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I) REGARDING THE IMPLICATIONS OF POINT ESTIMATES OF SURVIVAL 

RATE ON CONSTRAINT BOUNDARIES 
 
Consider the following illustrative example. 
 
A population of a species which for demographic reasons cannot increase faster than 10% 
p.a. is being monitored. 
 

Say the true rate of increase is 9% 
p.a., but the annual estimates of 
abundance from which trends are 
to be computed are subject to fairly 
large sampling error. Thus the 
distribution of results of estimated 
trends that might arise after 10 
years is 9% ± 3%. 
 
Note first that it is possible that 
data yield an estimate greater than 
the 10% which is known to be the 
maximum possible biologically. 
 

 
Now move to the situation that 
could arise in reality where there is 
only a single data set available, but 
of course the actual underlying 
increase rate is unknown. Say this 
data set happens to yield an 
estimated annual increase rate of 
11% with standard error of 3%. 
What inferences can be drawn 
given that this estimate is greater 
than the 10% known to be the 
maximum possible biologically? 
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A) The frequentist: argues that the estimate of 11% is not significantly > 10% at the 5% 
level. Accordingly there is no evidence of any structural problem with the model. 
(A simpler example would be monitoring a closed population subject only to deaths – 
because of sampling error, a time series of annual estimates of abundance would 
sometimes show an increase from one year to the next, yielding a negative estimate 
for the mortality rate for that year – such negative estimates, possibly taken to be 
bounded below by 0, do not invalidate the assumption of an exponential decline in 
numbers over time.) Naturally had the estimate been 20% with a standard error of 3%, 
there would have been a case to infer structural error. 

 
 
B) The Bayesian: imposes a 

prior of U[0; 10%] on the  
annual increase rate. The 
posterior distribution for this 
rate is the triangle-like 
shaded region shown. The 
two-tailed 90% 
(“symmetric”) PI might 
perhaps be about [8; 9.8%], 
which does not include the 
posterior mode of 10%. 
Again this provides no 
evidence of any structural 
problem with the model of 
an exponential increase 
which recognises the 
biological reality that this 
rate cannot exceed 10%. 

 
 
It is important to realise that when population projections are calculated, they are generally 
(as should be the case) based on distributions of biological parameter values, not point 
estimates, with the Bayesian paradigm providing the most natural and appropriate 
framework. In other words, the value of the point estimate of a parameter is of little 
consequence in this context; what is important is the distribution for the value of the 
parameter. 
 
Thus the fact that point estimates of some parameters of survival rates fall on constraint 
boundaries does not constitute a sufficient basis to conclude that there are structural problems 
with a model. 
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II) REGARDING ADVANTAGES FOR A PELAGIC FISH PREDATOR OF 
FISHING BREAKING UP SCHOOLS 

 
Consider the following example. 
 
For simplicity, assume schools are spherical. 
 
Initially assume that there are 50 schools each of radius 100 m: 
 
 Visible (detectable) area = 50 x 4π 1002 = 6.28 x 106 m2 
 
Assume that fishing breaks these up into 250 schools. Since density tends to remain the same 
(related to fish length), this implies a new radius r given by: 
 
 50 x  π 1003 = 250 x  π r3 

 

 ⇒  r = 58.5 m 
 
Thus:  

Visible (detectable) area = 250 x 4π 58.52 = 10.74 x 106 m2 
 
i.e. the smaller but more numerous schools are about 70% more detectable, improving the 
probability of encounter by a predator, so that expected searching time decreases. 
 
Similar results follow for shapes other than spheres – this is simply the consequence of a 
surface/volume trade-off. Naturally also removals by fishing will impact the numbers above – 
the point of this example is simply to isolate the size and direction of one contributing factor 
to the overall outcome. 
 
The inference that smaller schools (given the same overall abundance) offer a feeding 
advantage to natural predators has long been recognised in the literature (see for example C 
W Clark. 1976. Mathematical Bioeconomics. John Wiley & Sons). This followed the sharp 
declines (primarily caused by fishing), without rapid subsequent recovery, in a number of 
small pelagic fish populations around the world in the 1960s and early 70s. This in turn led to 
suggestions of depensatory effects leading to predator pits, with the likely smaller schools 
associated with a reduced population being put forward as the possible underlying 
mechanism. 


