

3D Partonic Structure of the Nucleon Varenna 2011 ΛG

Phenomenology

of Transvers Momentum Dependent

distributions

Alexei Prokudin **Jefferson Laboratory**

Download

http://www.to.infn.it/~prokudin/varenna/SIDIS.nb

http://www.to.infn.it/~prokudin/varenna/Dipole.nb

 $\mathbf{l} + \mathbf{P} \rightarrow \mathbf{l}' + \mathbf{h} + \mathbf{X}$

 N^{\uparrow}

SIDIS: experiment

 N^{\downarrow}

The Proton moves along Z in space

Number of particles for opposite polarizations of the target is counted

 $\mathbf{l} + \mathbf{P} \rightarrow \mathbf{l}' + \mathbf{h} + \mathbf{X}$

SIDIS: experiment

The Proton moves along Z in space

Single Spin Asymmetry is measured

$$
A \propto \frac{N^\uparrow - N^\downarrow}{N^\uparrow + N^\downarrow}
$$

 $l + P \rightarrow l' + h + X$

SIDIS: experiment

Angular dependence allows to disentangle different contributions

Sivers function

Let's consider unpolarised quarks inside transversely polarised nucleon

General distribution

$$
f(x, \mathbf{p}_T, S) = f_1(x, \mathbf{p}_T^2) - \frac{1}{2}
$$

$$
\frac{\mathbf{p}_T \times \hat{P}]\cdot S_T}{M} f_{1T}^\perp(x,\mathbf{p}_T^2)
$$

Usual unpolarised distribution

This one is called SIVERS function

Sivers function

Let's consider unpolarised quarks inside transversely polarised nucleon

General distribution

$$
f(x, \mathbf{p}_T, S) = f_1(x, \mathbf{p}_T^2) - \frac{[\mathbf{p}_T \times \hat{P}] \cdot S_T}{M} f_{1T}^{\perp}(x, \mathbf{p}_T^2)
$$

 $[\mathbf{p}_T \times P] \cdot S_T$ Is the only allowed combination as spin is a pseudovector and we need another pseudovector $|\mathbf{p}_T\times P|$

Parity and all that

$$
\textsf{Parity transformation} \qquad \qquad \mathbf{P} : \vec{X} \rightarrow -\vec{X}
$$

We observe squares, thus two parity states

 $\mathbf{P}\Phi(\vec{X}) = \pm 1 \Phi(\vec{X})$ ${\bf P}: \vec{S} \rightarrow \vec{S}$ **Spin vector is P-even:** ${\bf P}: \vec{p}\rightarrow -\vec{p}$ **Momentum is P-odd:** ${\bf P}: [{\bf p}_T \times P] \rightarrow [{\bf p}_T \times P]$ **Vector product is P-even:**

QCD is invariant under parity transformation

- $[\mathbf{p}_T \times P] \cdot S_T$
- is the only allowed combination for unpolarized distribution

Time reversal

$$
\mathbf{T}:t\rightarrow -t
$$

Time reversal

We observe squares, thus two time reversal states $\mathbf{T}\Phi(\vec{t}) = \pm 1 \Phi(\vec{t})$ $\mathbf{T}: \vec{S} \rightarrow -\vec{S}$ **Spin vector is T-odd:** $\mathbf{T}:\vec{p}\rightarrow-\vec{p}$ **Momentum is T-odd:** $\mathbf{T}: [\mathbf{p}_T \times P] \to [\mathbf{p}_T \times P]$ **Vector product is T-even:**

QCD is invariant under time reversal

 $\mathbf{T}:[\mathbf{p}_T\times P]\cdot S_T\rightarrow -[\mathbf{p}_T\times P]\cdot S_T$

T-odd, thus Sivers function is T-odd

Sivers function

$$
f(x, \mathbf{p}_T, S) = f_1(x, \mathbf{p}_T^2) - \frac{[\mathbf{p}_T \times \hat{P}] \cdot S_T}{M} f_{1T}^{\perp}(x, \mathbf{p}_T^2)
$$

This function gives access to 3D imaging

Spin-orbit correlation

Physics of gauge links is represented

Requires Orbital Angular Momentum

Access to 3D imaging

$$
f(x, \mathbf{p}_T, S) = f_1(x, \mathbf{p}_T^2) - \frac{[\mathbf{p}_T \times \hat{P}] \cdot S_T}{M} f_{1T}^{\perp}(x, \mathbf{p}_T^2)
$$

Symmetric part $f_1(x, \mathbf{p}_T^2) = f(x, \mathbf{p}_{xT}^2 + \mathbf{p}_{yT}^2)$

$$
\textbf{Sivers function} \qquad \hat{P} = (0,0,1) \qquad S_T = (0,1,0)
$$

$$
\frac{[\mathbf{p}_T \times \hat{P}] \cdot S_T}{M} f_{1T}^{\perp}(x, \mathbf{p}_T^2) = \frac{\mathbf{p}_{xT}}{M} f_{1T}^{\perp}(x, \mathbf{p}_{xT}^2 + \mathbf{p}_{yT}^2)
$$

Dipole deformation

Access to 3D imaging

$$
f(x, \mathbf{p}_T, S) = f_1(x, \mathbf{p}_T^2) - \frac{[\mathbf{p}_T \times \hat{P}] \cdot S_T}{M} f_{1T}^{\perp}(x, \mathbf{p}_T^2)
$$

Symmetric part
$$
f_1(x, \mathbf{p}_T^2) = f(x, \mathbf{p}_{xT}^2 + \mathbf{p}_{yT}^2)
$$

Sivers function

$$
\hat{P} = (0,0,1) \qquad S_T = (0,1,0)
$$

Dipole deformation

Access to 3D imaging

$$
f(x, \mathbf{p}_T, S) = f_1(x, \mathbf{p}_T^2) - \frac{[\mathbf{p}_T \times P] \cdot S_T}{M} f_{1T}^{\perp}(x, \mathbf{p}_T^2)
$$

Sivers function from experimental data HERMES and COMPASS

Dipole deformation

Spin orbit correlation and OAM

Sivers function requires proton helicity flip $f(x, \mathbf{p}_T, S) = f_1(x, \mathbf{p}_T^2) - \frac{[\mathbf{p}_T \times \hat{P}] \cdot S_T}{M} f_{1T}^{\perp}(x, \mathbf{p}_T^2)$

In terms of wave functions it means interference

between states with L_z and $L_z = L_z \pm 1$

Thus Sivers function requires OAM of quarks

OAM and Spin Crisis

The Spin of the proton can be decomposed as

$$
\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \langle L_z^{q, \bar{q}} \rangle + \langle L_z^G \rangle
$$

$$
\text{Experimentally} \quad \Delta \Sigma = \sum_{q,\bar q} \Delta q \simeq 0.3
$$

Spin Crisis – only 30% of the spin of the proton is carried by quarks, not almost 100% as expected!

Elliot Leader, Mauro Anselmino "A Crisis In The Parton Model: Where, Oh Where Is The Proton's Spin?" 1988

OAM and Spin Crisis

The Spin of the proton can be decomposed as

$$
\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \langle L_z^{q, \bar{q}} \rangle + \langle L_z^G \rangle
$$

$$
\text{Experimentally} \quad \Delta \Sigma = \sum_{q,\bar{q}} \Delta q \simeq 0.3
$$

Spin Crisis – only 30% of the spin of the proton is carried by quarks, not almost 100% as expected!

Can ΔG be big? Experimentally $\Delta G \sim 0$

OAM and Spin Crisis

The Spin of the proton can be decomposed as

$$
\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \langle L_z^{q, \bar{q}} \rangle + \langle L_z^G \rangle
$$

$$
\text{Experimentally} \quad \Delta \Sigma = \sum_{q,\bar{q}} \Delta q \simeq 0.3
$$

Spin Crisis – only 30% of the spin of the proton is carried by quarks

Can ΔG be big? Experimentally $\Delta G \sim 0$

Orbital motion of partons is important. Sivers function encodes this motion!

Physics of gauge links

Colored objects are surrounded by gluons, profound consequence of gauge invariance technically implemented by Wilson lines - gauge links.

Sivers function has opposite sign when gluon couple after quark scatters (SIDIS) or before quark annihilates (Drell Yan)

Sivers function would be zero if gluons were absent

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} \propto \frac{\sigma^\uparrow - \sigma^\downarrow}{\sigma^\uparrow + \sigma^\downarrow}
$$

Unpolarised electron beam Transversely polarised proton

$$
\sigma^{\uparrow}-\sigma^{\downarrow}=f_{1T}^{\perp}\otimes d\hat{\sigma}\otimes D_{h/q}\sin(\phi_h-\phi_S)
$$

 $\sigma^{\uparrow} + \sigma^{\downarrow} = f_1 \otimes d\hat{\sigma} \otimes D_{h/q}$

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = 2 \frac{\int d\Phi_S d\Phi_h \sin(\Phi_h - \Phi_S)(\sigma^\uparrow - \sigma^\downarrow)}{\int d\Phi_S d\Phi_h (\sigma^\uparrow + \sigma^\downarrow)}
$$

Unpolarised electron beam Transversely polarised proton

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

What symbol \otimes means?

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

What symbol \otimes means?

$$
\sum_{q} e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q} \equiv F_{UT}^{\sin(\Phi_h - \Phi_S)} =
$$

$$
x \sum_{q} e_q^2 \int d^2 \mathbf{p}_T d^2 \mathbf{k}_T \delta^{(2)}(z\mathbf{p}_T + \mathbf{k}_T - \mathbf{P}_{hT}) \frac{\mathbf{p}_T \cdot \hat{P}}{M} f_{1T}^{\perp q}(x, \mathbf{p}_T^2) D_{q/h}(z, \mathbf{k}_T^2)
$$

Convolution Momentum conservation

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

What symbol \otimes means?

$$
\sum_{q} e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q} \equiv F_{UT}^{\sin(\Phi_h - \Phi_S)} =
$$
\n
$$
x \sum_{q} e_q^2 \int d^2 \mathbf{p}_T d^2 \mathbf{k}_T \delta^{(2)}(z \mathbf{p}_T + \mathbf{k}_T - \mathbf{P}_{hT}) \frac{\mathbf{p}_T \cdot \hat{P}}{M} f_{1T}^{\perp q}(x, \mathbf{p}_T^2) D_{q/h}(z, \mathbf{k}_T^2)
$$
\nConvolution\n
$$
\begin{array}{ccc}\n\text{Monvolution} & \text{Momentum conservation} \\
\downarrow^{\text{2}} & \downarrow^{\text{2}} \\
\text{Calculate using Mathematica!} & & & & & & & & \\
\end{array}
$$

Alexei Prokudin – Lecture II

 \mathcal{D}

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

HERMES $ep \rightarrow e\pi X$, $p_{lab} = 27.57$ GeV.

COMPASS $\mu D \rightarrow \mu \pi X$, $p_{lab} = 160$ GeV.

 $A_{UT}^{\sin(\Phi_h - \Phi_S)} = \frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}$ **COMPASS**Deuteron: proton+neutron $P(u, u, d)$ $N(d, d, u)$ $f_{u/P} = f_{d/N}$ $f_{d/P} = f_{u/N}$ P_T (GeV)

 $f_{u/D} = f_{u/P} + f_{d/P}$ $f_{d/D} = f_{d/P} + f_{u/P}$

$$
f_{1T}^{\perp u/D} = f_{1T}^{\perp u} + f_{1T}^{\perp d} \simeq 0
$$

 $A_{UT}^{\sin(\phi_h, \phi_S)}$

$$
= -\frac{\sum_{q} e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_{q} e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

\nDeuteron: proton+neutron
\n
$$
P(u, u, d) \quad N(d, d, u)
$$

\n
$$
f_{u/P} = f_{d/N} \quad f_{d/P} = f_{u/N}
$$

\n
$$
f_{d/D} = f_{d/P} + f_{u/P}
$$

$$
f_{1T}^{\perp u/D} = f_{1T}^{\perp u} + f_{1T}^{\perp d} \simeq 0
$$

COMPASS $\mu D \rightarrow \mu \pi X$, $p_{lab} = 160$ GeV.

 $-\frac{\sum_q e_q^2 f_{1T}^{\perp}\otimes d\hat{\sigma}\otimes D_{h/q}}{\sum_q e_q^2 f_1\otimes d\hat{\sigma}\otimes D_{h/q}}$ **HERMES**

Proton

 $-\sum e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}$ \overline{q}

$$
-\frac{4}{9}f_{1T}^{\perp u}\otimes d\hat{\sigma}\otimes D_{u/\pi^+}+\frac{1}{9}f_{1T}^{\perp d}\otimes d\hat{\sigma}\otimes D_{d/\pi^+}
$$

 $J_{1T}^{\perp \alpha}$

Alexei Prokudin – Lecture II

 \cup

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

Anselmino et al 2008

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

How do we "see" sea quarks in the data?

 $K^{-}(\bar{u}s)$

How do we fit TMDs?

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

Choose parametrization

$$
f_{1T}^{\perp}(x, \mathbf{p}_T^2) \sim x^{\alpha} (1-x)^{\beta} \frac{1}{\pi \sigma^2} e^{-\frac{\mathbf{p}_T^2}{\sigma^2}}
$$

How do we fit TMDs?

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

Choose parametrization

$$
f_{1T}^{\perp}(x, \mathbf{p}_T^2) \sim x^{\alpha} (1-x)^{\beta} \frac{1}{\pi \sigma^2} e^{-\frac{\mathbf{p}_T^2}{\sigma^2}}
$$

Fit parameters to experimental data

How do we fit TMDs?

$$
A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}
$$

Chi-square function is formed

$$
\chi^2 = \sum_{n=1}^{N_{data}} \left(\frac{theory_n - experiment_n}{experimental\ error_n} \right)^2
$$

Chi-square function is minimized and values of parameters are obtained

JLab will operate at 12 GeV in 2015 Electron Ion Collider is proposed for 2025

• EIC will explore low- x region.

Present knowledge:

Future knowledge:

Future knowledge:

Future knowledge: $x = 0.01$

Literature

- Taylor " Scattering Theory"
- Halzen, Martin " Quarks & Leptons"
- Feynman "Photon-Hadron Interactions"
- Collins "Foundations of perturbative QCD"
- Barone, Drago, Ratcliffe <http://arxiv.org/pdf/hep-ph/0104283>

THANK YOU!

CONTRACTOR

RISTORANTE

Alexei Prokudin – Lecture I Alexei Prokudin – Lecture II

Back up slides

Distributions and parton model

What do we know about distributions?

Gauge invariance

QCD is invariant under gauge transformations $\bar{\psi}(x) \rightarrow \bar{\psi}'(x) = \bar{\psi}(x) \mathcal{U}^{\dagger}(x)$ $\psi(x) \rightarrow \psi'(x) = \mathcal{U}(x)\psi(x)$ $\mathcal{U}^{\dagger}(x)\mathcal{U}(x)=1$

It means that all observables are also gauge invariant

Gauge invariance

QCD is invariant under gauge transformations $\bar{\psi}(x) \rightarrow \bar{\psi}'(x) = \bar{\psi}(x) \mathcal{U}^{\dagger}(x)$ $\psi(x) \rightarrow \psi'(x) = \mathcal{U}(x)\psi(x)$ $\mathcal{U}^{\dagger}(x)\mathcal{U}(x)=1$

It means that all observables are also gauge invariant

What we forgot?

We forgot that quark and remnant are colored thus they interact via gluon exchanges!

Wilson line restores gauge invariance!

$$
\mathcal{W}(0,\xi)\rightarrow\mathcal{W}^{\prime}(0,\xi)=\mathcal{U}(0)\mathcal{W}(0,\xi)\mathcal{U}^{\dagger}(\xi)
$$

so that

 $\overline{\psi}_j(0) \mathcal{W}(0,\xi) \psi_i(\xi^-) \rightarrow \overline{\psi}_j(0) \mathcal{U}^{\dagger}(0) \mathcal{U}(0) \mathcal{W}(0,\xi) \mathcal{U}^{\dagger}(\xi_-) \mathcal{U}(\xi_-) \psi_i(\xi^-)$

Wilson line restores gauge invariance!

$$
\mathcal{W}(0,\xi) \to \mathcal{W}'(0,\xi) = \mathcal{U}(0)\mathcal{W}(0,\xi)\mathcal{U}^{\dagger}(\xi)
$$

so that

 $\bar{\psi}_j(0)W(0,\xi)\psi_i(\xi^-) \rightarrow \bar{\psi}_j(0)U^{\dagger}(0)U(0)W(0,\xi)U^{\dagger}(\xi_-)U(\xi_-)\psi_i(\xi^-)$ $=\bar{\psi}_i(0)\mathcal{W}(0,\xi)\psi_i(\xi^{-})$

Gauge invariance

We sum all these gluons

