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 28 

1. Introduction 29 

Deep-water hake (Merluccius capensis) is among the dominant demersal fish species in the 30 

Benguela Current Large Marine Ecosystem (BCLME), a productive upwelling system off the 31 

west coast of Southern Africa (5-37ºS, 0-26ºE).  M. paradoxus inhabit the continental shelf slope 32 

from around 17ᵒS in Angola/Namibia to about 27ᵒE in South Africa (Figure 1) (Payne, 1995). 33 

 34 

M. paradoxus spawn mainly in areas of 200–650 m bottom depths between 34.5◦S and 35 

36.5◦S on the South African west coast. Spawning individuals has been found as far as 25ᵒS in 36 

Namibia and 27ᵒE off the South African south coast at depths ranging from 170 to 837 m (Jansen 37 

et al., 2015a). Spawning off the South African coast takes place throughout the year, with 38 

increased intensity around March and August–October (Jansen et al., 2015a). 39 

Onshore, Offshore and alongshore ontogenetic migration has been indicated for M. 40 

paradoxus (Le Clus et al., 2005; Strømme et al., 2016). Based on catch rates by length class from 41 

South African surveys between 1990 and 2003, Le Clus et al (2005) concluded that M. 42 

paradoxus on the west and south coast was connected and likely belonged to the same stock. 43 

Strømme et al. (2016) extended this view to include Namibia where they found a large 44 

proportion of late juveniles, indicating a southern origin and a subsequent spawning migration to 45 

back to South Africa as the hakes matured. Juveniles initially migrate to shallower waters 46 

followed by a lifelong movement towards deeper waters (Botha, 1980; Burmeister, 2001; Gordoa 47 

and Duarte, 1991; Payne and Punt, 1995; Strømme et al., 2016). Large M. paradoxus has been 48 

found down to 1000 m (Burmeister, 2001; Mas-Riera, 1991). 49 

The spatio-temporal spawning and migration patterns are in accordance with the most recent 50 

and comprehensive genetic study of M. paradoxus that found no spatial divergence and 51 

concluded in accordance with (Bloomer et al., 2009) that the population structure is one 52 

panmictic stock (Henriques et al., 2016). The authors found significant temporal divergence and 53 

suggested that this was from genetic chaotic patchiness. An earlier study had pointed towards 54 

multiple stocks (von der Heyden et al., 2010). 55 

The area around the Lüderitz upwelling cell and Orange River Cone (LUCORC) region (25ᵒ-56 

29ᵒS) forms a natural barrier between the northern Benguela and southern Benguela (Agenbag 57 
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and Shannon, 1988; Lett et al., 2007; Rae, 2005). Therefore, and for practical/political simplicity, 58 

the national border between Namibia and South Africa (Orange River at 29 ᵒS) is still regarded 59 

as the boundary dividing the M. paradoxus into two management stocks (Figure 1) (Burmeister, 60 

2005; Grant et al., 1988, 1987). The stock assessment and fisheries management advice has not 61 

yet adopted to the new understanding of M. paradoxus as one panmictic stock that migrate across 62 

the border between Namibia and South Africa. It is therefore unknown if the current fisheries 63 

practice for M. paradoxus in the BCLME is sustainable and optimal. 64 

Recent developments in geostatistics and model fitting has facilitated analyses of large 65 

datasets from trawl surveys and let to new biological insight (Jansen et al., 2016, 2014; 66 

Kristensen et al., 2014). 67 

In the present study we apply these methods to a large dataset of survey data from Namibia 68 

and South Africa to exhibit the spatial life history of post-larval M. paradoxus. This is the first 69 

analysis of M. paradoxus integrated both the South African, Namibian and Norwegian surveys. 70 

We aim to test if the data supports the hypothesis of one panmictic stock and transboundary 71 

migration. Furthermore, we quantify the size specific migration for future usage in improved 72 

stock assessments. 73 

 74 

2 Materials and methods 75 

 76 

The data used for this study were the same as used by Jansen et al. (2016), except that data from 77 

2012 were not available for M. paradoxus. Modelling, post-processing and presentation of the 78 

results also followed the methods and design described in Jansen et al. (2016). The following 79 

description of materials and methods is therefore a modified copy from Jansen et al. (2016). 80 

2.1 Scientific trawl survey data 81 

The dataset used in this study comprised data from demersal trawl surveys conducted during 82 

the period 1998–2011 in the Benguela-Agulhas ecosystem between 17°S (northern border of 83 

Namibia) and 27°E on the South African south coast (Figure 1). All surveys sampled the 84 

demersal fish community on the continental shelf and upper shelf slope.  85 



MARAM IWS/DEC16/Hake/P2 

 

Namibian surveys used a Gisund Super demersal trawl towed by chartered commercial 86 

trawlers, all inter-calibrated with the R/V Dr Fridtjof Nansen, and the data were made available 87 

by the Ministry of Fisheries and Marine Resources (MFMR) in Namibia. Namibia surveys 88 

followed a systematic transect design with resampling of fixed transects with a semi-random 89 

distribution of stations along the transects. The South African surveys were conducted using 90 

either the “old” or the “new” configuration of a German 4-panel bottom trawl onboard R/V 91 

Africana. A few surveys were also conducted in South African waters using the Gisund trawl 92 

onboard R/V Dr. Fridtjof Nansen. South Africa surveys followed a random stratified sampling 93 

survey design. Details on the three types of gear, their operation and rigging are available in 94 

Axelsen and Johnsen (2015). Trawling time was approximately 30 minutes, and data from hauls 95 

shorter than 25 mins or longer than 35 were excluded from the analysis. Data from R/V Africana 96 

were made available by the Department of Agriculture Forestry and Fisheries (DAFF) in South 97 

Africa and data from R/V Dr. Fr. Nansen were provided by FAO/Norway (IMR). No trawl 98 

samples were available from Angolan waters due to species identification problems between M. 99 

capensis, M. paradoxus and M. polli (Benguela hake, which is largely caught in Angola).  100 

For each trawl haul, the total catch was weighed and sorted to species level where possible. 101 

Large catches were subsampled. The weight of all M. capensis in the catch was recorded and 102 

total lengths of a subset of the individuals were measured in cm (rounded down). The length data 103 

recorded from the subsamples were subsequently raised to estimate the length composition in the 104 

total catch. 105 

Data collected from nine hauls where winds in excess of 25 knots may have compromised 106 

the performance of the gear and hence the associated data points (Wieland et al., 2013) were 107 

excluded from the dataset. 108 

The final survey dataset comprised 6 343 trawl hauls from 1998 to 2011, 57 % of which 109 

contained M. paradoxus. Catches (in numbers) ranged from 0 to 29 844 M. paradoxus per haul, 110 

with a mean catch of 867 in the non-zero hauls. The data set comprised a total of 3.1 million 111 

records of M. paradoxus lengths. Samples were available from the entire region except the 112 

shallow area (20 - 100 m) in central Namibia that is characterized by untrawlable bottom (Figure 113 

1). The samples were relatively equally distributed over the time-series (Fig. 2a). Most samples 114 

in Namibia and on the South African west coast were taken in January-February, while the South 115 
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African south coast was generally sampled in April-May (Figure 2b). Trawling was 116 

predominately done during the day (Figure 2c) at depths from 20 to 960 m (Figure 2d). The catch 117 

numbers from gears other than Gisund (i.e. “old” Africana and “new” Africana) were 118 

deterministically converted to the Gisund equivalent catch using the estimated length-specific 119 

gear effect from supplementary information 1. 120 

The difference in the timing of the surveys in the various sub-regions in addition to the 121 

spawning phenology made it impossible to estimate the exact age of the hakes. M. paradoxus 122 

spawn throughout the year with increased intensity around March and August–October (Jansen 123 

et al., 2015a). The northern parts of the region (central Namibia) were surveyed in January to 124 

February (mean = 30 January). Consequently, the recruits in Namibia were primarily surveyed 125 

approximately 4.5 and 10.5 months after spawning. The South African west coast was also 126 

surveyed in January to February. Off the South African south coast surveys took place three 127 

months later (April-May, mean = 26 April). The young-of-the-year hake therefore entered the 128 

survey catches at various sizes and ages. For illustration purposes, mean age of the young-of-the-129 

year hakes that entered the catches were set to 6 months. 130 

2.2 The GeoPop model 131 

Log Gaussian Cox (LGC) process modelling with correlations was used to describe 132 

abundance indices of M. paradoxus cohorts through space and time and along environmental 133 

gradients, observed using various gear types, as the hake recruited, grew and died. Similar 134 

models have previously proved their value for mackerel larvae and juveniles (Jansen et al., 135 

2015b, 2012), cod (Gadus morhua) (Kristensen et al., 2013; Lewy and Kristensen, 2009), 136 

whiting (Merlangius merlangus) (Nielsen et al., 2014), and shallow-water hake (Merluccius 137 

capensis) (Jansen et al., 2016). 138 

The first attempts to fit this type of model to the hake data from demersal surveys were 139 

unsuccessful because the large number of latent variables that needed to be estimated in this 4D-140 

problem exceeded the limits of the physical processing power. The recent advent of the Template 141 

Model Builder (TMB; Kristensen et al., 2015) – a software library that can fit random effect 142 

models much faster than AD model Builder (Fournier et al., 2012)  provided a solution to this 143 

obstacle. Physical processing power was furthermore increased by running the software on an 144 

r3.8xlarge instance under Amazon Elastic Compute Cloud (Amazon EC2). TMB was installed 145 
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on Linux on the r3.8xlarge platform consisting of 32 CPUs (2.5 GHz Intel Xeon E5-2670 v2, 146 

AVX and turbo boost), 244 GiB RAM and 2 x 320 GB SSD storage 147 

(https://aws.amazon.com/ec2/instance-types/). This setup facilitated the study of M. capensis in a 148 

rich dataset by a complex model – a study that was impossible with ADMB or the model fitting 149 

algorithms provided in the LGC-package used by Kristensen et al. (2013). The same setup was 150 

used in the present study of M. paradoxus. 151 

The model formulation and notation used for this study was identical to that described by 152 

Kristensen et al. (2013). The response variable was catch in numbers from 47 size classes (2 cm 153 

bins from 5 to 99 cm) in annual time steps in the period 1998 to 2011. The model consisted of 154 

four main elements: The large scale spatio-temporal aspects ( ),,( txsη ), the local patchiness 155 

( ),(0 jsη , the population dynamics size-spectrum ( ),( tsφ ) and the gear selectivity ( )(ssel ). 156 

In the log-domain, the sum of these four components equals the total (latent) log intensity of the 157 

poisson measurements indexed by haul-id j: 158 

))(log(),(),(),,()),,(log( 0 jjjjjjjjjj sseltsjstxstxs +++= φηηl For the first three 159 

elements the variance parameters are denoted by 2σ , 2
Nσ and 2

εσ , respectively. Conditional on 160 

the intensity λ, the counts (i.e. the number of M. paradoxus in each size class in a haul taken at a 161 

particular point in space and time, with a particular gear) were assumed to be Poisson distributed 162 

(Kristensen et al., 2013). This implied a resulting (unconditional) distribution with much higher 163 

dispersion than the Poisson. This model structure is referred to as a log Gaussian Cox process 164 

model and has been shown to be appropriate for count data from catches that are over-dispersed 165 

and zero-inflated (with many zero values) (Jansen et al., 2015b; Kristensen et al., 2013). The 166 

Poisson distribution allows for zero catches, while the log Gaussian randomness imply over-167 

dispersed catches (relative to Poisson), both allowing for very high counts and for many more 168 

zero catches than would be found in a pure Poisson model.  169 

The large scale spatio-temporal element ( ),,( txsη ) was a key feature of the model. It 170 

models the time-varying heterogeneous spatial distribution of a size-structured population. The 171 

statistical properties of this distribution were modelled in three parts: large-scale spatial patterns 172 

(correlations between cells), temporal fluctuations (correlations between years) and size structure 173 

(correlations between catches in different size classes). All correlations were assumed to decay 174 

exponentially with spatial distance, time lag, and size difference, respectively, and assumed to be 175 

https://aws.amazon.com/ec2/instance-types/
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multiplicative. The spatial correlation was assumed to be isotropic (direction independent). In 176 

order to avoid correlation over land (e.g. the Cape region in South Africa), the spatial correlation 177 

effect was modelled as a Gaussian Markov random field (cell-to-cell chains). The parameter 178 

estimates for these correlations were expressed as decorrelation distance (H), decorrelation time 179 

(T) and decorrelation size (L), which were the distances in space, time or size where the 180 

correlations had decayed to e–1 (explaining ca. 14% of the variance). Documentation of these 181 

correlation structures were published in Kristensen et al. (2013). The spatio-temporal fields were 182 

represented by annual time steps covering the 14 years of the study period (1998 – 2011) and the 183 

spatial grid consisted of 278 cells each measuring 50 × 50 km. The large scale spatio-temporal 184 

model element therefore consisted of 182 924 random variables (47 size class × 14 years × 278 185 

grid cells), which were assumed to follow a log Gaussian distribution that determined the mean 186 

of the catch (in numbers).  187 

The second main element in the model, which reflected local patchiness and fish’ tendency to 188 

aggregate with similar sized individuals on a local scale was the “nugget effect” ( ),(0 jsη ). It is 189 

a well-known phenomenon that catches of certain fish sizes tend to be overrepresented in trawl 190 

hauls compared to the size distribution in the sampled population in the sea, likely due to the 191 

size-structured nature of schools or shoals (Kristensen et al., 2013). This local effect was 192 

accounted for by modelling the remaining variation among the hauls (within cells) with a 193 

Gaussian-distributed mean-zero term of variance 2
Nσ  and decorrelation range (L) across sizes. 194 

The third main element of the model was the stochastic population dynamics size spectrum 195 

( ),( tsφ ). It was governed by the McKendrick-von Foerster equation ( z
s

g
t

−
∂
∂

−=
∂
∂ φφ

) (Kot, 196 

2001) with an added noise term (ε ) applied in every time step to make this model much more 197 

flexible than the deterministic counterpart (Kristensen et al., 2013).  The constant growth and 198 

mortality rates should therefore be interpreted as averages rates over time. The population 199 

dynamics were discretized into 47 size classes and 32 time steps per year. Consequently, this was 200 

represented by 21 056 random effects (47 size class × 14 years × 32 time steps).  201 

 202 

Finally the catch was affected by the catchability of the gear (sel(s)) and this effect was 203 

implemented as: 204 
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1)()*/2 5031)( −−− )+(=ssel
GisundsSR(  ,  205 

where sel(s) was the selection factor, SR was the selection range and Gisund
50ℓ  was the fish length 206 

(s) in cm at half selection for the Gisund gear.  207 

The parameters in the model were estimated using the maximum likelihood principle based 208 

on the Laplace approximation and thus the estimation follows the principles of Kristensen et al. 209 

(2013).  210 

The fitted model was then used to calculate annual estimates of the abundance index of hake 211 

in each size class in each 50 x 50 km cell. These spatio-temporal distribution patterns were also 212 

transformed into a coastline-oriented coordinate system, to reveal any along-shore migration 213 

patterns. This was done by projecting the estimated abundances in the Cartesian coordinate 214 

system onto an axis that followed the coastline as a straight line from the Namibia-Angola border 215 

(11°E , 17°S) in the North, via Cape Point (18.5°E, 34°S) to east of Port Elizabeth on the South-216 

African south coast (27.5°E, 34°S) (see Fig. 1). Multiannual average distributions were 217 

calculated as the unweighted average distribution of multiple years. 218 

For explanatory purposes, the length-based model outputs were presented by both length and 219 

absolute age. The length-to-age conversions were done by using the age readings by DAFF (D. 220 

Durholtz, DAFF, unpublished data). This was done by calculating the average age by length 221 

from the Von Bertalanffy equations fitted to age readings of male and female M. capensis, 222 

respectively (plot provided in results section). Maps and bar plots were constructed to show 223 

mean distributions of M. capensis of length groups corresponding (+/- 1.5 cm) to the ages in one 224 

year steps from 0.5, the mean size and age when a new cohort first appears in the surveys, to 9.5 225 

years.  226 

Depth data were downloaded as gridded (0.07° lat x 0.07° lon) averages from the NOAA 227 

ETOPO1 database (Amante and Eakins, 2009) using the “marmap” package (Pante et al., 2015). 228 

Mean depth was calculated for each cell and isobaths were produced for the maps. Finally, 229 

abundance in cells with a mean depth exceeding the deepest trawl haul (960 m) was set to 0. The 230 

deepest observed M. paradoxus catch was at 934 m. 231 

 232 
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3. Results 233 

The parameter estimates (and associated standard errors) of the model fitted to the catch data 234 

are given in Table 1. 235 

Hake densities were found to be correlated in space and size with a spatial de-correlation 236 

distance (H) of 481 km and a length de-correlation difference (L) of 79 cm. These patterns were 237 

found to be very stable from year to year with a temporal de-correlation period (T) spanning 30.1 238 

years (CV = 7 %) and could therefore be examined as averages over the entire time series.  239 

Estimated variance parameters revealed a roughly equal contribution from spatial large-scale 240 

patterns ( 2σ  = 20.9) and the nugget effect ( 2
Nσ = 12.4). In comparison, the contribution from 241 

population dynamics was much smaller ( 2
εσ = 0.03). The variance in abundance of a given size 242 

class at a single point in time and space was therefore completely dominated by large scale 243 

spatial effects and local effects rather than demographic effects.  244 

The total mortality rate of M. paradoxus was estimated to 0.33 year−1 (CV = 67 %). 245 

However, this varied through life and between areas. The mortality increased substantially when 246 

the fish exceeded approximately 55 cm (Figure 3). The growth rate was estimated to be 8.3 cm 247 

year-1 (CV = <0.001 %). Despite the very weak population effect, these estimates (mortality and 248 

growth) resembled previously reported rates (Figure 3 and 4). However, the cohort signals were 249 

too weak to be used for tracking of single cohorts and their effects on spatio-temporal 250 

distribution fields were negligible. 251 

M. capensis was not fully recruited to the trawl survey in their first year (Figure 3). This was 252 

evident from the estimated selection of the reference gear “Gisund” ( Gisund
50ℓ  = 8.4 cm, SRGisund  253 

= 1.4 cm) and the increase in abundance from 0.3 to 1.3 years (Figure 3). 254 

3.1 Spatial patterns (distribution, migration, population structure) 255 

The spatial distribution of the catch rate of M. paradoxus was estimated and illustrated to 256 

infer age and size-related migration patterns. This was done for length groups corresponding to 257 

the ages from 0.3, the approximate age when a new cohort first appears in the surveys, to 9.3 258 

years.  259 

To examine the alongshore migration patterns, we projected the length-age-specific spatial 260 

distributions onto an axis consisting of two straight lines, one from the Namibia-Angola border 261 
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(Kunene River mouth) in the North, via Cape Point to Port Elizabeth in the south-east. The 262 

alongshore projections (Figure 5 and 6) and distribution maps (Figure 7 and 8) indicated 263 

horizontal movements throughout the life span of M. paradoxus. The initial distributions of the 264 

approximately 0.3- year-olds (recruits) and the 1.3-years olds (juveniles) indicated one main 265 

nursery area (Figure 6 and 7). During the first 7 years of the life of M. paradoxus, the 266 

distribution shifted gradually from year to year, indicating considerable alongshore migrations. 267 

In the north, considerable quantities of M. paradoxus appeared to move northwards from the area 268 

around Orange River - their most likely origin. In lesser number, M. paradoxus moved eastwards 269 

along the south coast of South Africa.  M. paradoxus were most widespread at the age of 270 

approximately 4.3 years (51 cm) where almost 100 % were mature (50 % mature at 42 cm (Singh 271 

et al., 2011)). Later, the distributions progressively contracted in the vicinity of the nursery area 272 

(Figure 5, 6 and 8). The movements north of Orange River (the border between Namibia and 273 

South Africa) and east of Agulhas thus indicated natal homing as the most parsimonious 274 

explanation. Consequently, transboundary movements most likely occurred.  275 

M. paradoxus appeared initially to move to shallower waters at around 80 m depth, after 276 

which they gradually moved deeper from approximately 0.5 to 5 years of age. From the age of 5 277 

they were found from 150 to 935 m, but mainly between 350 and 650 m, while moving into 278 

slightly shallower waters (Figure 9).  279 

4. Discussion 280 

The present analysis was based on the hitherto largest database of M. paradoxus survey data, 281 

for the first time including surveys from both the Namibian, Norwegian and South African 282 

fisheries research institutes. The quantitative geostatistical modelling exposed spatial migration 283 

patterns largely in line with Strømme et al. (2016) that were based on visual inspection of 284 

presence/absence outline maps based. Like Strømme et al. (2016) and Le Clus et al. (2005) we 285 

assumed that the spatial shifts in distribution over the life span of post-larval M. paradoxus were 286 

primarily reflecting migration and to a lesser extent mortality, however, the effects of spatial 287 

variation in mortality remains to be studied. 288 
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4.1 Spatial patterns (distribution, migration, population structure) 289 

The results indicated one primary recruitment/nursery area on the west coast of South Africa 290 

and a secondary low-production area around Port Elizabeth on the South Coast. Juveniles 291 

initially migrated away from the main recruitment area, followed by natal homing by larger 292 

individuals. This pattern was highly consistent through the studies time series as indicated by the 293 

very long decorrelation time. 294 

The return migration from Namibia appeared to take place when the hakes exceeded 50 cm. 295 

At this size almost 100 % would be mature if they matured at the same size as in South Africa 296 

Singh et al (2011), which is in contrast to the very few findings of spawning M. paradoxus in 297 

Namibian waters (Jansen et al., 2015a). Size of maturation therefore needs to be estimated for the 298 

part of the stock that migrates into Namibian waters.  299 

At the South coast of South Africa M. paradoxus appeared to move slightly westwards and 300 

then stay after reaching the size of maturation. This corresponds to the spawning reported in this 301 

area by Jansen et al. (2015a). However, very few recruits were observed, indicating that either 302 

they were outside the surveys area, transported by the currents to the west coast before they were 303 

caught in the survey, underestimated (unaccounted gear avoidance due to factors such as vertical 304 

distribution or gear), or the reproduction in this area was less successful than on the west coast.  305 

The spatial life history patterns thus conform to the concept of one main population unit 306 

(stock), but points to an additional smaller component on the eastern part of South Africa’s south 307 

coast. The level of interconnection (mixing/straying) between these components (stocks) is 308 

presently unknown, but appears to exceed the threshold where genetic differentiation occurs in 309 

the mitochondrial DNA (Henriques et al., 2016). Furthermore, the rarity of small juveniles in the 310 

eastern survey catches is puzzling and calls for field work using other techniques than the 311 

standard survey. 312 

M. paradoxus reached its deepest distribution at around 50-55 cm length (Figure 9), where it 313 

was abundant at depths deeper that 600 m. These depths were not completely covered by the 314 

surveys. This corresponds to an increased mortality at the same sizes (Figure 3), which could be 315 

explained by fish moving out of the survey coverage. 316 

 317 

4.2 Population dynamics and nugget effects 318 
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The effect of the population dynamics in the model was minuscule, this could be a 319 

consequence of the year-round spawning and recruitment of M. paradoxus combined with the 320 

difference in timing of the South African South coast and West coast surveys. Despite this, 321 

growth and mortality rates appeared to be relatively well estimated as indicated by the low 322 

standard deviations of the estimates and the comparison with values reported from age readings 323 

and stock assessments. A plausible explanation for this result, which is consistent with what was 324 

found for M. capensis (Jansen et al., 2016),  is that the variability in the size-structured spatial 325 

patterns is so relatively large, that the contribution from the population dynamics is not required 326 

to explain patterns in data. 327 

 328 

The data and model fit for M. paradoxus did not indicate any large spatial differences in 329 

small scale variability (nugget effect) that complicated the interpretation of the model fit like for 330 

M. capensis (Jansen et al., 2016). This is evident from supplementary information 2 that is made 331 

for comparison with figure 5 and 6 in Jansen et al. (2016). 332 

 333 

To be added: 1. Discuss gear effects. 2. Test sensitivity to the gear effect estimates. How much 334 

would the results change if the gear effects changed (Supplementary information 3). 335 

 336 

4.2 Model performance and future developments 337 

The GeoPop model has been made possible by Template Model Builder's computational 338 

approach to general statistical problems with many unobserved random variables, as well as the 339 

availability of memory and processing power through cloud computing. GeoPop represents a 340 

major improvement of earlier approaches, specifically by including both population dynamics, 341 

large-scale spatial patterns, and small-scale size-structured clustering. Since GeoPop lies at the 342 

boundary of what is currently computationally feasible, a number of compromises had to be 343 

made with respect to the ecological fidelity of the model, and it is foreseeable that future 344 

developments in algorithms and computational resources will allow further refinement of the 345 

model assumptions. Here, we list three candidates for such refinements:  346 
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1. Currently, the correlation structure in the spatial fields is assumed to be isotropic, i.e. 347 

independent of direction. It is plausible that correlations between different locations 348 

depend not only on distance, but also on differences in depth or other key habitat 349 

parameters. Some extensions are relatively straightforward and could for example be 350 

achieved by changing coordinates from latitude and longitude to alongshore distance and 351 

depth. However, this solution would have other flaws, as it would e.g. regard an off-shore 352 

bank as an extension of the near-coast space. A more general and robust structure could 353 

be obtained by modelling the fluxes in space that drive the redistribution of the stock 354 

between time points; this could include diffusive fluxes which would be anisotropic, as 355 

well as advective fluxes which indicate preferred migrations. While such an extension is 356 

appealing from the point of view of first principles in spatial ecology, by explicitly 357 

modelling migrations, it would lead to correlation structures that make computations 358 

much more demanding. In general, inference in spatiotemporal dynamics, including 359 

model selection, is a computationally intensive task in which the trade-off between 360 

fidelity and feasibility must constantly be reassessed as computational abilities expand. 361 

2. The growth dynamics and the mortality patterns are grossly simplified, in that both are 362 

assumed constant. A major effort would be required to allow changes in growth rates, 363 

explained by current size and possibly also environmental covariates, as well as varying 364 

mortality, most importantly described by spatiotemporal patterns in fishing effort. 365 

Ultimately, the inclusion of such patterns could lead to a spatiotemporal size-based 366 

assessment model. The effort required for this development would be very substantial, 367 

but single steps in this direction could be pursued.  368 

3. It could be envisioned to include different stock components, differing in timing and 369 

location of spawning. This would facilitate the tracking of individual cohorts. 370 

 371 

5. Conclusion 372 

The perception of the migration and population patterns derived from the first geostatistical 373 

modelling of data from all surveys in the region corresponds largely to the hypothesis and data 374 
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plots presented by Le Clus et al. (2005) and Strømme et al. (2016), but differ from the current 375 

assessment practices in Namibia and South Africa, where two stocks are assumed to be separated 376 

by the national border. 377 

 378 
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Table 1. Model parameter estimates and standard errors. Parameters with unit “1” are 484 

dimensionless. 485 

 486 

Symbol Description Unit Estimate 
Standar

d error 

CV (%) 

Gisund
50ℓ  

Fish size at half selection 

(Gisund) 
cm 

8.372 0.882 11 

SRGisund Selection range (Gisund) cm 1.414 0.308 22 

g Growth rate cm/year 8.320 <0.001 <0.001 

z Total mortality 1/year 0.325 0.218 67 

2
εσ  Variance of population dynamics 1 0.033 0.006 18 

T Decorrelation time year 30.088 2.220 7 

L Decorrelation size cm 79.069 1.894 2 

H Spatial decorrelation distance km 480.606 31.087 6 

2σ  
Variance of the space-time-size 

correlations 
1 

20.934 1.265 6 

2
Nσ  Variance of the nugget effect 1 12.350 0.283 2 

 487 

 488 
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Figures 490 

 491 

 492 

Figure 1. Map of study area with sample locations (dots), isobaths and place names referred to in 493 

the text.  494 

 495 
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 496 

Figure 2. Demersal trawl survey samples (trawl hauls) by year (a), ordinal day (b), hour of the 497 

day (c) and depth (d).  498 

 499 
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 500 

Figure 3. Log abundance index of deep-water hake (M. paradoxus) by length and approximate 501 

age (blue line). Inclination equals the total mortality. The mortality estimated in the 502 

Namibian and South African stock assessments are indicated by grey lines [To be added] 503 

(mean Z in South Africa from 1998 to 2012 from Rademeyer (2012) and in Namibia from 504 

1998 to 2011 from Kathena et al.  (2015)). 505 

 506 
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 507 

Figure 4. Comparison of growth rate estimates for deep-water hake (M. paradoxus). Estimate 508 

from the GeoPop model (8.4 cm year-1from first surveyed at an age of approximately  0.3 509 

years corresponding to 9.5 cm according to South African age readings, blue straight line), 510 

Von Bertalanffy equations fitted to South African age readings (females: upper dotted line; 511 

males: lower dotted line), Namibian age reading (dashed line).  512 
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 514 

Figure 5. Alongshore distribution of number of deep-water hake (M. paradoxus) by length and 515 

approximate age estimated by GeoPop model after removal of local noise (nugget effect). 516 

The distributions are standardized for each age, so the areas of the bars are the same for all 517 

age distributions. The spatial distributions were projected onto a curvilinear axis following 518 

the coastline from the Namibia-Angola border (Kunene River) in the North to Port Elizabeth 519 

in the south-east. 520 

 521 
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 522 

Figure 6. Alongshore distribution of number of deep-water hake (M. paradoxus) by length and 523 

approximate age estimated by GeoPop model after removal of local noise (nugget effect). 524 

The distributions are standardized for each 2-cm length class. The spatial distributions were 525 

projected onto a curvilinear axis following the coastline from the Namibia-Angola border 526 

(Kunene River) in the North to Port Elizabeth in the south-east. 527 

 528 
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 529 

Figure 7. Distribution maps of deep-water hake (M. paradoxus) at the age of approximately 0.3 530 

years (a), 1.3 years (b), 2.3 years(c) and 3.3 years (d). The distributions are illustrated as 531 

cumulative fractions, e.g. the sum of all areas with the color corresponding to 40 % 532 

represents 40 % of the total. 533 

 534 



MARAM IWS/DEC16/Hake/P2 

 

 535 

Figure 8. Distribution maps of deep-water hake (M. paradoxus) at the age of approximately 4.3 536 

years (a), 5.3 years (b), 6.3 years(c) and 7.3 years (d). The distributions are illustrated as 537 

cumulative fractions, e.g. the sum of all areas with the color corresponding to 40 % 538 

represents 40 % of the total. 539 

 540 
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 541 

Figure 9. Depth distribution of deep-water hake (M. paradoxus) by length and approximate age. 542 

Blue dashed lines indicate the weighted mean depth. 543 

 544 

Supplementary information 545 

Supplementary information 1. The gear effect on catch rates of M. paradoxus. 546 

 547 

Supplementary information 2. No large scale spatial bias in nugget effect. 548 

 549 

Supplementary information 3. Sensitivity test for the gear effect on the catch rates of M. 550 

paradoxus [Not done yet]. 551 
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Suppl. info. 1: The gear effect on catch rates of M. paradoxus

As detailed in Materials and Methods, the data base for the present study
includes catch rates with different gears. The study must take the difference
in the size selectivity and efficiency of the different gears into account, to avoid
spurious patterns and bias in the estimated spatial distributions of the stock.
Here, we describe how the catches from the R/V Africana are converted to
equivalent catches that we can asssume would have been obtained with Gisund.
We refer to this as “gear intercalibration”.

We constructed a statistical method for intercalibration, i.e. determining the
relative selectivity of two gear types, based on data from paired trawl hauls.
The model estimates the size spectrum of the underlying population at each
station, size-structured clustering of fish at small temporal and spatial scales,
in addition to the relative selectivity of the two gears in each length class. The
statistical assumption is Poisson distributed catches conditional on log-Gaussian
variables that describe the expected catches, which allows for overdispersion and
correlation between catch counts in neighboring size classes.

SI 1.1: Statistical model

The intercalibration model is a statistical model which explains the size compo-
sition of the catch in survey trawl hauls. The model is a non-linear mixed effect
model, in which we do inference using numerical maximum likelihood estima-
tion, employing the Laplace approximation to integrate out random effects.

The observed quantities are count data, Nijk, which represents number of indi-
viduals caught at station i = 1, . . . , ns, with gear j = 1, 2, and in length group
k = 1, . . . , nl. Here, the length groups are 2 cm length classes starting at 10 cm.

We assume that these catches are Poisson distributed, conditional on the swept
area Aij and three sets of random variables, which all depend on the size class
k: First, the local background size spectrum Φik, which is specific to the sta-
tion, second, haul-specific fluctuations Rijk in the size spectrum, and third,
the relative selectivity Sjk which is specific to the gear. More specifically, Φik

represents the size composition of the fish at station i, as would be observed
with a hypothetical gear with “typical” size selectivity, so that exp(Φik) is the
expected number of fish caught in size group k at station i with a hypothetical
gear which lies in between the two gears j = 1 and j = 2.

Next, the haul-specific fluctuations Rijk are akin to the “nugget effect” in spatial
statistics, and represents small-scale clustering of fish. This is particular to both
stations and gear, since the paired hauls are done at slightly different locations
and times, and therefore these clusters have moved or regrouped between hauls
at the same station.

Finally, the selectivity Sjk is the main object of interest, and represents the
selectivity of gear j in size group k. Since we do not know the actual size

1



distribution of the stock, we cannot estimate the absolute selectivity, but only
the relative selectivity between the two gears. This corresponds to enforcing
S1k = −S2k

Given these random variables Φ, R, S, we assume that count data is Poisson
distributed:

Nijk|Φ, R, S ∼ Poisson(Aij · exp(Φik + Sjk +Rijk))

The swept area Aij is an input to the model. The unobserved random variables,
Φ, R and S, are given prior distributions: The size spectrum at each station,
i.e. Φik, is considered a random walk over size groups:

∆Φik ∼ N(0, σ2
Φ) for k = 1, . . . , nl − nΦ .

Here, ∆ is the difference operator. This enforces continuity in the size spectrum;
the most probable spectrum is flat. To ensure that the spectrum is a well defined
stochastic process, we complement this with initial conditions

Φik ∼ N(0, σ2
1) for k = 1 .

Here, the variance σ2
1 is fixed at a “large” value 10. In contrast, the parameter

σ2
Φ is estimated. We assume independence between stations, i.e. we do not

attempt to model any large-scale spatiotemporal structure of the population.
We note that this is the main difference between this model and the GeoPop
model, where emphasis is exactly on this spatiotemporal structure.

The residual or “nugget effect” Rijk models size-structured clustering of the fish
at small spacial and temporal scales. Thus, this effect is independent between
hauls, even those taken at same station i but with different gear j. For a given
haul, i.e. for given station i and gear j, the nugget effect is a mean 0 first order
autoregressive process of size, with a variance σ2

N and correlation coefficient φ
which is estimated.

The relative selectivity Sjk, which we aim to estimate, is modeled as a random
walk in size:

∆Sjk ∼ N(0, σ2
S) for k = 1, . . . , nl − nS

We assume infinite variance on the first size group, Sj1, i.e. only the increments
in the selectivity process enter into the likelihood function.

2



Africana Old Africana New
Parameter Estimate Std. Error Estimate Std. Error

log σΦ 0.077 0.02 0.17 0.02
φ 0.927 0.01 0.92 0.01

log σN -0.039 0.05 -0.08 0.05
log σS -3.145 0.25 -2.76 0.24

Table 1: Parameter estimates

SI 1.2: Implementation

The statistical model in the previous defines the joint distribution of the count
data, N , and the unobserved random variables Φ, R, S, for given parameters σS ,
σΦ, and the two parameters (scale and range) defining the nugget effect. The
unobserved Φ, R and S are integrated out using the Laplace approximation, to
yield the likelihood function as a function of the four parameters. The likelihood
function is maximized to yield estimates of the four parameters, after which the
posterior means of the Φ, R, and in particular S are reported.

The computations are performed in R version 3.1.2 (R Core Team, 2015); we
use the Template Model Builder (TMB) package (Kristensen et al., 2016) for
evaluating the likelihood function and its derivatives.

SI 1.3: Data

The data base consisted of a total of 236 pairs of trawl hauls performed by
RVs Africana and Dr. Fridtjof Nansen. The Gisund gear was used onboard
Fridtjof Nansen, while RVs Africana deployed two gear types: “Africana Old”
(108 hauls) and “Africana New” (128 hauls). Catch in numbers per length group
and the swept area (hauling distance multiplied by wing spread) were available
for each haul.

SI 1.4: Results

The obtained intercalibration curves are seen in figure 1. Notice that Gisund
overall is more effective than both the Old and the New Africana, in particular
in the small size classes. The difference between size classes is statistically sig-
nificant (p < 10−4). For size classes larger than 30 cm, say, the intercalibration
curves show little variation with size and although this has not been tested,
it is plausible that these variations are not statistically significant. Estimated
parameters are seen in table 1.
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Figure 1: Relative selectivity (gear calibration factor), comparing catches of
M. paradoxus with Gisund gear and the “Old” and “New” gear on the R/V
Africana. Large values indicate that Africana is more effective. Solid curve:
Estimated relative selectivity (posterior mode). Grey region: Marginal 95 %
confidence intervals.
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Supplementary information 2 
 

 

Figure SI2.1. Alongshore distribution of number of deep-water hake (M. paradoxus) by size and 
approximate age. Simple average of catches (a), GeoPop model fit (b) and GeoPop model after removal of 
local noise (nugget effect) (c). The spatial distributions have been projected onto a curvilinear axis following 
the coastline from the Namibia-Angola border (Kunene River) in the North to Port Elizabeth in the south-
east. This figure is made for comparison with figure 5 in Jansen et al. (2016) and is therefore made in the 
same design (Jansen et al., 2016). 
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