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Summary
Despite ongoing improvements in Bayesian surplus production models (SPMs), researchers often prefer age-structured production models (ASPMs) even when reliable size- or age data are unavailable. Here, we propose a novel Bayesian state-space framework ‘JABBA-Select’ to account for changes in selectivity and relative fishing mortality from multiple fisheries. JABBA-Select extends the JABBA software (Just Another Bayesian Biomass Assessment; Winker et al., 2018) by: 1) using the “steepness” of the stock-recruitment relationship and the selectivity-at-age dependent mortality rates from an equilibrium age-structured model to generate correlated multivariate normal priors on surplus-production shape and productivity parameters; and  2) distinguishing between exploitable biomass (used to fit indices given fishery selectivity) and spawning biomass (used to predict surplus production). In this study, we introduce the properties of the JABBA-Select model using the stock parameters of South African silver kob (Argyrosomus inodorus) as a case study. The South African silver kob is exploited by the boat-based hand-line and recreational fishery (‘linefishery’) and the inshore trawl fleet. It was selected as a data moderate example fishery that features strong contrast in selectivity. For proof-of-concept, we use an age-structured simulation framework to compare the performance of JABBA-Select to: 1) a conventional Bayesian state-space Schaefer model, (2) an ASPM with deterministic recruitment; and 3) an ASPM with stochastic recruitment. The Schaefer model produced highly biased estimates of relative and absolute spawning biomass trajectories and associated reference points, which could be fairly accurately estimated by JABBA-Select. When compared to the deterministic and stochastic ASPMs, JABBA-Select showed overall higher accuracy for most of the performance metrics and captured the uncertainty about the stock status most accurately. The results indicate that JABBA-Select is able to accurately account for moderate changes in selectivity and fleet dynamics over time, and provides a robust tool for data-moderate stock assessments. 
	
1. Introduction
For over 50 years Surplus Production Models (SPMs) have been used to analyze catch and effort data to assess the biomass and exploitation level of marine populations in relation to fisheries reference points (FRPs) based on the Maximum Sustainable Yield (MSY) (Fox, 1970; Schaefer, 1957).  SPMs are age- and size aggregated models that approximate changes in biomass as a function of the biomass of the preceding year, the surplus production in biomass and the removal by the fishery in the form of catch and are, therefore, often referred to as Biomass Dynamics Models (Hilborn and Walters, 1992). Somatic growth, reproduction, natural mortality and associated density-dependent processes are inseparably captured in the estimated surplus production function, and the slope of this function as biomass approaches zero is the termed intrinsic growth rate . 

Over the last two decades there has been considerable progress in optimizing the fitting procedures of SPMs (McAllister, 2014; Meyer and Millar, 1999; Pedersen and Berg, 2016; Punt, 2003; Thorson et al., 2014). Most recently the release of the Bayesian state-space SPM platform JABBA (Just Another Bayesian Biomass Assessment; Winker et al., 2018) has prompted a fast uptake for a number of tuna and billfish assessments conducted by tuna RFMOs. JABBA is a user-friendly R (R Development Core Team, 2013) to JAGS (Plummer, 2003) interface for ﬁtting generalized Bayesian State-Space SPMs to generate reproducible stock status estimates and diagnostics for a wide variety of ﬁsheries (Winker et al., 2018).
Earlier studies have suggested that both age-structured and SPMs often produce similar FRPs when the assessment is limited to catch and relative indices of abundance (Hilborn and Walters, 1992; Ludwig and Walters, 1989, 1985; Prager et al., 1996, but see Maunder 2003). Yet, many stock assessment scientists retain strong reservations about SPMs (Maunder, 2003; Punt and Szuwalski, 2012; Wang et al., 2014). A major criticism of SPMs is that by ignoring the stock’s size/age-structure, SPMs fail to account for dynamics in gear selectivity (Wang et al., 2014) and lag effects in the population (Aalto et al., 2015). 

In contrast to SPMs, age-structured models define spawning-biomass (SB) and exploitable biomass (EB), where SB is the biomass fraction of mature fish (or females) in the population, and EB is the exploitable (vulnerable) biomass fraction of the total biomass that is selected by the fishery. This allows age-structured models to explicitly account for the lag-effect of the biomass response of EB, which is related to the observed abundance index. However, this requires a minimum of ten stock parameters to model the population dynamics[footnoteRef:1], with density-dependent processes typically limited to a spawner-recruitment relationship (SRR) and natural mortality (M) being age- and time invariant (Thorson et al., 2012). Moreover, the form and steepness (h) of the SRR and estimates of M are highly uncertain and it is often not possible to estimate h and M from the data. As such, scientists commonly fix values for one, or both parameters in age-structured stock assessments (Lee et al., 2012; Mangel et al., 2013), thereby making strong presumptions about the stock’s resilience and stock status reference points. Recent research has demonstrated the importance of estimating recruitment variation in data-poor (catch only) and data-moderate situations (catch and relative abundance indices) to avoid overestimating the precision while reducing bias in stock status estimates (Thorson et al. in press). However, in absence of reliable size- or age data, it remains common practice that researchers apply age-structured models without accounting for time-varying recruitment or other forms of process-error (Thorson et al. in press). There is also a concern that estimating recruitment without stock structure information can inflate uncertainty estimates such that providing management advice becomes impractical (Minte-Vera et al., 2017).   [1:  Effective length at birth (), maximum length (), relative growth rate (), mortality rate (), weight-at-length parameters (, ), spawner-recruit parameters (, ), age-at-maturity () and selectivity-at-age (Sa)] 


In such data-moderate situations, the analyst could consider a Bayesian state-space formulation for SPMs to provide an alternative and more parsimonious representation of uncertainty relating to FRPs than age-structured models. State-space SPMs can be used to account for both process and observation error (Ono et al., 2012; Punt, 2003). In addition, the choice of fixing key parameters can be overcome in Bayesian SPMs through the formulations of adequate priors (McAllister et al., 2001). Even when such formulations are considered, SPMs are still likely to introduce bias to the FRPs where introductions of new gears, mesh size restrictions or minimum size limits caused changes in selectivity (Wang et al., 2014). 

To address some of these SPM caveats, we introduce JABBA-Select, a novel SPM framework that allows approximating differential impacts of fisheries selectivity into a Bayesian state-space surplus production model. JABBA-Select is an extension of the JABBA open source software for fitting generalized Bayesian State-Space SPMs (Winker et al. 2018). We illustrate the key concepts of JABBA-Select based on stock parameters and catch- and abundance time series for silver kob (Argyrosomus inodorus), which is caught by the South African boat-based handline and inshore trawl fisheries. For proof of concept, we use an age-structure simulation framework (Thorson et al., in press.; Thorson and Cope, 2015) to compare the performance of JABBA-Select against a deterministic and stochastic implementation of an age-structured production model (ASPM) and a Schaefer SPM.  

2.1 Materials and methods
2.1.1 JABBA-Select model  
We formulate the JABBA-Select model by extending the Bayesian state-space SPM estimation framework JABBA (Winker et al. 2018). With JABBA-Select, we seek to improve stock status estimation properties of Bayesian state-space surplus production models by accounting for selectivity-induced distortion of biomass indices and stock productivity. Central to our approach is the integration of prior information from spawning biomass- and yield-per-recruit models with integrated Beverton-Holt spawner recruitment relationship (BH-SRR) into JABBA-Select, which we subsequently refer to as age-structured equilibrium model (ASEM). This type of model is widely used to derive MSY-based FRPs from estimated stock parameters by searching iteratively for the fishing mortality that produces MSY, FMSY, from the corresponding spawning biomass SBMSY at MSY (Punt et al., 2013). The required ASEM inputs are parameters describing length-at-age (la), weight-at-age (wa), maturity-at-age (ψa) and selectivity-at-length (sa) for fisheries operating with selectivity s, natural mortality M and the steepness parameter h of the BH-SSR. For convenience, the acronyms that are commonly referred to in the following sections are summarized in Table 1.

The presented framework has four novel components relative to conventional state-space SPMs:
1. The model uses the expression of harvest rate at MSY (HMSY), which we define here as HMSY = MSY /SBMSY, as a surrogate for the intrinsic rate of population increase r, and derives the shape parameter m of the surplus production curve as a function of SBMSY/SB0. This provides a means to generate prior distributions of likely values of HMSY and m from the ASEM using life history parameters and fishery-selectivity inputs (Fig. 1a)
2. The parameter  is specific to fishing operations that fish with selectivity s and can be adjusted to account for selectivity-induced changes in the overall year-specific stock productivity HMSY,y as well as on the abundance indices (Fig. 1b).
3. The model separates between exploitable biomass EBs and spawning biomass SB; the former is used to fit indices given selectivity s, and the latter to predict surplus production. The parameters used to describe the ratio of EBs,y and SBy, as a function of spawning biomass depletion relative to average unfished levels are inferred from the ASEM (Fig. 1c)
4. The model accounts for the underlying correlation structure between generated values HMSY and m through the formulation of a multivariate normal (MVN) prior, which allows for estimating both parameters jointly within the model (Fig. 1d).   

For illustration of the JABBA-Select model, we use the stock parameter estimates for South African silver kob (Table 1). This species is exploited by the South African boat-based hand-line fishery (‘linefishery’) and the inshore trawl fleet and was selected due to strong contrast in selectivity regimes and life history parameters. Silver kob is the most abundant sciaenid species in South Africa that is predominantly caught between Cape Point and East London. The species’ legal minimum size limit for the linefishery was increased from 400 mm to 500 mm TL in 2003, which effectively resulted in an instant reduction of EB (Winker et al., 2013). Furthermore, an increasing proportion of the total catch has been landed by the inshore trawl, particularly after a drastic reduction in linefishery effort in 2003, which was enforced together with the new minimum size regulations. In contrast to the linefishery,  there are no minimum size limits for the inshore trawl fishery. As a result the inshore trawl lands a larger proportion of smaller silver kob  (SL50 = 334 mm TL). 

2.1.1 Estimating surplus production from an Age-Structured Equilibrium Model (ASEM) 
To directly link the generalized three parameter SPM by Pella and Tomlinson (1969) to the ASEM, we assume that surplus production is a function of spawning biomass (Thorson et al., 2012) and then express surplus production as a function of our formulation of HMSY instead of the intrinsic rate of population increase, so that:    

  								(1)

where SB0 is the unfished biomass and m is a shape parameter that determines at which SB/SB0 ratio maximum surplus production is attained. The functional links between the ASEM and Pella-Tomlinson SPM are illustrated in Fig. 2, which provides a means to translate typical input parameters of age-structured models into the key SPM parameters r and m  (Maunder, 2003; Thorson et al., 2012; Wang et al., 2014). Accordingly, it is possible to generate HMSY = MSY/SBMSY and SBMSY/SB0 from the ASEM, where the shape parameter m is directly related to the inflection point SBMSY/SB0 of the surplus production curve:

										(2)

The ASEM formulation is based on deterministic, age-structured population dynamics. The numbers at age per-recruit () at equilibrium are given by:

							(3)

where  is the selectivity at age a (Eq. A4), F is the instantaneous rate of fishing mortality and M is the instantaneous rate of natural mortality. For ease of presentation, we assumed M is constant and omitted the plus group. 

The Spawning-biomass-per-recruit () is obtained as function of F, such that:

										(4)

where  is the weight at age a (Eqs. A1-A2),  is the proportion of mature fish in the population at age a (Eq. A3) and  is the number survivors-at-age per recruit. The corresponding yield-per-recruit is given by:

								(5)
	
Under steady state conditions, the yield (Y) can then be expressed as a function of equilibrium recruitment  and yield-per-recruit () 

										(6)

The corresponding equilibrium spawner-biomass SB is: 

										(7)

Assuming a Beverton and Holt SSR, the equilibrium recruitment at F is given by:

										(8)

where the steepness parameter h is defined as the ratio of the average unfished recruitment  when spawner biomass is reduced to 20% of unfished levels, SB0 (Mace and Doonan, 1988) and  is the unfished spawning-biomass per-recruit (F = 0).

The quantity MSY and the corresponding fishing mortality at MSY, FMSY, is obtained through iterative maximization of Eq. 6 over a range of plausible F values, which then allows the calculation of SBMSY by inputting FMSY into Eq. 7. 

2.1.2 Accounting for fisheries selectivity effects on stock productivity 
Figure 1a demonstrates that the selectivity-specific yield curves from the ASEM (generated through iterations of fishing mortality F) closely approximate the shape of the corresponding selectivity-specific surplus production curve from the SPM (Eq. 1) over a wide range of logistic selectivity curves. This indicates that the same catch, but harvested with various selectivity patterns, will result in different quantities of HMSY and MSY (Wang et al., 2009), but SBMSY and thus the shape parameter m, is effected less. Therefore, if there are two or more fisheries that operate with different selectivity patterns and their relative contribution to the total catch varies over time, HMSY will inherently become time-varying. This also applies to r in conventional SPM formulations. 
 
To account for relative changes in the catch  among multiple fisheries that operate with different selectivity s in year y, we estimate the year-specific stock productivity as the weighted product of the relative catch (but ignoring lag effects), such that

  							(9)

so that estimates of  are conditioned on the relative impacts of a fishery-specific selectivity in year y (Fig. 1c).
 
2.1.3. Distinguishing between exploitable biomass and spawning biomass  
Accounting for selectivity dependence of  alone would not address additional  distortions during the fitting process of any age-aggregated model (Maunder, 2003; Wang et al., 2014), which can arise from the non-linear behaviour of the ratio of exploitable- to spawning biomass (EB/SB) relative to biomass depletion levels (Fig. 1c). The ratio EB/SB would only be constant if the functions describing age-at-selectivity and age-at-maturity were identical, but becomes increasingly disproportionate towards lower biomass levels as age-at-selectivity generally diverges from age-at-maturity (Fig. 1c). To account for this effect, we seek to integrate information about the probable response of  to changes in biomass depletion levels (P = SB/SB0) into the observation equation of the JABBA-Select model (Eq. 16), where   is conditioned on selectivity s and the stock’s life history parameters. Again, we make use of ASEM to obtain expected values of  for different depletion levels of   by iteratively changing the fishing mortality, F. Initial trials indicated that the functional form of this steady-state relationship can be adequately described by the asymptotic growth function of the form:

 ,						(10)

where PH denotes the relative depletion SB/SB0 as a function of F,  and are parameters describing the ratio of  for the lowest and highest observed depletion P1 and P2, respectively, and  is the rate of change between  and   expected for selectivity s (Fig. 3). The expected values of are estimated separately for each catch and abundance time series that have a unique selectivity s by fitting Eq. 3 to vectors of  and . In the present framework, the non-linear relationship between  and  is estimated by fixing the ASEM-values M and h to their means, which relies on the assumption that errors arising from the misspecification of externally derived parameters  can be compensated for by the process variance in JABBA-select (Eq.13). 

2.1.4 Multivariate normal (MVN) prior formulation for the HMSY and shape m 
In terms of Bayesian model formulations, the ASEM lends itself to deriving informative priors for HMSY and m from Monte-Carlo Simulations to produce a distribution of likely values for MSY/SBMSY and SBMSY/SB0  (Mangel et al., 2013; McAllister et al., 2001). In the following, we focus on incorporating the uncertainty associated with M and h into an informative MVN prior for  and the shape parameter m. 
First, we use Monte-Carlo simulations to randomly generate 1000 permutations of   and  where k denotes the Monte-Carlo  replicate. The Monte-Carlo approach is implemented based on the following steps: (1) randomly generate permutations of the leading parameters   from a lognormal distribution and  from a beta distribution (Michielsens et al., 2004), (2) iteratively maximize Equation 6 over a wide range of F values to obtain  given the remainder of life history parameters in Table 3, (3) input the corresponding FMSY into Equation 7 to obtain , (4) set F = 0 to obtain SB0,  through Equation 7, (5) calculate  and  as a function of the ASEM output ratios  and   (Eq. 9), respectively.  
The MVN prior is parameterized with the mean values and covariance matrix of ) for selectivity s = 1 and  (Fig. 1d), such that 

	(11)

where  is taken as the mean selectivity s across fisheries for each iteration k. The prior expectation for a time-invariant  relies on the assumption that m, and thus, can be treated as approximately constant. This assumption is also common practice in age-structured stock assessments (Punt et al., 2013), and implies independence of  to selectivity. As illustrated in Figure 1a, this assumption may hold well for logistic type selectivity curves, but can theoretically produce biased results in the presence of strong, steep dome-shaped selectivity curves (Wang et al., 2014). To then account for the selectivity effect on  for s > 1 (i.e more than one selectivity), we used the ratios of the simulation vectors   , where  was then fitted to a gamma probability density function (Fig. 3). The estimated shape and scale parameters are used to generate informative priors for  as input to the JABBA-Select model in conjunction with the log-MVN prior for  and   (Fig. 1d; Fig. 3).

2.5 Model formulation
The generalized form of the process equation is given by:

								(12)

where SPy is surplus production for year y and Cy is the catch in year y for all fishing operations with a common selectivity s.  Using Eq. 1 for SPy and expressing spawning biomass and total catch as a fraction of SB0, with Py = SBy  / SB0 results in the following process equation::

		  		(13)    
	
where  is the lognormal process error term, with ,  is the process variance,  is a scaling for initial biomass depletion in the first year P1,   is thecatch with selectivity s in year y, m is the shape parameter, and  is used as a multiplier to weight  relative to catch taken with selectivity s (Eq. 9). 


The corresponding spawning biomass for year y is:

 											(14)

The exploitable biomass is expressed as the product of SB in year y and the ratio of EB/SB as a function of P = SB/SB0, such that: 

 						(15)
	
where  are the externally derived parameters to approximate the ratio  for a fishery (or survey) with selectivity s within JABBA-Select. The corresponding observation equation is given by:

 								(16)

where qi is the catchability coefficient for abundance index i, and  is the total observation variance in for year y for index i. Here,we specifically separate index i and selectivity s to accommodate abundance indices from fishing operations that may have comparable selectivity or observations variances but require different catchability scaling estimates. JABBA-Select allows the separation of  into three components:  (1) the squared externally estimable observation error  of the log of the expected values from the abundance index i from the standardization model, (2) a fixed (or additional) input variance  and (3) estimable variance , where the default prior option for  assumes an uninformative inverse-gamma distribution with both gamma scaling parameters set to 0.001 (Winker et al., 2018). All three variance components are additive in their squared form  and  can be switched on or off in any combination to provide flexible data-weighting options to deal with data conflicts and model misspecifications in stock assessments (Carvalho et al., 2017; Francis, 2011).  
 
In summary, JABBA-Select is formulated to accommodate multiple catch time series, as well as changes in selectivity within each fishery (e.g. due to gear regulations) and can be simultaneously fitted to multiple abundance indices with varying selectivity. Just like JABBA, JABBA-Select is implemented in JAGS (Plummer, 2003), called from R. JABBA-Select retains the core features of the basic JABBA model (Winker et al. 2018), including its modular coding structure,  a suite of options to fix or estimate process and observation variance components and inbuilt graphics to illustrate model fit diagnostics and stock status results.

2.2 Case study application to South African silver kob
For illustration, we provide a worked example by fitting JABBA-Select to available time series of catch and standardized catch-per-unit-effort (CPUE) data for South African silver kob (Winker et. al. 2017). The catch time series were grouped according three selectivity pattern, where selectivity s  = 1 was assigned to the early linefishery catch time series (1987-2003) prior to the increase in minimum the size limit from 2004 onwards, s = 2 to the recent linefishery catch time series (2004-2015)  and s = 3 to the inshore trawl catches (1987-2015). The external parameter estimates from available size data for the corresponding logistic selectivity functions are provided in Table 2. We fit JABBA-Select to two abundance indices, which were standardized (Winker et al., 2014b) using commercial catch and effort datasets from the South African south and south-east coast fishing regions (Winker et al., 2013). Corresponding to the catch series, both early CPUE series (1987-2003) were assigned to the same s =1 and both recent CPUE series (2004-2015) to s = 2, but only specified a single qi for each of the regional abundance indices i. The standard errors for standardized annual CPUE estimates were typically  < 0.1 and thus considered over-precise (Winker et al., 2013). To address this, we made use of additional variance by setting   = 0.10, which equates to fixed variance component corresponding to a CV of around 14% (i.e. ) . An additional, estimable variance was assigned to each of the regional CPUE series. In this case, by admitting a minimum realistic of observation variance in the form of   , it was possible to substantially reduce the number of MCMC iterations required to achieve convergence in the JABBA-Select model. 

Key input priors approximate those used in previous age-structured and assessments of silver kob (Winker et al., 2014a) and are summarized in Table 3. Uncertainty admitted about M and h included the ranges of 0.11-0.26 and 0.65-0.91 within the 90% credibility intervals, respectively (Fig. 3). Considering that linefish catch reporting only commenced fully in 1987, at a time when many linefish species were already severely over-exploited (Griffiths, 2000), it is necessary to formulate priors to estimate initial spawning biomass relative to SB0 (Table 3). The informative beta prior (mean = 0.1, CV = 35%) was based on estimates of historical reference levels from around 1900 and per-recruit spawning biomass depletion estimates, which is representative for the early period of the available time 1987-1993  (Griffiths, 2000). This information indicated an initial biomass depletion level of around 10% SB0.  

To determine FRPs for the stock status, we made use of JABBA-Select option to specify the target SB/SB0 in addition to the SBMSY that maximizes MSY. Here, we adopted SB40 = 0.4 × SB0 as a precautionary reference SB for the stock status in accordance with the South African Linefishery management protocol. Apart from plots showing the fits to the observed abundance indices, and predicted trajectories of Hy/H40s and SBy/SB40, the model is evaluated based on a number of diagnostics including: (1) the JABBA residual plot, which is described in Winker et al., (2018) and that displays: (i) colour coded lognormal residuals of observed versus predicted CPUE indices by index, (ii) boxplots indicating the median and quantiles of all residuals available for any given year; the area of each box indicates the strength of the discrepancy between CPUE series (larger box means higher degree of conflicting information), and (iii) a loess smoother through all residuals to assess systematically auto-correlated residual patterns; (2) the process error deviates plot, which were calculated by taking the difference between deterministic expectation of  and stochastic realization of  at each time step; (3) plot of posterior and prior distributions for all estimable parameters, combined with the following two metrics: (i) the posterior to prior mean ratio (PPMR) to assess the direction in which the posteriors are influenced in relation to the prior by the data and (ii) the posterior to prior variance ratio (PPVR) to further assess which parameters are informed by data, where the variances were calculate as CV2 to achieve adequate scaling for PPMR  1.      
     
2.3 Simulation experiment
We conducted an age-structured simulation experiment to compare the performance of JABBA-Select against three alternative estimation models (EMs). The first alternative EM is a ‘naïve’ Bayesian state-space Schaefer model, implemented in JABBA (Winker et al., 2018) to provide contrast between more conventionally parameterized SPMs and JABBA-Select. The other two alternative EMs are a deterministic and a stochastic ASPM that matched the population dynamics of the simulation model (Thorson et al., n.d. in press). The age-structured simulation-estimation framework has been used for comparisons of stock assessment model performances in a number of previous studies (Thorson et al., n.d.; Thorson and Cope, 2015; Thorson and Kristensen, 2016) and forms part of the open-source package CCSRA (Thorson and Cope, 2015) within the R statistical. For the reference case, we ensured that all fixed values and prior means corresponding to the ‘true’ input values for the age-structured simulation model.  In addition, we explore the sensitivity of the four EMs to model mis-specifications by increasing ‘true’ M from 0.18 to 0.23 and decreasing ‘true’ h from 0.8 to 0.65 (c.f. Fig. 3) in the simulation model.   



2.3.1 Age-structured simulation
The basic population dynamic equations corresponding to the ASEM formulation (Section 2.1.1) are provided in Appendix A. Growth, maturation, natural mortality and the BH-SSR function were described by the stock parameters for silver kob (see Table 2). Stochastic variation in recruitment was introduced by treating recruitment as lognormally distributed variable with the expected annual means derived from the BH-SSR function and a log-recruitment standard deviation of  = 0.6. The unfished mean recruitment R0 was set to 1.5 so as to attain SB0 that was similar to our worked example. Compared to the real-world dynamics of the South African silver kob fishery, the simulation experiment is idealized and simplified to: (1) facilitate adequate convergence of the ASPMs; (2) comparability with previous performance evaluations using this framework (Thorson et al., n.d.; Thorson and Cope, 2015; Thorson and Kristensen, 2016); and (3) to preclude other confounding factors that may not necessarily be attributed to structural differences among the EMs. A simulation horizon of 40 years was adopted (Fig. A1) under the assumption that both catch and abundance indices for a single fishery over this time period were available as input into the EMs (c.f. Thorson et al., in press). A sharp change in length-at-50%-selectivity from 300 mm FL to 500 mm FL was introduced after 25 years to recreate the change in minimum size regulations and provide contrast between the unobservable, latent SBy and EBy, with the latter being proportional to the observed abundance index. This increases the age-at-50%-selectivity by approximately 2 years and effectively results in a 21% increase of in MSY. The observed abundance index was generated as the product of EBy and a constant catchability coefficient (q = 0.05) with an associated constant lognormal observation error of  = 0.2 (Eq. A9). 
 
We used the effort-dynamics model by (Thorson et al., 2013) to generate unique stochastic realizations of fishing mortality trajectories that determine the population dynamics and resultant catch data. Accordingly, the instantaneous rate of fishing mortality (Fy) for year y was randomly generated based on a Markovian process:

						(17)

where  determines the initial fishing mortality at the start of the time series,  the rate of increase in Fy,  introduces process noise around the underlying trend and  determines the spawning biomass depletion level to a ‘bioeconomic’ equilibrium around which that is approached by Fy (see Thorson et al. 2013 for further details).  We conditioned the simulation model so that stock biomass decreased to low levels ranging between 5% and 20%. At these biomass levels varying strength of recovery signals (flat to increase) were observed following the increase in size-at-selectivity from year 26 onwards (Fig. A1). This was achieved by setting F1 = 0.01,  = 0.14,  = 0.17 and . 

2.3.2 Surplus production estimation models
JABBA-Select and the JABBA-Schaefer model were fitted to the simulated abundance index Iy, and annual catch Cy (in weight) time series, where Cy was assumed to be known without error. Both Iy and Cy were split into Iy,1 and Cy,1 for the early years 1-25 and Iy,2 and Cy,2 for the recent years 26-40. For JABBA-Select, the early and recent time series were assigned to selectivity s  = 1 (ls = 300 mm)  and s  = 2 (ls = 500 mm),  respectively. As in our case study, a common q and  was estimated for the combined time series 1-40. The fixed observation error was set to  = 0.1 to mimic a constant  = 0.1 for the input time series.  The priors were those used in our case study (Table 3), except that the CV on of for SB0 prior was doubled (CV = 200%). For the Schaefer model, we introduced a so called “change-point” in catchability (Carvalho et al., 2014) by estimating a new qi,s for the recent years (2003-2015) of each abundance index. This approach is considered to account for events that are likely to cause changes in catchability, including changes in selectivity (Winker et al., 2018). Process and observation variance were treated the same as for JABBA-Select. A key difference to JABBA-Select relates to the prior formulation for the Schaefer production function of the form:

										(18)

where r is the intrinsic rate of population increase, B is the inseparably stock biomass (equivalent to SB) and K the unfished biomass at equilibrium (equivalent to SB0). The Schaefer production function produces MSY at K/2, which corresponds to the equivalent of SB0/2 for m  =  2 in the JABBA-Select model. To develop an informative prior for r, we applied the widely used Leslie matrix Monte-Carlo simulation approach by McAllister et al. (2001), using the same input parameters and uncertainties about M and h as for ASEM, but ignoring selectivity (Appendix B).  

2.3.3 ASPM estimation models
The two ASPMs were structurally identical to the simulation model, except that the deterministic ASPM predicts recruitment as the expected mean from the Beverton and Holt SSR function. The ASPMs were fitted to the simulated abundance index Iy, and annual catch Cy (in weight) time series, were Cy was assumed to be approximately known without error. For the reference case, we assumed perfect knowledge of parameters, except for the four estimable parameters q, M, R0 and an estimable variance component  , given a fixed input of = 0.1. To improve comparability, we imposed the same gamma distribution on M as for the ASEM Monte-Carlo simulation (Fig. 3). Similarly, we imposed the same vaguely informative prior that we used for two JABBA models (Table 3).  However, we resolved to fix steepness h to its ‘true’ value in the ASPMs after initially attempts to estimate both h and M simultaneously had caused convergence issues.ASPM parameters were estimated with Template Model Builder (TMB; Thorson and Kristensen, 2016) in the R package CCSRA (Thorson and Cope, 2015). The recruitment variation was estimated as random effect using the epsilon bias-correction estimator (Thorson et al., in press; Thorson and Kristensen, 2016).
 
2.3.4 Performance metrics
For the JABBA-Select and the JABBA-Schaefer models, convergence of the posterior distribution was monitored by recording if all estimable parameters had past the Heidelberger and Welch diagnostic test (Heidelberger and Welch, 1992) and the Geweke convergence test (Geweke, 1992).  Convergence was consistently achieved by running three parallel Markov chains, each with 10,000 iterations, of which every second was saved, and a burn-in period of 4000 iterations per chain. . For the ASPMs, we recorded models as converged if the hessian matrix was positive definite and the gradient of the marginal likelihood was within  0.0001 for each estimated fixed effect (Thorson et al., in press). For the performance evaluation, only simulation runs where all models achieved convergence were included until 100 successfully converged runs were achieved. 

For each converged simulation run, we recorded the errors in estimates relative to the ‘true’ value for SBy, SBy/SB0 and the reference points  and  for selectivity s = 1 and s = 2 (early and recent periods). The error   on the absolute estimates of  for EM j and replicate k was recorded as:

								(19)

whereas all other were recorded as relative errors, such that:

 										(20)

where  is the estimated quantity of interest and  is the corresponding ‘true’ value. The accuracy of the estimates compared to the ‘true’ values was evaluated using root-mean-squared error (RMSE).

To assess if the models accurately capture uncertainty, we also computed the ‘confidence interval coverage’, by calculating the proportion of iterations out of 100 where the true value of a population parameter in the terminal year is within the 50%, 80% and 95% confidence intervals (Rudd and Thorson, 2017).

3. Results
3.1 Case study
For the case study, the model provided a fairly good fit to both abundance indices (Fig. 4c). Noticeable conflicts between the two abundance indices can be seen during the years 2000-2003, and during 2010-2015. Similarly, the estimated process error deviates were relatively stationary until 2003, when they started showing a systematic negative trend, which further strengthened from 2010 through 2015 (Fig 4d). This trend coincided with a simultaneous decrease in both total landings (4a) and the abundance index (4b) over this period. Deterministically, biomass is expected increase as a result of the substantial decrease in catches. However, the information in abundance indices show no evidence for a positive response to the decrease the continuous decrease in catch and harvest rates relative to HMSY (Fig. 4e), which appears to be partially compensated for by the observation variance (Fig. 4c), but mostly by the process error (Fig. 4d). As a result, the silver kob stock is predicted to have remained in collapsed state (SB/SB40< 0.5). 

A comparison of prior and marginal posterior distributions showed notable updates of the posteriors for , ,  and the initial depletion scaling parameter  (Fig. 5). The small posterior to prior variance ration (PPVR) for   suggests that the estimated   posterior is largely informed by the data. By contrast, the data holds relative low information about  and   as judged by the high PPVR (>0.9), suggesting that prior is informative about stock’s productivity. The shift in central tendency towards lower productivity (low and high ) is therefore likely a result of the interaction of the priors  and history catch history in relation to the fitted abundance indices. We suspect the inference about the stock status particularly relies on the correctly specified prior on  for the initial spawning biomass depletion level at the start of the catch time series.     

3.2. Simulation-estimation experiment
A total of simulation 115 simulation runs were conducted to achieve 100 replicates for which all four EMs converged. The limiting models in this regards were the two ASPMs, with convergence rates of 95% for deterministic ASPM and 90% for the stochastic ASPM. In all cases both models failed to converge for different replicates. For the sensitivity analysis with the mis-specified M and h in age-structured simulations model, convergence of the stochastic ASPM decreased to < 80% of runs, whereas the deterministic maintained a convergence rate of 95%.  

The predicted spawning biomass trajectories and associated confidence intervals differed notably among models (Fig. 6). The Schaefer model performed poorly in predicting SBy/SB0 and SBy of the age-structured stock. This is confirmed by the strong systematic pattern observed in annual errors between predicted biomass and ‘true’ SBy values (Fig. 7). The increasing trend in errors up to simulation year 25 indicated that re-estimating q for the recent period was insufficient to compensate for the selectivity induced bias. By comparison, it was possible to recover SBy/SB0 and SBy relatively accurately with JABBA-Select (Fig. 7). Based on the RMSE values, the correctly specified deterministic ASPM was the most accurate in predicting SBy/SB0, however it performed notably poorer when compared to JABBA-Select and stochastic ASPM when estimating the absolute quantities of SBy. The stochastic ASPM indicated a positive bias on both SBy/SB0 and SBy, which were less accurately estimated than those in JABBA-Select (Fig. 7). For all models, annual RMSE of SBy/SB0 increased noticeably during the simulation years 18-26, coinciding with the induced selectivity change after year 25 (Fig. 8). The predictions of SBy/SB0 for the terminal assessment year were equally accurate with JABBA-Select and the deterministic ASPM, whereas the Schaefer model produced an RMSE value almost five times higher for the terminal year. 

Annual RMSE of SBy estimates from JABBA-Select showed no systematic pattern and were mostly the lowest of all models, except for overlaps at the start and end of the time series with the stochastic ASPM (Fig. 8). The stochastic ASPM produced the most accurate selectivity-specific estimates of  and  . The deterministic ASPM estimated   less accurately but performed similarly well for . JABBA-Select estimates of  were more accurate than for the deterministic ASPM, but the  estimates showed a small, but noticeable negative bias. The estimates of and    from the Schaefer model showed a strong positive bias and were associated with the highest RMSE values of all EMs. 

The sensitivity analysis results for SBy and SBy/SB0 were similar in terms of model performance when compared to the correctly specified simulation experiment (Fig. A2). The only notable differences were the relatively improved accuracy of SBy and SBy/SB0 for the Schaefer and a positive bias on SBy for the deterministic ASPM (Fig. A2). By comparison, mis-specifying M and h revealed stronger contrasts for  and . JABBA-Select was the only EM that produced unbiased estimates of  , while the estimates from the two ASPMs were negatively biased. The two ASPMs also showed notable decrease in the accuracy of  compared to correctly specified simulation experiment (Fig. A3).

The confidence interval coverage (CIC) of the SBy=40 and SBy=40/SB0 for the final assessment year were generally higher for JABBA-Select (Table 4). The stochastic ASPM and the Schaefer model performed reasonable well in comparison to the poor confidence interval coverage of the deterministic ASPM. The CIC of the deterministic worsened further when M and h were mis-specified in the sensitivity analysis (Table 4b).  

4. Discussion
We have introduced JABBA-Select as a novel Bayesian modelling approach to account for changes in selectivity and relative mortality from multiple fisheries in surplus production models. By way of simulation testing, we have demonstrated that JABBA-Select performs well in predicting spawning biomass and the stock’s productivity in situations where a conventional Schaefer model failed.  When compared to the deterministic and stochastic ASPMs, JABBA-Select captured the uncertainty for the stock status estimates most accurately and was less sensitivity to mis-specifications of key input parameters in our data-moderate simulation experiments. 

The real-world application to the South African silver kob data highlighted a number challenges that are commonly encountered in often disparate data-moderate assessment applications. Among those were incomplete historical catch time series and conflicts among trends in catches, observed abundance indices and the model-predicted population dynamics. The absence of historical catch data requires the strong assumptions of the initial biomass levels at the start of the time series, which can strongly influence the assessment outcome. Systematic misfit to data or conflict between data within an assessment model should be considered as a diagnostic of model misspecification (Carvalho et al., 2017).  The model fits and the JABBA residual plot indicated that the model fit the silver kob abundance indices reasonably well, but the systematic trend in the process error deviates indicates a conflict between data and model assumptions. Possible reasons for this are systematic trends in under reporting of catches, unreliable abundance, mis-specified model parameters or natural stochasticity. These results also emphasizes that goodness of fit alone may provide little inference about the prediction ability of the assessment model, which would be a prerequisite for robust projections under alternative quota or effort limits. Evaluating this further would require additional diagnostic approaches. For example, recent stock assessments conducted with JABBA routinely applied retrospective analysis (Cadigan and Farrell, 2005) to evaluate the reliability of parameter and reference point estimates (ICCAT, 2018a; Winker et al., 2018). To compare the predictive ability of alternative model specification the hindcasting casting cross-validation by Kell et al. (2016) was applied in the recent JABBA assessment of Atlantic bigeye tuna (Thunnus obesus) (ICCAT, 2018b). Due to the similarity in the modular coding structure between JABBA and JABBA-Select, we suggest that these can be readily implemented with JABBA-Select.

As a novel feature, JABBA-Select summarizes the common input parameters for age-structured models via the ASEM into the productivity parameter HMSY and the shape parameter m.  We have shown that the so derived three-parameter surplus production function closely approximates its equivalent in an age-structured model, which requires a minimum of ten input parameters. In its essence, our approach reduces several correlated stock parameters into two dimensions (though not uncorrelated), where the first component is HMSY and the second is m. In JABBA-Select, the underlying correlation structure between HMSY and m is accounted by the formulation of multivariate normal (MVN) prior, which allows estimating both parameters jointly within the model. The idea of developing a joint prior to estimate productivity and shape of the surplus production function is not new (McAllister et al., 2000). As part of a Bayesian surplus production model application to North Atlantic swordfish (Xaphias gladius), McAllister et al. (2000) proposed a Monte-Carlo simulation approach for developing a joint MVN prior for r and m, which involves generating random deviates of r and generation times T from a Leslie matrix model (Appendix B), and then predicting m from an empirical relationship between log(rT) and B/K (Fowler, 1998). There are two key differences between our ASEM approach and that proposed by McAllister et al. (2000): (i) our ASEM incorporates the effect of selectivity on surplus production curve, and (ii) the parameter m is directly derived from the ASEM output of SBMSY/SB0, which omits the need of an empirical relationship.   

Like most age-structured stock assessments, JABBA-Select relies on externally estimated parameters describing growth, maturity, natural mortality and the spawning- recruitment relationship of the stock. In age-structured models, misspecification of  one or several parameters can introduce severe bias in the stock status estimates or cause data conflict between abundance indices and size data (Henrıiquez et al., 2016; Mangel et al., 2013; Minte-Vera et al., 2017). In this study, we have exclusively focused on incorporating the uncertainty of M and h into informative joint prior of JABBA-Select parameters HMSY and m. However, this simplification should not preclude extending ASEM to incorporate uncertainty about growth, maturation and longevity. For example, integrated analysis of  all life history parameters from FishBase (www.fishbase.org) and spawning-recruitment data series from the RAM Legacy Database (Ricard et al., 2012) has produced a promising predictive modelling tool for objectively generating joint MVN prior distributions of all key input parameters for the ASEM, using the R package FishLife 2.0 (Thorson, in press). Such approach could enable JABBA-Select to further relax common ASPM assumptions that most of the (if not all) input parameters describing growth, maturity, natural mortality and the spawning- recruitment relationship are known without error.  

An advantage of JABBA-Select compared to conventional SPMs is that the separation of exploitable biomass and spawning biomass, which also enables direct comparisons to the biomass estimates from age-structured models. The simulation results indicate that approximating the relationship between exploitable biomass and spawning biomass can accommodate moderate changes in selectivity, which can be caused, for example, by changes in fisheries target species, gear modifications (e.g. mesh sizes), and the introduction of new fishing methods. Conventional SPM formulations imply that the modelled biomass By represents the exploitable part of biomass, which can be conceptually calculated as catch/harvest rates (Pedersen and Berg, 2017). Absolute estimates of SBy are therefore only comparable when the fishery selectivity curve is similar maturity to the maturity ogive, so that EBy ~ SBy. A common thought is that differences between EBy and SBy are less problematic when comparing relative biomass estimates such as By/B0 or BMSY/B0. However, our simulation results suggest that changes in fisheries selectivity can cause severe bias in relative biomass estimates, which could not be accounted for by introducing a change-point in catchability to re-scale the abundance index to By. Pederson and Berg (2017) also pointed out the implications of fitting indices from scientific surveys, when fishery and survey selectivity differ. In such case, they recommend including fish that are also targeted by the fishery in the survey index calculations. In JABBA-Select this can be achieved by simply assign different selectivity functions to the surveys and catch indices, while setting the corresponding survey catch to zero. One caveat is that, in JABBA-Select, the relationship between EBy and SBy, which is estimated externally, is not updated by the data. 

Apart from incorrect assumptions about the selectivity, we initially anticipated that our external approximation approach would be sensitive to mis-specifications of M, which appears to be causing the increasing divergence between EBy and SBy at lower biomass levels. Yet, the accuracy of the SBy and SBy/SB0 estimates appeared to be hardly affected by the mis-specified M value in sensitivity experiment. The recent development of length-based per-recruit models, such as LBB (Froese et al., 2018) and LBSPR (Hordyk et al., 2015, 2016), could be used to improve reliability of estimated selectivity parameters from available length data. However, estimation of selection curves remains a major challenge, which also applies to fitting integrated stock assessment models, where selectivity confounded with recruitment, natural mortality and growth and can be affected by changes in availability and non-random sampling, which can all lead to biased assessment results (Carruthers et al., 2017; Minte-Vera et al., 2017)  . In particular, the presence of dome-shape selectivity patterns can have strong implication for the stock’s productivity and the shape of the surplus production curve (Wang et al., 2014). 

The number of age-structured stock assessments for data-moderate situations  has been continuous increasing over the last three decades (Thorson et al., in press), with stock synthesis having taken a leading in this development in recent years (Dichmont et al., 2016; Methot and Wetzel, 2013). On the other hand, SPMs persist as an assessment tool for more data disparate coastal fisheries and within their traditional realm of large pelagic tuna and billfishes and shark assessments (Carvalho et al., 2014; Punt et al., 2015; Winker et al., 2018) As a result of these developments, both models are increasingly run in parallel during stock assessments, in particular, in those conducted by tuna Regional Management Organizations. However, the choice of parameterization for the two different model types may not always be compatible, which can violate the validity model comparison and consequently inference about the stock status. Maunder (2003) highlighted issue by pointing out that the Schaefer model, in predicting MSY at 50% unfished biomass, rarely matches the typical range of steepness values of h = 0.6 – 0.95 considered in age-structured  assessments for most tuna and billfishes, which would imply MSY at biomass depletion levels that are notably below 50%. In unifying the parameterization between age-structured and surplus production models, we suggest that JABBA-Select not only provides a robust tool for data-moderate stock assessments, but also an important link to facilitate adequate comparisons between results from age-structured and surplus production models.
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Table 1. List and description of symbols used throughout the main text body of this study
	Symbols
	Description

	y
	subscript for year

	a
	subscript for age

	s
	subscript for fishing selectivity

	i
	subscript for abundance indices 

	k
	subscript of simulation permutations

	SB0
	unfishing spawning biomass

	SBy
	spawning biomas

	Py
	ratio of SBy / SB0

	EBy,s
	Exploitable biomass 

	Cy,s
	Catch 

	
	Instantaneous rate of fishing mortality 

	,
	Harvest rate, here: Hy,s = Cy,s / SBy

	MSYs
	Maximum Yield Yield

	 
	Spawning biomas that produces MSY

	 
	Harvest rate at MSY 

	
	Inflection point of the JABBA-Select surplus production function

	m
	shape parameter of the surplus production function

	r
	Intrinsic rate of population increase

	φ
	Initial depletion of SB1/SB0

	M
	Natural mortality

	h
	steepness of the Beverton and Holt Spawner recruitment relationship

	qi
	Catchabilitiy coefficient

	F
	instantaneous rate of fishing mortality

	Ii,s
	Abundance index 

	 
	process variance

	
	observation variance

	 
	Yield at 0.4 SB/SB0

	 
	Spawning biomass at 0.4 SB/SB0

	 
	Harvest rate at MSYat 0.4 SB/SB0

	υ1-5s
	Parameter describing the EBP/SBP at equilibrium

	La
	Length-at-age

	L∞, , t0
	Parameters of the Von Bertalanffy Growth Function (VBGF)

	sa,s
	Selectivity-at-age

	sL50,s
	Length-at-50%-selectivity

	δSL50,s
	Steepness of the length-at-selectivity function

	, 
	weight-length parameters

	wa
	weight-at-age

	amat
	age-at-maturity (assumed knife-edge) 

	ψa
	maturity-at-age

	amin
	minimum age considered in assessment

	amax
	maximum age or Plus group (optional) 



Table 2. Summary of life history parameters for silver kob and carpenter used as input for the ASEM to generate priors for JABBA  The following subscripts denotes the three different logistic selectivity function: s1 = linefishery (1987-2002) and s2 = linfishery (2003 -2015)  and  s3  = inshore trawl fishery (1987-2015)
	Parameter
	Silver kob
	Sources

	L∞
	1372
	Griffiths (1997)

	κ
	0.115
	Griffiths (1997)

	a0
	-0.815
	Griffiths (1997)

	a
	0.000006
	Griffiths (1997)

	b
	3.07
	Griffiths (1997)

	amat
	3
	Griffiths (1997)

	amax
	25
	Griffiths (1997)

	M
	0.18
	Winker et al. (2014b)

	h
	0.8
	Winker et al. (2014b)

	amin
	0
	minimum age

	amax
	20
	assumed maximum age

	sL,s=1
	400
	Winker et al. (2014b)

	s=1
	5
	Winker et al. (2014b)

	sL,S=2
	500
	Winker et al. (2014b)

	S=2
	5
	Winker et al. (2014b)

	sL,s=3
	334
	Winker et al. (2014b)

	s=3
	11
	Winker et al. (2014b)




Table 3. Prior specifications used for worked example of silver kob, summarized by their means () and coefficients of variation (CV in %).
	Parameter
	Distribution
	
	CV
	Input

	SB0
	log-normal
	35000
	100%
	Prior

	q
	Uniform
	 
	Prior

	φ = SBy=1/SB0 
	Beta
	0.1
	35%
	Prior

	
	inverse-gamma
	1/gamma(0.001,0.001)
	Prior

	
	inverse-gamma
	1/gamma(0.001,0.001)
	Prior

	h 
	Beta
	0.8
	10%
	ASEM input

	M
	log-normal
	0.18
	25%
	ASEM input






Table 5. Confidence interval coverage (CIC) denoting the proportion of iterations where the ‘true’ values SBy=40 and SBy=40/SB0 for the final assessment year (y = 40) fell within the predicted 50%, 80% and 95% confidence interval (CI) showing the results from a Schaefer model, JABBA-Select, a deterministic age-structured surplus production model (ASPM-det) and stochastic age-structured model (ASPM-stoch) for (a) the correctly specified reference case and (b) the sensitivity analysis with mis-specified values of natural mortality M and steepness h.
	 
	SBy=40
	SBy=40/SB0 

	(a)
	50%
	80%
	95%
	50%
	80%
	95%

	Schaefer
	0.5
	0.73
	0.91
	0.2
	0.48
	0.73

	JABBA-Select
	0.42
	0.71
	0.92
	0.54
	0.77
	0.94

	ASPM-det
	0.09
	0.17
	0.25
	0.12
	0.25
	0.37

	ASPM-stoch
	0.35
	0.63
	0.84
	0.39
	0.73
	0.86

	(b)
	50%
	80%
	95%
	50%
	80%
	95%

	Schaefer
	0.25
	0.53
	0.76
	0.53
	0.81
	0.9

	JABBA-Select
	0.4
	0.71
	0.9
	0.41
	0.67
	0.88

	ASPM-det
	0.05
	0.16
	0.29
	0.03
	0.09
	0.19

	ASPM-stoch
	0.35
	0.62
	0.82
	0.3
	0.54
	0.69


 






[image: C:\Work\Research\MS_JABBA_SELECT\ConceptFig\Fig1.png]
Fig. 1. Illustration of the four novel elements of JABBA-Select based on the stock parameters for silver kob: (a) Comparison of the functional forms of the yield curves produced from the Age-Structured Equilibrium Model (ASEM) with the approximation by the JABBA-Select surplus production function (Eq. 1) as function spawning biomass depletion SB / SB0, using the life history parameter input values and a range of length-at-50%-selectivity values; (b) JABBA-Select model estimates  of time-varying productivity parameters of  (Eq. 9), (c) ASEM-derived selectivity-dependent distortion in the exploitable biomass (EB) relative to the spawning biomass (SB) over a wide a range of SB / SB0 iterations, which were fitted by Eq. 10, , with the dashed line denoting the increase in minimum size limit for line-caught silver kob and the remainder of variations attributed to variations in the relative catch contribution the of inshore trawl; and (d) Multivariate normal (MVN) approximation of  and log( random deviates generated from the ASEM via Monte-Carlo simulations (Eq. 11).

[image: ]
Fig. 2. Schematic of functional relationships between the productivity parameter r and the shape parameter of the surplus production function and the Age-Structured Equilibrium Model (ASEM; i.e. yield- and spawning biomass-per-recruit models with integrated spawner recruitment relationship). Numbers in boxes denote the sequence of deriving deviates of r and m from life history and selectivity parameter inputs into the ASEM.

 


[image: C:\Work\Research\StockAssessmentIWS2018\KOB\s1_JS\Input\PriorsInputKOB.S1.png]
Fig. 3. Showing the assumed distributions for natural mortality M (gamma) and steepness h (beta) deviates used as input for the ASEM to derive an informative Multivariate normal (MVN) priors for silver kob (top panel), resulting distributions of simulated deviates of   for fishery f  = 1 and selectivity s = 1 and  and corresponding MVN approximations (middle panel) and ASEM-generated distributions of HMSY ratios for recent linefishery selectivity s =2 (2004-2015) and inshore trawl selectivity s = 3 to reference selectivity s = 1 for early linefishery (1987-2003), which are approximated by a gamma prior.   


[image: C:\Work\Research\StockAssessmentIWS2018\KOB\MS_JS\Output\Summary_KOB_MS.png]
Fig. 4. JABBA-Select results for silver kob case-study, showing (a) Cumulative catch time series of the inshore and handline fishery (1987-2015), (b) fits to two standardized abundance indices split into two periods with different selectivity, (c) JABBA residual plot boxplots of combined color-coded residual and a loess smoother fitted through all residual (black line), (d) process error deviates on log-scale; and predicted trajectories of (e)  and (f) .

[image: C:\Work\Research\StockAssessmentIWS2018\KOB\MS_JS\Output\Posteriors_KOB.S1.png]
Fig. 5. Posterior and prior distributions for all parameters estimated by JABBA-Select model fitted to catch and abundance data for silver kob. PPRM: Posterior to Prior Ratio of Means; PPRV: Posterior to Prior Ratio of Variances (CV2).
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Fig. 6. Simulated ‘true’ trajectories of spawning biomass and estimated spawning biomass (SBy) and associated 95% Confindence Intervals from four alternative estimations models for the first 4 of 100 simulation replicates, where “-det” and “-stoch” denote the determinsitc and stochastic version of the age-structured production model (ASPMs), respectively.    
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Fig. 7. Boxplots showing errors in estimated ratios of spawninig biomass (SB) to unfished spawining biomass (SB0) and absolute quantaties of SB with respect the ‘true’ values for a Schaefer surplus production model (Schaefer), JABBA-Select,  a determinitic age-structured production model (ASPM_det) and a stochastic age-structured production model (ASPM_stoch) based on 100 simulation replicates. Root-Mean-Squared-Error (RMSE), representative of the 40 years simulation period, are displayed in the bottom right corner of each plot.   

[image: C:\Work\Research\MS_JABBA_SELECT\Simulations\TMB_sim\KobSim2\RSME.png]
Fig. 7. Trends in annual Root-Squared-Mean-Error (Top Panel) and boxplots showing the estimated stock reference points  (middle panel) and  (bottom panel) for selectivity s=1 (sL50 =300 mm) and s = 2 (sL50 = 500 mm) in comparison to the ‘true’ values (solid horizontal lines) for a Schaefer surplus production model (Schaefer), JABBA-Select (JABBA-S),  a  determinitic age-structured production model (ASPMd) and a stochastic age-structured production model (ASPMs) based on 100 simulation replicates. Root-Mean-Squared-Error (RMSE) are displayed in on each box for  and .   



Appendix A: 
Input parameter functions for length-, weight-, maturity- and selectivity-at-age  
Weight-at-age is described as function of the weight to length conversion parameters ω and δ and length-at-age, La, such that 

wa = ωLa δ											(A1) 

The corresponding La was calculated based on the Bertalanffy growth function parameters as:

									(A2)

where L∞ is the asymptotic length,  is the growth coefficient and a0 is the theoretical age at zero length. 

The fraction of mature females at age a was calculated as:

								(A3)				
where  is the age-at-maturity assumed to be knife-edge.
. 
Selectivity-at-age for the fisheries operating with selectivity s,  was calculated as a function of length-at-age, La, using a two parameter logistic model of the form:

 										(A4)

is the length at which 50% of the catch is retained with selectivity s and δs is the inverse slope of the logistic ogive.



Age-structured dynamics 
 The age-structured simulation and estimation models were formulated building on the age-structured simulation-estimation framework employed in previous studies (Thorson and Cope, 2015). Numbers-at-age  a and year y, Na,y, are governed by:

						(A5)

where Ry is recruitment in year y, sa,s is fishery selectivity at age under selectivity regime s, M is the instantaneous rate of natural mortality, and Fy in year y.  
Spawning biomass SBy is expressed as:   

										(A6)

where  is the weight at age,  is the proportion of mature fish in the population. 

Stochastic recruitment is introduced as a lognormally distributed random variable with the expected mean derived from the Beverton-Holt SSR function:

	(A7)

where R0 is the unfished average recruitment and  is the variance is recruitment.
  
To initiate the age structure in the first year of the available catch time series, it is assumed that the stock is in an unfished stated, so that Na,y=1 can be approximated by a stochastic age-structured as result of recruitment variation in previous years: 

 	(A8)

Catch-at-age ca,t (in numbers) was calculated from the Baranov catch equation:

	(A9)

and total yield  (in weight) in year y the summed product of catch at age and weight at age, such that:

	(A10) 

The abundance index Iy (CPUE) for year y was assumed to be proportional to the exploitable portion of the biomass (EBy) and associated with a lognormally distributed observation error : 

								(A11)

where q is the catchability coefficient and EBy is a function of selectivity-at-age, such that:

 .									(A12)
[image: C:\Work\Research\MS_JABBA_SELECT\Simulations\TMB_sim\KobSim2\SIMs.png]
Fig. A1. Simulated trajectories of SBy/SB0, normalized relative abundance indices (CPUE), recruitment deviates and fishing mortality F for the first 20 simulation replicates of reference case simulation experiment.
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Fig. A2 Sensitivity analysis results showing boxplots of errors in estimated ratios of spawninig biomass (SB) to unfished spawining biomass (SB0) and absolute quantaties of SB with respect the ‘true’ values for a Schaefer surplus production model (Schaefer), JABBA-Select,  a determinitic age-structured production model (ASPM_det) and a stochastic age-structured production model (ASPM_stoch) based on 100 simulation replicates. Root-Mean-Squared-Error (RMSE), representative of the 40 years simulation period, are displayed in the bottom right corner of each plot.   
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Fig. A2 Sensitivity analysis results showing trends in annual Root-Squared-Mean-Error (Top Panel) and boxplots showing the estimated stock reference points  (middle panel) and  (bottom panel) for selectivity s=1 (sL50 =300 mm) and s = 2 (sL50 = 500 mm) in comparison to the ‘true’ values (solid horizontal lines) for a Schaefer surplus production model (Schaefer), JABBA-Select (JABBA-S),  a  determinitic age-structured production model (ASPMd) and a stochastic age-structured production model (ASPMs) based on 100 simulation replicates. Root-Mean-Squared-Error (RMSE) are displayed in on each box for  and .   

Appendix B
Informative r prior generation for the JABBA-Schaefer estimation model 

To specify a prior distribution for the intrinsic rate of increase parameter r, we adapted the Leslie matrix method by McAllister et al. (2001). Based on this approach, demographic information was used to construct an age-structured Leslie matrix of the form (Caswell, 2001):

									(B1)


where is the average number of recruits expected to be produced by an adult female at age a and  is the fraction of survivors at age, with A donating the maximum age amax. The value of r is obtained from = exp(r), where  is the dominant eigenvalue of (Quinn and Deriso, 1999; Caswell, 2001). 

Age-dependent survival calculated as Sa = exp(-M), where M is the instantaneous rate of natural mortality. The average number of recruits expected to be produced by an adult female at age t is expressed as:

											(B2)

where  denotes the slope of the origin of the spawner-recruitment relationship (i.e. the ratio of recruits to spawner biomass at very low abundance) (Hilborn and Walters, 1992; Myers et al., 1999; Forrest et al., 2012),  is the weight at age a, is the fraction of females that are mature at age a (see Eqs. A1-A3 in Appendix A).  For the calculation of the annual reproductive rate a first consider the BH-SSR of the form:

											(B3)




where R is the number of recruits, S is the spawner biomass and  is the scaling parameter (Hilborn and Walters, 1992). In contrast to alternative formulations of the BH-SSR, the parameter  can be directly interpreted as the slope in the origin of the S-R curve (Hilborn and Walters, 1992). We re-parameterized as function of unfished spawner-biomass per recruit  (Eq. 4) and the steepness parameter h of the spawner-recruitment relationship (Myers et al., 1999), such that:

											(B4)


We used Monte-Carlo simulations to randomly generate 1000 permutations of randomly generate deviates k of  from a lognormal distribution and  from a beta distribution and used those as input into the Leslie-matrix model, together with the other life history parameters in Table 3. The informative lognormal prior for r for the JABBA-Schaefer model was then obtained by taken the mean (log(0.284)) and sd (0.281) of the simulated log(rk) deviates (Fig. 1b).  
[image: C:\Work\Research\MS_JABBA_SELECT\MS\rprior.png]
Fig. B1. Generated lognormal prior for r (mean = log(0.284), sd = 0.281), assumed for the Schaefer estimation model implemented with JABBA. 
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