{\dagger}) \rangle_Y$

 $Q(x, y; \bar{y}, \bar{x}) = \frac{1}{N_c} \langle \text{Tr}(V_x V_{\bar{x}}^{\dagger} V_{\bar{y}} V_y^{\dagger}) \rangle_Y$

Cannot be further simplified a priori even in the large N_c *limit*

Universality: Di-jets in p/d-A collisions

Fundamental ingredients are the universal dipoles and quadrupoles

For finite N_c, anticipate higher multipole contributions

Gaussian approximation to JIMWLK

Dumitru, Jalilian-Marian, Lappi, Schenke, RV

Gaussian approximation to JIMWLK

Dumitru, Jalilian-Marian, Lappi, Schenke, RV

Geometrical scaling

RG evolution of multipole correlators