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Introduction 
 
A conspicuous feature of short-lived forage fish species such as sardine and anchovy is the substantial 
recruitment fluctuations displayed by time series for their annual recruitment. These can lead to high 
variability in their biomass over time. It is questionable whether popular approaches to ecosystem 
modelling capture this process appropriately, or when fit to time series of abundance data are able to 
adequately reflect the fluctuations in those data which arise from recruitment variation. 
 
However, if system dynamics do not change substantially as the extent of such recruitment variation 
increases, then satisfying those requirements may be of little consequence. This paper uses a relatively 
simple predator prey model with variable recruitment for a prey species under harvest to examine this 
question. 
 
 
Methodology      
 
Mathematical details of the methodology employed are provided in the Appendix. A discrete model of 
a predator and a forage species prey includes stochastic recruitment for the prey, predator satiation 
(which sets an upper bound on the per capita growth rate of the predators), removals of prey at a fixed 
fishing mortality, and density dependent predator mortality which allows for competition amongst the 
predators and excludes trivial solutions to the equations. The choice of specific parameter values 
deliberately has the predator annual natural mortality rate some 20-25% that of the prey, so that the 
predator has slower dynamics, which precludes it from taking full advantage of brief upward 
fluctuations in prey abundance. 
 
This model is used to project the dynamics forward in time under different prey fishing mortalities to 
compute the associated catch of the prey, as well as predator and prey biomasses. Because of the prey 
and consequently predator fluctuations in abundance, results for relationships such as sustainable 
catch as a function of biomass are obtained by averaging over a large number of years. This number 
runs into many thousands to reduce the impact of Monte Carlo error on the results of interest. 
 
 
Results 
 
Fig. 1 shows typical time trajectories of the prey and the predator with and without prey harvest and in 
the presence of some prey recruitment fluctuation. The predator has a smoother trajectory as it 
essentially “integrates” over the more variable prey. As fishing mortality increases, prey and also 
predator abundance drops, though the latter in particular shows greater variability in abundance. 
 
Fig. 2 (a) shows what is in effect a sustainable yield curve for the prey, and how this changes as 
recruitment variability σR increases. The main features are a decrease in this yield and an increase in 
the prey MSY biomass compared to its pre-exploitation level. For the predators in Fig. 2 (b), the 
higher σR, the faster predator abundance decreases as prey abundance drops as a result of increased 
prey fishing mortality. 
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Fig. 3 shows how various quantities change as σR is increased: prey abundance drops, but predator 
abundance drops faster. Predator abundance, when the prey is fished at a mortality rate that yields 
MSY, decreases with σR. This trend is less marked if instead the predator abundance, when the prey is 
fished at a rate that keeps it on average at 75% of pristine abundance, is shown as a proportion of its 
level when prey is unexploited. 
 
 
Concluding remarks  
  
The results obtained certainly show that important features of this predator-prey system, when under 
harvest, can change appreciably for different levels of the extent of recruitment fluctuation as 
measured by σR. Of itself this suggests that care needs to be taken with more complex ecosystem 
models to ensure that recruitment fluctuations of forage fish are reflected realistically. 
 
For the model and parameter value choices made, the predator is impacted relatively more heavily by 
fishing at higher values of prey recruitment variability σR. Questions that arise regarding possible 
further work include:  
 

• Does the behaviour of this simple model and variants thereof (e.g. allowing also for another 
food source for the prey) warrant examination over a wider range of parameter value choices, 
or do more complex models need to be used instead to ensure greater realism? 
 

• Could alternative harvesting approaches to the constant fishing mortality policy examined 
here result in less reduction of the predator, while still maintaining the same catch on average 
over time? 
 

• What are the most pertinent statistics to examine in such models to address the question 
posed, e.g. rather consider a lower percentile than the mean of biomass distributions?  
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Figures 1 (a) and (b): Prey (a) and predator (b) population sizes for F = 0 and F = 0.2, shown for a 200 year simulation run, for σR=0.15. Note that the first 50 years have 

been discarded to allow the trajectories to settle. 
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Figures 2 (a) and (b):  Figure (a) shows the mean catch as a function of Bnormalised, where Bnormalised is B(F)/B(F=0). Figure (b) shows Nnormalised plotted against Bnormalised, where 

Nnormalised is similarly defined as N(F)/N(F=0); 
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Figures 3 (a)-(d): These figures show a series of quantities plotted against σR. Figure (a) shows B(F=0) for each σR, relative to B(F=0) for σR=0, as well as the similar 

quantities for N. Figure (b) shows BMSY (normalised relative to BF=0). Figure (c) shows N at BMSY relative to N at BF=0. Figure (d) shows N at 0.75BF=0 
relative to N at BF=0. 
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Appendix 

This Appendix gives the details of the models used for investigating the effect of prey recruitment fluctuations 
on a fast growing prey population and a slow-growing predator population, where the prey population is under 
harvest. 

Basic population dynamics 

The prey equation (A1) and predator equation (A2) are given by 
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where    
 

yB   is the prey biomass in year y, 

 
yN   is the predator population size in numbers in year y, 

 α and β   are the Beverton-Holt stock recruitment relationship parameters,  

 M and *M   are the natural mortality rates for the prey population B, and the predator 
population, N, respectively, 

 λ and µ   are parameters determining the mortality of the prey owing to predator 
consumption, 

 *λ   is a parameter determining the growth of the predator population that results 
from consumption of prey, 

 F   is the prey fishing mortality,  
 ω   is a parameter that limits the predator population growth by increasing natural 

mortality when the population is large (i.e. density dependent mortality), and 
 ( )2,0~ Ry N σε   reflects log-normally distributed fluctuations in the recruitment. 

 

The value of Rσ  is varied to investigate the effect of increasing recruitment fluctuations on the population 

dynamics. 

Equilibrium relationships 

For 0=Rσ  and under equilibrium, Equation (A1) and (A2) become: 
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where B and N are the respective prey and predator equilibrium population sizes, and the rest of the symbols are 
as defined above. 

Model parameters 

The following assumptions are made to provide specific values for the model parameters: 

1) When 0=F  and 0=N , let 1== BKB . 

Substituting this information into Equation (A4) gives: 
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 ( )( )11 −+= Meβα  (A6) 

2) When 0=F  and 0=N , let the recruitment at 2.02.0 == BKB  be given by the parameter h 

(measure of the steepness of the stock recruitment curve). Substituting this information into Equation 
(A3) yields: 
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By setting 75.0=h , the values of α  and β  follow. 

3) Assume that 1=M and 2.0* =M .  

These values are chosen to ensure that the prey population is fast-growing relative to a slow-growing 
predator population. 

4) Choose λ , µ and *λ  such that 

i. when 0=F  predators keep the prey population at 7.07.0 == BKB , and 

ii.  when 0=F  and 10.0=B  the single predator consumption rate, given by 
B

B

µ
λ
+1

, is 

reduced to half its maximum value when 7.0=B . 

By further by setting 1=N  when 0=F  (i.e. define N relative to its equilibrium population size 

when there is no fishing), λ , µ and *λ  can be calculated. 

5) Lastly, the value for ω  was chosen so that (with zero recruitment fluctuations) the predator population 

N does not go into extinction for 5.0<F . 5.0=ω  is used here. 

Simulation process 

The simulation process involves starting both the predator and prey populations at 1, and computing the 
population sizes for a long time series while letting the recruitment fluctuate each year. This fluctuation is 

achieved by drawing a different ε  value from ( )2,0 RN σ  each year. In order to attain some degree of 

smoothness, this simulation was run for 30 000 years, and the mean population size values were taken over 
the last 29 000 years of the series. 

Catches exceeding prey population size 

To avoid irregularities arising when catches taken from the prey population exceed the actual population 
size, the following adjustments are made: 

Let 
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 (i.e. recruitment less loss to predators).  

If 001.01
*

1 +> ++ yy FBB , then yy FBC =  and 1
*

11 +++ −= yyy FBBB  as usual. 

If 001.01
*

1 +< ++ yy FBB , then 001.0*
1 −= +yy BC  and 001.01 =+yB  . 

In this manner, the size of B is restricted to remain above 0.001, with catches being reduced in the years 
concerned to ensure this. 

 


