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Abstract

In this report we use positron emission particle tracking (PEPT) to study the flow of a bidisperse granular
medium composed of particles of two different sizes inside a horizontal rotating cylinder. We observe that
radial segregation occurs and this can be contributed to some difference in the behaviour of the particles as
they flow through the free surface.
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1 Theory

Mixing particulate of different sizes inside a horizontal rotating cylinder is ubiquitous in industrial process-
ing. It is known from experiment that small differences in particle size results in segregation, where particles
of different sizes separate into different regions within a rotating drum, affecting the statistics of the flow of
material. Segregation is unavoidable in practice and understanding this behaviour may improve the efficiency
of industrial processes.

The dynamics of granular media is a challenging problem to understand as the fundamental physics of
granular flow are not yet fully established, and segregation has no analogue in fluid mechanics. One would
hope to have a relatively simple mathematical model for granular systems that is able to incorporate the
complexities of these systems, and yet is still amenable to analysis. The most obvious way for obtaining
such a method is by approximating granular materials as continua, akin to fluids. According to [3], this
technique does indeed see use, but is nevertheless limiting for a number of reasons. They cite the analogy
between fluids and highly heterogeneous granular systems being imperfect: certain phenomena that require
the consideration of the particle nature of granular systems, such as the formation of force chains, cannot be
adequately modelled using fluid-dynamical techniques. An attempt to model the flow of bidisperse granular
media in a horizontal rotating cylinder is provided in Appendix A.

We consider a rotating cylinder. At low rotational speeds the flow exhibits periodic avalanches, each ending
before the next begins. At high rotational speeds we observe the media cling to the surface of the cylinder.
In this report we will consider the dynamics at intermediate rotational speeds where we observe a continuous
flow of the medium. In the continuous flow regime, we observe a thin cascading layer, which we refer to as
the free surface, which flows like a fluid. The rest of the medium, which we refer to as the bed, rotates like
a solid body as shown in Fig. 1.

Figure 1: A schematic cross-section of the flow of granular media in a rotating cylinder. A is the free surface,
which flows like a fluid. B is the bed which rotates like a solid body. ω is the angular velocity or rotational
speed of the cylinder.

The Brazil nut effect describes the segregation observed when agitating a mixture of small and large parti-
cles. It is suggested that this is the result of a percolation mechanism whereby small particles fill small voids
below large particles leading to irreversible segregation of smaller and larger particles. A result of the Brazil
nut effect in the flowing layer of granular media in a rotating drum is size dependent radial segregation. At
low rotational speeds smaller particles tend to occupy lower levels in the flowing layer which results in the
formation of a “core” of smaller particles in the drum [7]. Many recent studies of radial segregation have
investigated this regime. Discrete element method simulations for a two dimensional systems in the contin-
uous flow regime was reported in [5], where it was found that the smaller particles indeed form a central
core and it was suggested that this is due to the aforementioned percolation mechanism. An experimental
analysis of size segregation in the continuous flow regime was reported in [2] with similar results. At higher
rotational speeds in the continuous flow regime the opposite is observed; a core of the larger particles formed
[7]. This behaviour is not well understood and will be explored in this report.
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The use of non-invasive techniques to study granular systems is not unprecedented, [1] used magnetic reso-
nance imaging to study the dynamics of mustard seeds in a horizontal rotating cylinder. In this analysis we
will use positron emission particle tracking (PEPT) to study the dynamics and segregation of a bidisperse
mixture of glass particles. We hypothesise that segregation can be attributed to different behaviour of the
particles of different sizes when flowing through the free surface. This will be confirmed by illustrating that
there is a difference between the velocities of the particles of different sizes as the flow through the free
surface. In particular we will measure and compare the velocities in the y direction, as shown in Fig. 1,
normal to the free surface.

2 Computational Simulation

In order to simulate the physics of a rotating cylinder, LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) [6], an open-source classical molecular dynamics simulator, was used. We utilised a set-up
commonly employed for granular material simulations, described in Appendix B.

Using this set-up, we then simulated a rotating cylinder, with varying angular frequencies and varying par-
ticle number. Using a slow rotation speed and a small cylinder size, we obtain the simulation shown in Fig.
2. We note the particles stay in a single cluster throughout the simulation. This allows for axial segregation
to be observed at later times in the simulation.

Finally, using a larger cylinder with many more particles, we obtain the simulation shown in Figure 3. Here,
we observe a clear axial segregation after around t = 10 seconds.

Further results can be obtained using a higher particle number with a large cylinder, so as to ensure roughly
half the cylinder is filled with particles. With these simulations, one needs to balance the CPU time required
with a reasonable number of particles to ensure the simulations finish in a feasible length of time.
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(a) Initial condition (b) System at t = 1 seconds

(c) System at t = 3 seconds (d) System at t = 5 seconds

(e) System at t = 10 seconds
(f) System at t = 15 seconds

Figure 2: Simulation of particles inside a rotating cylinder at various points in time. The cylinder is rotating
at 15 rotations per minute. The green particles have diameter 1.5 times that of the red particles. 10 000
of each type of particle was used. The cylinder length was 50 mm and the radius was 30 mm, with the red
particle radius being 2 mm.
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(a) Initial condition (b) System at t = 1 seconds

(c) System at t = 3 seconds (d) System at t = 5 seconds

(e) System at t = 10 seconds (f) System at t = 15 seconds

Figure 3: Simulation of particles inside a rotating cylinder at various points in time. The cylinder is initially
stationary, after which it starts rotating at 20 rotations per minute. The green particles have diameter 1.5
times that of the red particles. 20 000 red particles are 6000 green particles were used. The cylinder length
was 100 mm and the radius was 65 mm, with the red particle radius being 2 mm.
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3 The Experiment

3.1 Experimental Design

This experiment intended to reproduce the effect from the computational simulation carried out by [5], with
the aim of investigating why radial segregation happens. In our experiment, the cylinder was half-filled with
particles (glass beads), as in the simulation. Two sets of particles were used, with diameters of 3 mm and
5 mm respectively. The particle sizes were decided based upon the sizes used in the paper and the beads
that we had access to. We took the same volume of particles for each diameter. We expected some sort of
segregation of the particles, and therefore having equal volumes would ensure that the segregated regions
were of the same volume. These particles were placed in a cylindrical drum with a diameter of 11.00± 0.82
cm. We mixed the particles by shaking the cylinder vigorously in all directions. The expectation was that
if the cylinder was shaken vigorously enough and without any bias to any direction, then segregation effects
would not occur and this would result in the particles being uniformly mixed.

The cylinder was rotated by means of a rotational rig. It rotated the cylinder at a constant rate of about
100 rotations per minute (rpm). This speed was purely determined by the build of the rig and not set for
this experiment in particular.

To determine the global behaviour of the medium we use the Lagrangian specification of the flow field,
that is the movement of a single tracer particle, to determine the Eulerian specification of the flow field
which considers the flow of the medium at all points in the cylinder simultaneously. The PEPT camera
enables us to track the motion of a single irradiated tracer particle accurately by triangulating its position
from the emitted back to back gamma rays.

Figure 4: Schematic drawing of the set-up of the ex-
periment, including the coordinate axes. The drum
was positioned at the center of the camera.

The tracer particle was created by embedding liquid
68Ga (which has a half-life of 68 minutes) inside a
glass bead. A tracer particle of each diameter (3 mm
and 5 mm) was used for the experiment, so that the
movement of both particles could be analysed. The
entire rig was placed in the PEPT camera. This
set-up is illustrated in Fig. 4. The measurements
we took were around 5 minutes long. We expected
this to be more than enough time for the system to
reach a steady state. We also took a longer run of
around 15 minutes for each particle to check that
the behaviour remains consistent.

3.2 Method

3.2.1 Optimisation

We had to perform measurements of the behaviour
of the particles in the stationary state, to help de-
termine the degree of attenuation and scattering of
the 511 keV gamma rays, which is encoded in an
optimisation parameter and used in the triangula-
tion algorithm. To do this, we half-filled the cylin-
der with the bidisperse mixture of particles and a
tracer particle of either diameter. Then we shook
the cylinder to ensure that each of the bead sizes
were distributed evenly throughout the drum. We

then placed the cylinder on the stationery rig and collected measurements from the PEPT camera for 5
minutes.
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3.2.2 Measurements

In order to prepare the cylinder, we placed both sets of particles (3 mm and 5 mm) and the tracer inside.
The lid was then closed, and the drum was shaken vigorously by hand in all directions until the particles
inside were assumed to be evenly distributed throughout the volume. Being very careful not to move the
drum more than necessary, the drum was then placed sideways onto the rotational rig. After starting the
PEPT camera, the rig was switched on and the motor rotated the drum for 4-5 minutes, after which the
data was saved and the cylinder prepared for the next reading. The cylinder was prepared by shaking it
again in an attempt to redistribute the particles uniformly. This procedure was then repeated many times
for each tracer particle (3 mm and 5 mm, we took 15 of each in total). We also took 15 minute runs for each
particle.

3.3 Practical considerations and recommendations
68Ga has a half-life of 68 minutes. This means each experiment had to be designed with consideration to this
time constraint. The size of the data also had to be taken into account, as the PEPT camera outputs data
at a very fast rate. Therefore, we had to ensure that only necessary measurements were being made and the
camera did not run for longer than needed. Large amounts of data are more difficult to transport/share and
require more computational power to analyse.

Upon running the rotational rig with the drum, it was found that the drum shifted along the rig as time
progressed. This would be problematic, since the movement of particles in the drum would be inaccurately
captured by the detectors. It is for this reason that metal stands were fixed into place on both ends of the
drum. This led to a non-shifting drum, whilst ensuring that the rotational velocity of the drum was not
inhibited in any way.

A possible improvement which can be made to this experiment is to find a better method to uniformly
distribute the particles throughout the volume of the drum. The method employed for these measurements
involved simply shaking the drum arbitrarily in all directions. While this may be sufficient for most purposes,
we cannot certainly say that the particles were uniformly distributed throughout the volume of the drum.

For further research we would recommend using beads of different ratios; a larger disparity in diameters
could lead to a more pronounced effect on the system to be analysed. It would also be interesting to vary
the speed of rotation and investigate how this might affect the system.
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4 Data Analysis

4.1 Optimisation

Figure 5: Standard deviation in 3D location, σ, as a
function of fraction of trajectories, f . In pink the data
points are plotted with a blue dotted line to represent
the optimal f - corresponding to the lowest σ at 47.

The raw data from the optimisation file was
run through the ctrack algorithm, the frac-
tion of trajectories kept was varied from 10
to 100 in increments of 10 while the other
parameters were kept constant as their de-
faults.

The standard deviation of the locations was calcu-
lated for each of the three co-ordinates - σx, σy and
σz. Since the algorithm seems to give unbiased lo-
cations [8], these were taken to be the uncertainty
in location. The 3D standard deviation was then
calculated in the following way:

σ =
√
σ2
x + σ2

y + σ2
z

The 3D standard deviation was plotted as a function
of the fraction of trajectories - the various chosen f
values - to find the optimal f . This was determined
by finding the f value that corresponded to the low-
est 3D standard deviation. To get a more precise
result the process was repeated based on the results
of the plot, choosing f values 5 below and 5 above
the first found optimal f increasing increments of 1.
The 3D standard deviations of these data sets were
then overlaid on the previous plot to find a more
precise optimal f .

The first plot of the standard deviation in 3D location, σ, as a function of fraction of trajectories, f ,
found a minimum/optimal f of 50. The next range of data was taken with f from 45 to 55 in increments of
1. The results are plotted in Fig. 5. The optimal f was then found to be 47 and used for all further analysis
of the data.

4.2 Frequency Plots

We plotted an XY-position plot of the data, with a colour map indicating the particle frequency (the number
of times the particle visited that position) of each position in the data set, for both the 3 mm and 5 mm
particles. We attempted to plot this for the full data set (all runs combined), but did not have the computing
power to process over 800000 points in a reasonable amount of time. We decided to plot one run for each
particle, with 1 mm2 bins.

We can see from Fig. 6a that particle frequency for the 3 mm particle is greater towards the edge of the
rotating bed, and there are few particles towards the centre of rotation. From Fig. 6b we find that the
frequency is more evenly spread in this case. Note that both plots have a small area of very high density,
representing the initial position of the particle.

As illustrated by the frequency plots shown in Fig.s 6a and 6b, we see that a “core” of larger particles
forms at the bottom of the free surface inside the drum, while the smaller particles are found closer to the
edges of the drum. This type of segregation occurs at higher rotational speeds than the classic Brazil nut
effect, in which smaller particles form a core below the free surface, as discussed in the Theory section.
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(a) (b)

Figure 6: Frequency scatter plot of XY position, with 1 mm2 bins, for the 5 mm and 3 mm particles.

4.3 Velocity Vector Fields

Making use of six data sets for each of the two particles sizes, where each data set was calibrated so that the
centre of the drum was at the origin, the average vector field for each of the particle sizes was determined.
The individual velocity measurements were made by using the 6-point average method [9]:

~vi = 0.1

[
~Pi+5 − ~Pi
ti+5 − ti

]
+ 0.15

[
~Pi+4 − ~Pi−1

ti+4 − ti−1

]
+ 0.25

[
~Pi+3 − ~Pi−2

ti+3 − ti−2

]

+0.25

[
~Pi+2 − ~Pi−3

ti+2 − ti−3

]
+ 0.15

[
~Pi+1 − ~Pi−4

ti+1 − ti−4

]
+ 0.1

[
~Pi − ~Pi−5

ti − ti−5

] (4.1)

The final average velocity fields were determined by taking an average of all the velocity measurements inside
1 mm2 grid blocks. These fields are shown in Fig. 7.

(a) (b)

Figure 7: The average velocity field of (a) the 3 mm particle and (b) the 5 mm particle. The vectors have
been scaled arbitrarily, and colour coded by magnitude.
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Once the complete average vector fields were determined, we consider the velocity with respect to the “free
surface” axis. For each velocity measurement made, the component perpendicular to the free surface (i.e.
parallel to the y axis in Fig. 1) was determined, and the average velocity field along that axis was plotted
in the same manner as before. The free surface was determined to be at a 45 degree angle to the X axis
established by the detector.

Finally, in order to compare these velocities directly, and observe the segregation behaviour expected, the
difference between the 3 mm vector components and the 5 mm vector components, at the same points in the
drum, were determined. This is illustrated in Fig. 8. The difference is positive along the top of the free
surface (and dips down at the left-most edge due to the gravitational and rotational forces), and points down
at the bottom of the drum. This is consistent with the density plot observations. The small particle tends
to move towards, and along, the outside of the range of motion. On the other hand, the larger particle’s
velocities have a smaller magnitude towards the edges, which is consistent with the observation that they
spend more time in the “core” below the free surface.

Figure 8: The difference between the average velocity components perpendicular to the free surface for the
3 mm particle and the 5 mm particle. The velocity field of the 5 mm particle was subtracted from the velocity
field of the 3 mm particle to get the difference given above. We can see that the small particle has a greater
magnitude in velocity towards, and along, the edges of the range of motion.
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5 Conclusion

Rather than observing the conventional Brazil nut effect in the free surface, where small particles accrete
in the core of the cylinder, we observe that the large particles form the core. This effect is observed when
the rotational speed is sufficiently high. No comment could be made about the precise mechanism which
causes this type of radial segregation. It seems that radial segregation originates in the free surface. The
relative velocity normal to the free surface of the two types of particles results in one type migrating down
to the core, where there is less movement of the particles. We carried out rudimentary uncertainty analysis
in obtaining the results, however to definitively support this conclusion more precise uncertainty analysis
would have to be carried out.

For further research we recommend considering the effect of varying the rotational speed. Much of the
literature concerning radial segregation in the continuous flow regime reports a core of small particles forming.
In this analysis the rotational speed was sufficiently high to observe a core of large particles forming. It might
be insightful to investigate the rotational speed at which the behaviour transitions.
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Appendices

A A Mathematical Model of Radial Segregation

In this section, we consider a mathematical model that describes the occurrence of segregation in a rotating
drum containing two types of granular material. This model was obtained from [10] and the discussion
therein will be closely followed below.

We begin by considering a rotating cylindrical drum containing two types of particles. The drum has a
radius R and is rotating at an angular frequency ω. For simplicity, we shall suppose that both particles are
identical rigid spheres, differing only in radius. That is, we are considering a partially filled, rotating drum
containing large particles B as well as small particles S. In describing this system, we make the assumption
that the surface profile of the granular system remains unchanged as the drum rotates. We shall align
our x-axis such that it passes through the centre of the drum as well as the two points of contact between
the surface profile and the drum walls. Furthermore, we align our y-axis along the axial direction of the drum.

In order to construct a mathematical model of this system, it is prudent to consider the relative concentrations
of the two types of particles. By considering the number density of the small particles φ = φ(t, r), it is possible
to introduce the concentration field ψ = ψ(t, r) as

ψ = 2φ− 1, (A.1)

where −1 ≤ ψ ≤ 1. We interpret ψ as a field that describes the relative concentration of the two types of
particles. Furthermore, we impose the condition that if ψ < 0 in a region, then the region has a greater
concentration of large particles and if ψ > 0 in a region, then the region has a greater concentration of small
particles. To this end, if ψ = −1 in a region, then that region contains only large particles. Analogously, if
ψ = 1 in a region, then that region contains only small particles.

Our goal is to derive a time-evolution equation for the concentration field, ψ. In order to do this, we must
consider the types of currents that occur in the rotating drum. We consider first the current term describing
the motion down the surface of the granular media. This term can be written as

j1 = m0(1− ψ2)∇(s(x)− sB(x)), (A.2)

where s(x) is the slope function of the system and sB(x) is the slope function of a system containing only
large particles. m0 is the mobility of the particles and is proportional to the angular frequency ω of the
rotating drum.

If a region that contains a high concentration of small particles interacts with a region that contains a high
concentration of large particles, there will be little exchange of particles. This phenomenon gives rise to the
following current:

j2 = Q(1− ψ2)∇(∇2ψ) , (A.3)

where Q is a constant proportional to the angular frequency of the rotating drum. Thus the time-evolution
equation can be written as follows:

∂ψ

∂t
= D∇2ψ −∇·jt, (A.4)

where jt ≡ j1 +j2 is the total current of the system and D is a constant proportional to the angular frequency
of the rotating drum. In the case where the drum is not rotating, we have Q = m0 = D = 0 and so, from
equation (A.4), ψ remains constant, as expected.

In order to find an explicit form for jt, it is necessary to determine an expression for s(x) − sB(x) - the
difference of the slope functions. To find such an expression, we begin by determining an expression for
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sB(x). To this end, consider a rotating drum containing only large particles. Here, at the walls of the
container, the slope function sB(x) should depend only on the coefficient of friction µB . In addition, in the
case where ω = 0, the slope function should depend only on the coefficient of friction everywhere. It follows
that the most general form that the slope function can take is that of the following [10]:

sB(x) = µB +

∞∑
n=0

fn(ω)(R2 − x2)n, (A.5)

where fn(0) = 0 so as to ensure that sB(x) depends only on µB in the case where ω = 0. We may Taylor
expand the fn(ω) terms:

fn(ω) ≈ fn(0) + ωf ′n(0) = ωf ′n(0) .

By letting gn = f ′n(0), equation (A.5) becomes

sB(x) = µB +

∞∑
n=0

ωgn(R2 − x2)n . (A.6)

Therefore, if we regard µ and gn as functions of ψ, the slope function of the two particle system can be
written as

s(x) = µ(ψ) +

∞∑
n=0

ωgn(ψ)(R2 − x2)n. (A.7)

We write gn as a power series in ψ and obtain

gn(ψ) =

∞∑
k=0

bn,kψ
k, (A.8)

where bn,k is a constant. In the case of sB , we take ψ = −1. Therefore, the difference of the two slope
functions is

s(x)− sB(x) = µ+ µB +

∞∑
n=0

∞∑
k=0

ω(ψkbn,k − cn,k(−1)k)(R2 − x2)n. (A.9)

It follows that equation (A.4) becomes

∂ψ

∂t
= D∇2ψ −∇·

[
(1− ψ2)∇(m0(µ+ µB +

∞∑
n=0

∞∑
k=0

ω(ψkbn,k − cn,k(−1)k)(R2 − x2)n) +Q∇2ψ)

]
. (A.10)

We would now like to determine an expression for ψ by making use of equation (A.10) and by considering
only radial segregation. To do this, consider the case where the system has reached a state of equilibrium and
thus ∂ψ

∂t = 0. Furthermore, since we are only interested in radial segregation, we consider a concentration
field ψ = ψ(x) that depends only on x.

We set ∂ψ
∂t = 0 in equation (A.10) and, after neglecting higher order terms and small contributions to this

sum, we obtain

D
∂2ψ

∂x2
=

∂

∂x

{
m0(1− ψ2)

∂

∂x
(aω(R2 − x2))

}
, (A.11)

where a is a constant and m0, D > 0 since ω > 0. By solving the above equation, we obtain∣∣∣∣ψ + 1

ψ − 1

∣∣∣∣ = Ae−
2m0aωx2

D , (A.12)
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where A > 0 is a constant. Since we have −1 ≤ ψ ≤ 1, it follows that equation (A.12) becomes

ψ + 1

ψ − 1
= −Ae−

2m0aωx2

D , (A.13)

and thus,

ψ =
Ae−

2m0aωx2

D − 1

Ae−
2m0aωx2

D + 1
. (A.14)

By making use of equation (A.14), it is possible to produce a plot of ψ vs x. Such a plot is shown in Fig. 9.

Figure 9: The plot shown here depicts how the relative concentration of the media, ψ, changes as a function
of x. In order to produce this plot, equation (A.14) was used with the constants set to: A = 100 and
2m0aω
D = 1 . The plot shows that the small particles collect in the centre of the drum and the larger ones

are pushed to the edges.

From Fig. 9 it can be noticed that, for a > 0, as the distance from the centre of the drum increases in
magnitude along the x-axis, the value of ψ decreases. Therefore, it is expected that, at the centre of the
drum, we are more likely to find regions that have a higher concentration of small particles. Similarly, we
expect to find the regions near the sides of the drum to have a higher concentration of large particles.

Furthermore, it can be noticed that if we were to instead consider a < 0 in this model, the opposite effect
would occur and we would have central regions containing a higher concentration of large particles and the
outer regions containing a higher concentration of small particles.
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B Computational

The set up for the granular material simulations in the Computation section is as follows. Each particle
was represented as a rigid sphere of given radius r and mass m. Two types of particles were used for our
simulations, where the particle with larger radius is drawn in green, whereas the particle with smaller radius
is drawn in red. We assumed both particles had the same density.

Each particle was subject to the force of gravity in the −ẑ direction, a pairwise interaction force and a normal
and frictional force with the rotating cylinder whenever the particle was in contact with the cylinder.

The pairwise interaction used for the simulation was a Hertzian style interaction [6], as described in [4, 11,
12]. To calculate the frictional force between two particles i and j, we denote the radius of particle i as
Ri and the radius of particle j as Rj with their contact distance being d = Ri + Rj . If the particles are a
distance r away from each other, we calculate the frictional force between the two particles as:

F =

{√
δ
√

RiRj

Ri+Rj
Fhooke if r < d

0 if r > d
(B.1)

where Fhooke is given as

Fhooke = Fn + Ft = (knδnij −meffγnvn)− (kt∆st +meffγtvt) (B.2)

where δ = d− r denotes the overlap distance between particles i and j. The first bracket in equation (B.2)
denotes the normal component Fn of the force whereas the second bracket denotes the tangential component
Ft. The relevant quantities given in equation (B.2) are described below.

kn, kt is the elastic constant for normal and tangential contact respectively, γn, γt is the visco-elastic damping
constant for normal and tangential contact respectively, meff = (MiMj)/(Mi + Mj) is the effective mass of
the two particles, ∆st is the tangential displacement vector between the two particles, nij is the unit vector
along the line connecting the centres of the two particles and vn, vt is the normal and tangential component
of the relative velocity of the two particles respectively.

Values for kn and kt were calculated as:

kn =
4G

3(1− ν)
and kt =

4G

2− ν
(B.3)

as done in [12] where ν = 2
7 denotes the Poisson ratio used in the simulation. G, the shear modulus, can be

calculated as:

G =
E

2(1 + ν)
(B.4)

where E is Young’s modulus. A value of E = 105 N m−2 was used for all simulations.

We also note a coefficient of friction µ which gives an upper limit to the tangential force Ft ≤ µFn. A value
of µ = 0.5 was used for all simulations.
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