10

11

12

13

14

15

16

17

18

19

20

21

22

MARAM IWS/NOV12/LF/P1
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Introduction

The South African boat-based, commercial linefistiar refers to a multi-species, multi-area
cluster of low to medium technology boat-basedanstiisheries in which more than 200 fish
species are caught manually by hand-lines or rodgeels. Within this cluster one can identify
individual fisheries on the basis of fishing strptearea and target species, but other fisheries
such as the demersal trawl fishery also impacherrésource given the considerable overlap in
terms of catch compositions (Attwood et al., 20The species that account for the largest
landings by the linefishery can be roughly groujed pelagic shoaling species such as
yellowtail (Seriola lalandi) and snoekThyrsites atun), demersal species such as silver kob
(Argyrosomus inodorous) and geelbekAtractoscion aequidens) and reef-associated seabreams
including carpenterArgyrozona argyrozona), slinger Chrysoblephus puniceus) and hottentot

(Pachymetopon blochii).
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Monitoring of the linefishery started at the turrtioe 20" century with JDF Gilchrist, the
Government Marine biologist of the Cape of Good &jamnd the first concerns about
overfishing of some linefish species were voickdaaly in the 1940s (Griffiths 2000).
Mandatory catch and effort returns from the boaeldlacommercial linefishery have been
captured since 1985 and stored in the National dMdrinefish System (NMLS), a database
hosted by the South African Department of AgricidiuForestry and Fisheries (DAFF). In 1985,
the linefish sector was also formally recognizedthe first time and national legislation was
introduced to limit effort and fishing mortality.d3pite these first regulations, spawner-biomass
per-recruit analyses and comparisons with histbdatch data in the 1990s indicated alarming
states for many linefish stocks (Buxton, 1992; Pu@83; Punt et al., 1996; Griffiths, 1997;
Griffiths, 2000), which subsequently lead to theldesation of a state of emergency in this
fishery in 2000, accompanied by a significant reiguncin commercial boat effort (hominally ~
70%). The forced reduction of effort was reflectethe allocation of medium-term and long-
term commercial fishing rights and in the formwatiof the linefish management protocol
(Griffiths 1997a), which intended to guide the mgeraent of stocks according to biological

reference points based on spawner biomass pelitrewdels.

Several linefish species have been assessed orspabwyer-biomass per- recruit analysis. This
first wave of assessments was to estimate theveldepletion levels of the stocks, many of
which had been exploited for a century by the figl{&riffiths, 2000). However, there has been
no attempt to assess and quantify the impact oétiseing reduction of commercial effort in
2000, which was designed to rebuild stocks. To,datee than a decade later, there is therefore

a pressing need for a new round of linefish assestan Per-recruit analysis might not be
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appropriate to quantify a potential recovery otktoas it relies on the steady-state assumptions
of constant fishing mortality and constant recraiy which will almost certainly be violated in
the case of stock rebuilding (Butterworth et 889). Despite catch and effort data being
captured since 1985, linefish stock assessmerauthSAfrica has previously been hampered by
the inability to standardize the catch-per-unibef{ CPUE) time series for the effect of
multispecies targeting. Recent developments oidstalization approaches for multispecies
CPUE now permit constructing more reliable timeeseof abundance indices with potentially

useful information for stock assessments (Winked.e2012; Winker et al., accepted).

The objective of this study was to assess stodkst# carpenter and silver kob twelve years
after the emergency in the linefishery. To achiigwg, we developed Bayesian state-space
biomass dynamic (surplus production) models, whehe fitted to time series of landings data
and standardized abundance indices. We chose Batgaamics models because there was
insufficient age-disaggregated data available tpleynmore complex age-structured models.
The fairly low data requirements of biomass dynamnimdels make them an attractive option in
situations where reliable information about theesand age-structure of the stock is difficult to
obtain (Hilborn and Walters, 1992). State-spaceetsodre regarded as a powerful tool for
modelling time-varying abundance indices becausg simultaneously account for both process
error and observation error (Meyer and Millar, 1988 Valpine, 2002; Buckland et al., 2004).
The process error can account for model structncerntiainty as well as natural variability of
stock biomass due to stochasticity in recruitmeatyral mortality, growth and maturation,
while the observation error determines the unaetiyan the observed abundance index due to

reporting error and unaccounted variations in cgighy (Meyer and Millar, 1999; Buckland et
3
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al., 2004; Ono et al., 2012). A Bayesian framewsas chosen to reduce uncertainties about
estimates of stock size, fishing mortality and disés reference points through the use of
informed priors (Punt and Hilborn, 1997; Hilbornddnermann, 1998; McAllister et al., 2001),
which incorporate published literature on histdratack levels and population demographics.
The main output of the assessment models are bifilat simultaneously portray the trajectory
of the exploited stock against target populati@e sind target harvest rate at Maximum

Sustainable Yield (MSY) for the period from 19872@12.

Materialsand methods

Data

Catch and effort data for the boat-based SoutlcAfrhandline fishery were extracted from the
National Marine Linefish System (NMLS) and totahdiing reported by the inshore trawl fleet
were obtained from the Department of Agriculturetdstry and Fishery (DAFF). The time
series considered for the analysis was 1987 — ZIl1d catches from both fisheries were
aggregated by region assuming that the populatbbhsth species can be split into a southern
stock and a south-eastern stock (Fig 1). The madmiof the carpenter and silver kob catches
that are discarded by the inshore trawl fleet lentestimated based on based on on-board
observer data collected during the period from 2003006 (Attwood et al., 2011). To account
for discard mortality in the assessment modelsreperted trawl landings for carpenter and
silver kob were multiplied by the estimated preedisl to post-discard catch ratios of 2.61 and

1.49, respectively (Attwood et al., 2011).
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Standardized CPUE time series (1987-2011) weredo@seommercial hand-line catch and
effort data. The raw data comprised mandatory daatgh returns (kg) per species per boat day
as estimated by the skipper, vessel number, crembar hours on sea, the date and catch
location. The reported catch location, initiallppided as a shore position and a distance
offshore, is referenced to the midpoints of 5 xiBute latitude and longitude grid-cells. The
CPUE data were standardized by following the stedidation approach described for carpenter
and silver kob in Winker et al. (in press). Thipeoach involves the application of a
Generalized Additive Model framework that was desijto adjust for the effect of different
fishing tactics by making use of the informatiomtzoned in the catch composition. Additional
predictor variables included in the model are yeamth latitude (lat) andongitude (long),

crew size (crew) and mean hours spent at sea pardréhours). For this analysis, the CPUE
records for the southern stock were subset intorégmns, south-west and south-central (SC), to
reflect the geographical division of the fisherygldaa account for geographical differences in

species composition and targeting (Fig.1).

State-space biomass dynamics model

Three principle classes of non-equilibrium estimatirameworks have been widely used for
biomass dynamics models: (1) observation error m¢2eprocess error models and (3) total
error models (Polachek et al., 1993; Punt, 2008)generic formulation for biomass dynamics

models can be written as:
Bt+l = (Bt + g(Bt |0)_Ct) exdﬂt)

I, =0gB, exp(etyj)
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where isB; is the biomass at the start of ygag(B, |0) denotes the surplus production as
function of B; and a given vector of paramet@&sC, is the catch in yedr(assumed be known),
It is the relative index of abundance in yeagthe catchability coefficient scaling the modelled

biomass to the abundance indg»and/, is the process error in yeizand &,; is the observation

error for yeat in abundance index, wity, ~ N (0,0%)and &; ~ N (0, r?), respectively.

Each of the three estimation frameworks represesfsecial case of the generalized model
defined by equations (1) and (2), with= 0 in the case of process error modefss 0 in the

case of observation error models, and a predefielationship betweea?® andt? (i.e.c% 1° =

C) in the case of total error models (Punt, 20B8¥)contrast, state-space models do not require
assumptions about a fixed relationship betwe®andt?, as they are based on likelihood
calculations that can integrate over unknown preeesors (Meyer and Millar, 1999; Millar and
Meyer, 2000; de Valpine, 2002; Punt, 2003). Mostnt advances in random effects modelling

now allow for treating the process errors as aareaft unobserved random effegts {/71../7n}

that can be integrated out when estimating thegqe®error variance® (Fournier et al., 2012;
Ono et al., 2012; Pedersen et al., 2012; Thorsah,£2012). This procedure is implemented in
the open source software ADMB-RE (Fournier et2012; http://admb-project.org), which
provides a computationally efficient way to implarhetate-space models (Pedersen et al.,

2012).

Here, we develop a numerically integrated Bayestate-space model according to Meyer and

Millar (1999), by using the mixed-effect modellifrgmework in ADMB-RE (Fournier et al.,
6



MARAM IWS/NOV12/LF/P1

136 2012; Pedersen et al., 2012). The production fanas assumed to follow the Schaefer (1954)

137 or logistic form:

138 g(B,)= rBt(l—%j,

139 wherer is the intrinsic rate of population increase &g the biomass at the carrying capacity.
140  As the exploitation of many linefish species compel already in the mid-1800s, it would be
141 unrealistic to assume that the biomass at the @fténe time series in 1987 approximates the
142  pristine biomass prior to exploitatiéh The initial biomass in the first year of the tiseries

143 was therefore scaled by introducing the model patang , which is defined by the ratio of the

144  biomass in the first year of the CPUE time sermds,tsuch that:
145

146 B, = ¢K exp(y,)

B
l;‘lj—ct_ljexp@t) t=2,3,...n

147 B = (Bt_l + rBt_l(l—

148 As suggested by Meyer and Millar (1999), we re-paaterized the biomass dynamics model by
149 expressingd; as proportion oK (P;=B;/ K) to improve the efficiency of the estimation

150 algorithm. The stochastic form of the process aquas then:

151 P, =¢exp@,)

152 PR =(P,+rP,(1-P,)-C_ /K)exp@,) t=2,3,..,n

153 and the observation equation is given by:

154 1, = gKPR exp(,) t=1,2,...,n.

155

156
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157 Management quantities

158 A number of management related quantities werevel@iio assess the status of the carpenter and
159 silver kob stocks. These were (1) Maximum Sustdenaleld (MSY), (2) the harvest rate at

160 MSY (Hwsy), (3) the biomass at MSB(ssy), (4) the depletion as a ratio as biomass in 2012
161 K (B214K), (5) the relative change in biomass since theefdeffort reduction in 2000

162  (B2014B200g) and (6) the ratio of harvest rate in 2012 toltthesest rate that produces MSY at

163  Bwsy (H2012/Hwmsy), Where MSY =K/4, Bnsy = K/2 and Hysy = /2. Stock status trajectories over
164 the period of the time series (1987 — 2011) areegnted in the form of biplot graphs that plot the
165 ratio B/Bvsy On they-axis against the ratid;/Husyon thex-axis, whereH,is the predicted

166 harvest rate in yedrthat is calculated as; = C;/ B .

167

168 Bayesian state-space estimation framework

169 A fully Bayesian biomass dynamics model projecteerayears requires a joint probability
170 distribution over all unobservable hyper-parameﬂar—s{K N ,q,¢,02,72} and then process
171 errors relating to the unobserved random effeatsovey ={7,..7, )(Pedersen et al., 2012),
172 together with all observable data in the form &f talative abundance indicés={l,...I, '}

173 (Meyer and Millar, 1999). Accordingly, the joint gterior distribution of the Bayesian state-
174  space biomass dynamics model can be conceptusltiediinto three components: (1) a joint
175 prior distribution, (2) a distribution for the pregs equation and (3) a distribution for the

176 observation equation. The joint prior distributimmthe vector of parametefds given by:

177 p(8) = p(K) p(r) p(a) p(@) p(ca?) p(r?)
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Assuming multiplicative log-normal errors, the pabidity distribution for the process equation
is of the form:

olp 19.0°)] PR IR K 1 910%)= ﬂ{@exr{- 2’70]} ,

and the probability distribution for observatioruatjon, given the unobserved random effects

for yeart, 7, , is:

- 2 N_ 1 _In(1,) - In(gRK))*
[]ptdaterad= U{W‘{ 2E +17) J}

where & is observed variance for yetaand abundance indelx, which was calculated from the

standard errors of year effects that were predlifttan the CPUE standardization model. In this
approach, the estimated paramatécorresponds to the additional temporally-invarieariance

in the relative abundance index (Butterworth eti93). According to Bayes’ theorem, it
follows that joint posterior distribution over alhobservable parameters, given the data and

unknown random effects, can be formulated as:

p@11.m) = p(K) p(r) p(A) P(B) P(02) P(r?)
% p(P, |¢,02)|j o(P | R_l,K,r,¢,02)x|j o1, 1.0 K. 72.7)

Formulation of prior distributions

The formulation of informative prior distributiomermits the integration of existent information
from literature into the Bayesian estimation frareky In this way, one can, for example, ensure
that all possible parameter solutions given tha #@ali be within plausible biological limits of

the stock under assessment (McAllister et al., 2d8@wever, care must be taken not to
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overstate the precision of priors for uncertain gigghrameters (Punt and Hilborn, 1997,
McAllister et al., 2001). This typically pertaits parameters of absolute biomass (K)g.
catchability or variance estimates, for which itynmat be feasible to objectively specify
informative prior distributions given the availalitgormation (Punt and Hilborn, 1997,

McAllister et al., 2001; Ono et al., 2012).

In this study, we assumed non-informative priotrebsitions for all model parameters except the

intrinsic rate of population increas@and the ratid;93,t0 K, ¢ (Table 2). The prior

distributions forg?,7? andK were chosen to be represented by a reasonablyoumiafive

inverse-gamma distribution:

(x) = A exp{iJ
P (k) X )

with the scaling parametedsandk set to 0.001 (Chaloupka and Balazs, 2007; Zhail et

2009; Brodziak and Ishimura, 2012)he choice of this distribution implies that trerameters

are approximately uniform on In(x) (Jeffrey’s pli@nd has, for example, the property that lower
weight is assigned to very higher valuekafhich assists to prevent implausibly large posterio
values ofK (McAllister and Kirkwood, 1998). The catchabiliparametersg are considered to

be uniformly distributed (Booth and Quinn II, 2008} is common practice, a lognormal was

chosen to determine informative prior distributigg ) andp(r) (Meyer and Millar, 1999;

McAllister et al., 2001; Brodziak and Ishimura, 291such that:

o(x) = 1 ox _(Inx—In,u)j’

271X 20}

In

10
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whereu denotes prior mean @ orr and g, is the lognormal standard deviation associated

with In().

For the base-case scenarios (Model 1), the mearsgar ¢ were set tou, = 0.15 andy, = 0.10

for carpenter and silver kob stocks, respectivEhese values are based on the analysis of
historical catch and effort records (1897-1906 a8#7-31) in comparison to catch rates for the
period 1986-1998 and are generally in agreemetit @gtimated spawner-biomass per-recruit
depletion levels$PR/ SPRy) for both species prior to 2000 (Griffiths, 198fpuwer and

Griffiths, 2006). To account for the uncertaintpand these estimates, we chose a fairly low

precision associated with, by settingo,, to achieve a coefficients of variation (CV) of 40%

so thato? =In(CV? +1)).

In order to specify a prior distribution forwe adapted the Leslie matrix method by McAllister
et al. (2001). Based on this approach, demograpfdomation can be used to construct an age-

structured Leslie matriXA of the form (Caswell, 2001):

oo R
S
£

(14),

oo o.wms
oo wo s

o
O O O o
wm O o o

max~1
where g is the average number of recruits expected to beéyzed by an adult female at gége

ands is the fraction of survivors at atje Using matrix algebra, the valueroéan be

approximated from the relationship= expf), where/ is the dominant eigenvalue of the

11
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236 transition matrix (Quinn and Deriso, 1999; Casw20ll01). Here, we used the basic matrix
237 analysis tool provided in the Excel add-in ‘Pops@ivww.poptools.org) to derivé from the
238 Leslie matrix, as described in detail by Mollet a@ailliet (2002). The life history parameters
239 used to construct the prior distributions fawere sourced from previous studies on carpenter
240 (Brouwer and Griffiths, 2006) and silver kob (Gitifs, 1997) and are summarized in Table 2.
241

242  Age-dependent survival was estimateas exp(M), whereM is the instantaneous rate of
243 natural mortality. The average number of recremgected to be produced by an adult female at
244  agetis expressed as:

245 @ =aWy, (15),
246 wherea denotes the slope of the origin of the spawnemigoent relationship (i.e. the ratio of
247  recruits to spawner biomass at very low abundafttidorn and Walters, 1992; Myers et al.,

248 1999; Forrest et al., 2012}y, is the weight at age ¢, is the fraction of females that are mature

249 at agd. Weight-at-age was estimated as function of thighteo length conversion parameters
250 andb and length-at-agé;, such thaw\; = aL". The correspondinty for carpentewas

251 calculated based on the Bertalanffy growth funcparameters given in Brouwer and Griffiths
252 (2006) (Table 1):

253 L, =L, (@1-expEk(t—t,)),

254  while L, for silver kob growth was calculated using thevgitoparameters of the Richards

255 function (Schnute, 1981) provided by Griffiths (¥99Table 1):

256 L = L@MJ |

Y

12
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The fraction of mature females at @geas calculated as a function of:

_ 1
T 1+expE(t—tyeo)/d)

&,

wheret, ., is the estimated age-at-50%-maturity (Table 1) amehs set to 0.1 to resemble close

to knife-edge maturation. For the calculationooffirst consider the Beverton and Holt spawner-
recruitment relationship (S-R) of the form:

as

R= ,
1+ 45S

whereR is the number of recruit§ is the spawner biomass agdis the scaling parameter
(Hilborn and Walters, 1992). In contrast to altgive formulations of the Beverton and Holt S-
R function, the parameter can be directly interpreted as the slope in thgimof the S-R curve
(Hilborn and Walters, 1992). We re-parameterizeds function of unfished spawner-biomass
per recruitSPRy and the steepness paramétef the spawner-recruitment relationship (Myers et
al., 1999; Forrest et al., 2012), such that:

_ 4h 4
a= —(1_ ) SR, -,

whereh is defined as the ratio of recruitment at a spave@mass that is reduced to 20% of

pristine leveldo pristine recruitment (Mace and Doonan, 1988), 8RR, is a function of:

exptMt,,,)

PR, = [ %VVJ/A expEM )J WP imax 7 expt-M) -

where the maximum observed aggy, is treated as a plus group. In contrast to thpifadion-

specific parametere and 3, the estimate of the steepness parantetéthe S-R relationship

has the advantage that it is directly comparabie/den populations (Hilborn and Liermann,

13
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276  1998). This property permits to derive empiricaly8sian priors foh from meta-analyses of
277 multiple stocks (Myers et al., 1999; Dorn, 2002rrEst et al., 2012). Myers et al. (1999), for
278 example, provided estimates of steepiefes 57 fish species, which they derived from a meta
279 analysis of spawner-recruitment data for 249 pdmna. Because there was no specific

280 information onh for silver kob and carpenter available, we adapteather generic mean

281 steepness value bf= 0.7 for both species, which represents the ovavatage steepness value
282 derived for fairly long-lived, highly fecund fishe$ medium to large body size (Myers et al.,
283 1999; Rose et al., 2001). Many commercially explbspecies, including Sparidae and

284  Scianidae, typically fall into this ecological gmaof fishes (Winemiller, 1992; Myers et al.,

285 2002), which corresponds to the general domaireabgic life history strategists (Winemiller
286 and Rose, 1992).

287

288 Finally, a Monte-Carlo simulation procedure wasdugegenerate prior distributions fofrom

289 the Leslie-Matrix (McAllister et al., 2001). Foristpurpose, random variablesMfandh were
290 drawn from a log-normal distribution, withl = g, expe - g7 12), h =y, exp(e - o? 12) and
291 &£~ N(0,0%). The variance parameters were set to achieve G\26% for bothM andh. For
292 each species, we generated a vector 1000 rand@viates. The parametersand o7,

293 defining the prior distribution far, were derived by fitting a lognormal distributionttee

294  bootstrap vector. The resultant prior parametémeses werey, = 0.18 ando? = 0.27 for

295  carpenter angz, = 0.21 ando? = 0.26 for silver kob (Table 1).

296
297

14
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298 Posterior distributions and uncertainty

299 Joint posterior probability distributions of mogbelrameters, projections and management
300 quantities were estimated using the Metropolis-tdgstMarkov Chain Monte-Carlo (MCMC)
301 algorithm implemented for random effects model8DMB-RE (Fournier et al., 2012).

302 Convergence of the MCMC chains was diagnosed ubmgoda package (Plummer et al., 2006)
303 implemented in the statistical software R (R Depatent Core Team, 2011), adopting minimal
304 thresholds ofp = 0.05 for Geweke’s diagnostic (Geweke, 1992) &edivo-stage Heidelberger-
305 Welch stationary test (Heidelberger and Welch,2)99

306

307 The mixing in the MCMC chains was generally faslgw and often insufficient. The latter

308 appeared to be caused by non-stationary behavighe grocess error varianc@. We therefore
309 introduced a double-logistic function as a penaitgonstrain the ratio ¥=7%/ ¢* within the

310 boundaries by:

1

T P et (- R) G et (- R 5)

312 whereR :\7R 12, R = 2\7R, O, = 0.02\7R, O = 0.04\7R and\7R denotes the ratio
313 unconstrained maximum likelihood estimat€f§ =1?/&”. The corresponding negative log-

314 likelihood profile, -In@), is illustrated for the example z&g: 4 (Fig. 2). This penalty increased

315 the stability of the MCMC chains substantially aimhvergence could be achieved for all base-
316 case models after running the MCMC simulation foniRion cycles, discarding the first 200000
317 iterations as burn-in phase and then thinning Hagncby saving every 200th iteration to reduce

318 autocorrelation.

15
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The 2.5th and 97.5th percentiles of the posteiigridutions are used to represent 95% Bayesian
credibility intervals for all parameters, project®oand management quantities. The estimated
95% credibility intervals are analogous to 95% aerice intervals and can interpreted in the
sense that there is a 95% probability that the taamel upper credibility intervals includes the

true value given the prior information and the data

Results and discussion

In 2000, a state of emergency was declared in dl¢hSAfrican boat-based handline fishery on
the basis of substantially decreased catch ratespafrtant species and alarming results from
spawner biomass per-recruit analyses. The emergeasyaccompanied by a significant
reduction in commercial line-boat effort to allot@sk recovery. Declines in linefishery catches
of carpenter and silver kob were not uniform andegally commenced prior to the forced effort
reduction in 2000 and typically reached a minimumrth the period 2001 - 2004 (Fig. 3).
Inshore trawl catches, by contrast, increased duhis period, to the extent that they frequently

exceeded the linefishery catches during the fivet years after the emergency (Fig. 3).

The model fits appeared to be adequate in thantigels were able to predict the observed
increase in the standardized CPUE indices. Theadeand most consistent trends were evident
for southern-eastern stocks of carpenter (Fig. 4 silver kob (Fig. 4 B), which was
supported by fairly narrow 95% credibility intersall he fit to south coast silver kob data

showed moderate departures from the standardize&dEQ@Rlices in most recent years (Fig. 4 C).

16
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The posterior medians for the intrinsic rate of pagon rater were fairly similar for both
species but were found to be consistently lowen thair corresponding priors means (Tables 1
and 3, Fig. 5). This could indicate a lower stoobductivity than predicted by the species’ life
history traits or perhaps points towards sourcesdaitional fishing mortality that were not
accounted for by the available data. On intra-$mecomparisons, the posterior mediansrfor

were slightly higher for the south-eastern coasthks.

The models consistently predicted an improvemebiomass compared to levels around 2000,
as the drastic management intervention in theihefy forced harvest rates below those at
Maximum Sustainable Yield (Figs. 6 and 7). The sieer kob stocks remain of concern as
inshore trawl catches have increased since 200@jrgl down potential recoveries and possibly

resulting in growth overfishing due to earlier stikaty.
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474 Table1l Summary of prior probability density functions dde fit Bayesian state-space models

475 to data from carpenter and silver kob stocks

Prior type Carpenter Silver Kob
Non-informative K ~inversegamma(0.001,0.001) K ~inversegamma(0.001,0.001)
Informative r ~Lognormal(-1.746,0.266) r ~Lognormal(-1.551,0.258)
Informative ¢ ~ Lognormal(-1.897,0.385) @ ~ Lognormal(-2.659,0.385)
Non-informative In(g) ~ Uniform(-10,2) In(g) ~ Uniform(-10,2)

Non-informative & ~ inversegamma(0.001,0.001) & ~ inversegamma(0.001,0.001)
Non-informative 7 ~ inversegamma(0.001,0.001) 7 ~ inversegamma(0.001,0.001)
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478 Table2 Summary of life history parameters used to denfermative priors for the intrinsic

479

480

481

482

483

484

485

rate of population increase

Species Parameter Value Source
Carpenter L, 619 mm FL  Brouwer & Griffith (2005)
k 0.06 year" Brouwer & Griffith (2005)
to -4.5 years Brouwer & Griffith (2005)
0.00004 g Brouwer & Griffith (2005)
b 2.924 gmm®  Brouwer & Griffith (2005)
M 0.10 year" Brouwer & Griffith (2005)
trso 4 years Brouwer & Griffith (2005)
a 0.10 year" assumed ~ knife-edge
tmax 30 years Brouwer & Griffith (2005)
Silver Kob L, 1142 mm FL  Griffiths (1997)
k 0.65 year" Griffiths (1997)
t* -4.5 years Griffiths (1997)
p 0.26 Griffiths (1997)
0.00000€ g Griffiths (1997)
b 3.07 gmni'  Griffiths (1997)
M 0.15 year" Griffiths (1997)
tms0 2.4 years Griffiths (1997)
a 0.10 year* assumed ~ knife-edge
tmax 30 years Griffiths (1997)
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486 Table 3. Posterior means and 95% Bayesian credibility irgksrior the southern and south-
eastern carpenter and silver kob stocks.

487

488

489

Carpenter southern stock
95% Credibility

Silver kob southern stock

Parameters Median Interval Median  95% Credibility Interval
K 23335.0 10722.1- 52505.5 107285.0 45752.2- 239456.0
r 0.149 0.117 - 0.210 0.097 0.072 - 0.128

i 0.182 0.085 - 0.351 0.087 0.042 - 0.200
Osw 0.015 0.012 - 0.018 0.006 0.004 - 0.009
Osc 0.020 0.016 - 0.025 0.010 0.007 - 0.014

& 0.00097 0.00039 - 0.00254 0.0010 0.0005 - 0.0021
Psw 0.00556 0.00197 - 0.01353 0.0120 0.0059 - 0.0241
Psc 0.00562 0.00204 - 0.01396 0.0146 0.0086 - 0.0272
MSY 863.2 554.4 - 1644.0 2571.0 1285.1 - 5130.3
Husy 0.075 0.059 - 0.105 0.048 0.036 - 0.064
Buisy 11667.5 5361.0 - 26252.7  53642.5 22876.1 - 119728.0
Boo1/K 0.361 0.173 - 0.644 0.1269 0.0605 - 0.2895
B.o1s/B2ooc 2.328 2.02 - 2.69 1.56 141 - 1.76

Carpenter south-eastern stock

95% Credibility

Silver kob southern-eastern stock

Parameters Median Interval Median  95% Credibility Interval
K 23588.8 11922.5- 50836.0  30543.5 14802.9 - 66970.5
r 0.164 0.121 - 0.211 0.141 0.109 - 0.178
@ 0.120 0.12 - 0.059 0.075 0.075 - 0.036
Ose 0.023 0.013 - 0.031 0.024 0.016 - 0.032
& 0.00208 0.00090- 0.00481  0.00092 0.00039 - 0.0023
s 0.01109 0.00592- 0.02221  0.00522 0.00244 - 0.0112
MSY 959.8 567.7 - 567.7 1067.1 577.5- 2123.1
Hysy 0.082 0.060 - 0.105 0.070 0.055 - 0.089
Busy 11794.4 5961.25- 25418.0 15271.8 7401.5 - 33485.2
B,o1/K 0.394 0.207 - 0.667 0.178 0.085 - 0.349
3.440 2.80 - 4.23 2.44 2.10 - 2.86

B2012/B2ooc
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