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Response to MARAM/IWS/2019/PENG/P6 

D.S. Butterworth and A. Ross-Gillespie1 

Summary 

This document2 first corrects some misleading results in PENG/5 through specifying the 

Operating Models OMs more correctly by including process error explicitly. Results from these 

revised OMs provide resolution of the “self-test” concerns raised in PENG/P6. However, the 

negative bias in estimates of the precision of the effect of fishing parameter δ remain unless the 

magnitude of process error is minimal compared to observation error. Since earlier analyses 

have indicated that process error dominates observation error in the island closure experiment 

penguin response data, the possibility remains of large negative bias in the estimates of 

precision from Sherley et al. models of the effect of fishing parameter based on the use of 

individual data. Ultimately only simulation tests will reveal definitively whether or not these 

random effects approaches do improve estimation precision, and it is pleasing to note that the 

authors of PENG/P6 are now engaged in pursuing such tests. 

Introduction 

Before responding to the details of MARAM/IWS/2019/PENG/P6, we must apologise for a glitch in our 

bias computations for the closure experiment analysis standard error estimators, though this does bring 

the advantage of resolving one of the queries raised in PENG/P6 (as elaborated below). 

This glitch is most easily explained by reference to the update of the original PENG/P5 Appendix, which 

appears below. Focus for the moment on OM2 and OM4: OM2 is mis-subscripted. The 𝑏𝑦 term needs both 

a deterministic and a process error component, and OM2 showed this as if it were deterministic only. For 

background, note that the combination 𝑎𝑖 + 𝑏𝑦 reflects the basic assumption underlying the island closure 

experiment: that because the pair of islands3 considered is relatively close, penguins will be responding 

to a common density of forage fish b (though this will vary with year y). There will though be a constant 

multiplicative difference (in F - the model reflects the log of the penguin response variable) between the 

islands, for which account is made by the 𝑎𝑖 term. However, this deterministic prescription omits a 

stochastic process error term (𝜂) to allow for variation about this deterministic description. 

OM4 indicates the process error component (𝜂) explicitly, by showing it separately from by. The results 

reported PENG/5 corresponded in fact to OM4, rather than OM2, and for an extreme case of the process 

error component only, i.e. 𝜎𝑏  = 0 and 𝜎𝜂 equal to the value specified in the document PENG/P5 for 𝜎𝑏.  

Table 1 lists a set of runs that have now been conducted based on the corrected versions of OM1 and OM2: 

OM3 and OM4 respectively – see the Appendix below, which also adds EM D to the estimation models, this 

being a fixed effect equivalent of EM A which is based on input of individual penguin data. The basic 

specifications are as for Run 5 of PENG/P5, though now including also the option for different choices of 

the 𝜎𝜂 parameter (though subject to adjusting other variance parameters to maintain a fixed 𝜎𝐹). 

  

                                                                 
1 Marine Resource Assessment and Management Group, Department of Mathematics and Applied Mathematics, 

University of Cape Town, Rondebosch, 7701. 
2 Note that this document is a revision of MARAM/IWS/2019/PENG/P7, correcting a typo in the EMD description in the 

Appendix. 
3 There are two pairs of islands in the experiment: Dassen and Robben on the west coast, and Bird and St Croix on the 

south coast. 
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Results  

Results for the Runs specified in Table 1 are reported in Figure 1 (for OM4), and Figure 2 (comparing OM3 

and OM4 outputs), in similar fashion to the corresponding Tables in PENG/P5, so that the basics of this 

form of presentation, which is explained in PENG/P5, will not be repeated here. Instead we focus on a 

summary of the key results. 

• For what is now the OM4-EMA combination (in place of the OM2-EMA combination whose results 

were queried in PENG/P6), there is no bias in the estimation of 𝑆𝐸𝛿  for the case of (virtually) no 

process error (𝜎𝜂~0) – in the terms used by PENG/P6, EMA passes a “self-test” (see Figure 1B).  

 

• But the moment process error is introduced, with 𝜎𝜂 greater than zero, the bias returns, 

increasing as the proportional contribution of process error to the overall variance (of F) 

increases. 

 

• The true value of 𝑆𝐸𝛿  is effectively independent of the estimator used (EMA to EM D) for the same 

choices for other run parameters, i.e. independent of whether individual or annually averaged 

data are used, and of whether the year effect is treated as a fixed or random effect. Hence, as far 

as the true values of 𝑆𝐸𝛿  are concerned, estimation using the individual data seems to offer no 

benefit over using the annually averaged data. 

 

• The same is true for the estimated value of 𝑆𝐸𝛿 , except that results differ between the individual 

data (EMA and EMD) and annually averaged data (EMB and EMC) estimators. The former show 

negative bias, except in the limiting case of zero process error 𝜂; the latter do not show such bias. 

 

• As the annual sample size (N) increases, the true value of 𝑆𝐸𝛿  decreases, but only if the process 

error 𝜂 is low. For higher values of the process error, there is virtually no estimation advantage 

in increasing the size (N) of the annual sample from penguins. Basically, it is the size of the process 

error 𝜎𝜂 that becomes totally dominant in determining the true value of 𝑆𝐸𝛿 . For estimators based 

on annually averaged data, there is little bias in the estimate of 𝑆𝐸𝛿 , but for those based on 

individual data, the extent of the negative bias in the estimate increases with the annual sample 

size (N). 

 

• From the OM3 vs OM4 comparisons in Figure 2, again there is no bias in the 𝑆𝐸𝛿  estimates for the 

estimator based on annually averaged data. For individual data, the greater bias for the OM3 

model with non-independence in the response variable data is evident, as in PENG/P5, and the 

extent of the difference is greater as the annual sample size (N) increases, but reduces as the 

contribution of process error to the overall variance increases (essentially because process error 

swamps observation error effects, and the latter’s effects on differences in estimation precision 

between OM3 and OM4). 

Discussion 

Clearly, if individual data are to be considered in analyses (though the results above offer no indications 

of their leading to improvements in the precision with which δ can be estimated), what is central to 

whether there needs to be concern about negative bias in estimates of precision (𝑆𝐸𝛿) is the relative size 

of process error to observation error in each’s contributions to the overall variance of the response 

variable. 

Earlier evaluations (see sections 2 and 2rev of MARAM/IWS/DEC15/PengD/P2) indicated that for the 

island closure response variable data, observation error is low compared to process error, as noted by the 

International Review Panel in 2015. Indeed, the plots and tables in that reference suggest total dominance 

of process over observation error variance in these data. 
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Given this, taken together with the results shown in Figures 1B and 2 of this document, there has to be 

concern that there may be considerable negative bias is the estimates of 𝑆𝐸𝛿  reported for the analyses 

based on individual penguin data which have been reported in various Sherley et al. papers. The essence 

of this concern is that even if the approaches suggested by those authors may be able to extract further 

information from within-year samples to lessen the impact of observation error on the precision of 

results, it is the between-year information that relates to the dominant process error effects on precision, 

and the models advanced by Sherley et al. do not appear to address and improve those. In effect then, 

their use of individual data appears equivalent to pseudo-replication. 

Moving on to the specific criticisms of PENG/P6, their concerns about the “self-test” have been resolved. 

Certainly, our focus on estimation of standard error as the basis for comparison, rather than root-mean-

square-error, relies on lack of bias in the estimation of δ, but our testing design intended that in the 

interests of simplicity (and achieved it, as evidenced by the bias results for δ shown in Figures 1A and 2). 

Having demonstrated the bias that was the basis for our concern in this simpler situation, there seemed 

to be no compelling need to consider more complex situations to make our case.  

Use of random effects approaches in conjunction with individual data would certainly seem able to lessen 

the impacts of negative bias in the estimation of precision arising from non-independence of those 

individual data. But how would it be known by what proportion this negative bias would be reduced – 

this approach can account for known co-variates, but what about unknown co-variates for which no data 

are available to include such effects in the models? Indeed PENG/P6 seems at the start of its Discussion 

section to acknowledge that. However, this seems a secondary concern, given the potentially major impact 

of process error on individual data-based estimators that is indicated above. 

The criticism that PENG/P5 did not test the Sherley et al. estimators themselves has some justification. 

Our conclusions follow more from the inferences that we draw from our results above, which suggest that 

there is no information content in the data that could allow those models to achieve more precise 

estimation. 

However, we could be wrong in that respect. The ultimate test of an estimator is whether it performs 

adequately given simulated data (and indeed the results from complex estimators should not be accepted 

before simulation tests have confirmed such performance). This includes adequate performance – indeed 

better performance than demonstrated by EM A and EM D above - on data generated from OM3 and OM4. 

We are pleased to note that the authors of PENG/P6 are engaged in accepting this challenge.   
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Table 1: Summary of the specifications for the OM parameters used to generate data for the runs for which 
results are presented in this document. The table has been divided into two sections – the first for the 
OM4 results presented in Figure 1A and 1B, and the second for the OM3 specifications presented in 
Figure 2. Note that the OM4 results included in Figure 2 are the same as for Figure 1A and B. Grey 
highlighting has been used to indicate where key parameters are changed within each section or 
between sections. A dash indicates the parameter is not included in the OM in question. In the table 
below: 

M is the number of simulations conducted for each run, 
N is the number of penguins sampled each year at each island, 
𝑛𝑏 is the number of years considered for each run, 
𝑛𝑐 is the number of number of levels considered for the unknown covariate, 
a(1, 2) is a vector with the values assumed for the island effect 𝑎𝑖 for island i, 
𝛿 is the value of the closure effect, 
𝜎𝑏 is the standard deviation of the year effect, 
𝜎𝑐 is the standard deviation of the unknown covariate effect, 
𝜎𝜖 is the standard deviation of the observation error term for OM3  
𝜎𝜖2 is the standard error deviation of the observation error term for OM4, and 
𝜎𝜂 is the standard error deviation of the process error term for OM3 and OM4. 

OM M N 𝒏𝒃 𝒏𝒄 a(1, 2) 𝜹 𝝈𝒃 𝝈𝒄 𝝈𝝐 𝝈𝝐𝟐 𝝈𝜼 √𝝈𝝐𝟐
𝟐 + 𝝈𝜼

𝟐 

OM4 
(Figures 

1A and 1B) 

1000 10 30 - (0, 0.3) 0.1 0.2 - - 1 0.02 1.0002 

1000 10 30 - (0, 0.3) 0.1 0.2 - - 0.8663 0.5 1.0002 

1000 10 30 - (0, 0.3) 0.1 0.2 - - 0.5 0.8663 1.0002 

1000 10 30 - (0, 0.3) 0.1 0.2 - - 0.02 1 1.0002 

1000 30 30 - (0, 0.3) 0.1 0.2 - - 1 0.02 1.0002 

1000 30 30 - (0, 0.3) 0.1 0.2 - - 0.8663 0.5 1.0002 

1000 30 30 - (0, 0.3) 0.1 0.2 - - 0.5 0.8663 1.0002 

1000 30 30 - (0, 0.3) 0.1 0.2 - - 0.02 1 1.0002 

1000 200 30 - (0, 0.3) 0.1 0.2 - - 1 0.02 1.0002 

1000 200 30 - (0, 0.3) 0.1 0.2 - - 0.8663 0.5 1.0002 

1000 200 30 - (0, 0.3) 0.1 0.2 - - 0.5 0.8663 1.0002 

1000 200 30 - (0, 0.3) 0.1 0.2 - - 0.02 1 1.0002 

OM M N 𝒏𝒃 𝒏𝒄 a(1, 2) 𝜹 𝝈𝒃 𝝈𝒄 𝝈𝝐 𝝈𝝐𝟐 𝝈𝜼 √𝝈𝝐
𝟐 + 𝝈𝜼

𝟐 + 𝝈𝒄
𝟐 

OM3 
(Figure  2) 

1000 10 30 5 (0, 0.3) 0.1 0.2 1.00 0.02 - 0.02 1.0002 

1000 10 30 5 (0, 0.3) 0.1 0.2 0.8663 0.02 - 0.5 1.0002 

1000 10 30 5 (0, 0.3) 0.1 0.2 0.50 0.02 - 0.8663 1.0002 

1000 10 30 5 (0, 0.3) 0.1 0.2 0.00 0.02 - 1 1.0002 

1000 200 30 5 (0, 0.3) 0.1 0.2 1.00 0.02 - 0.02 1.0002 

1000 200 30 5 (0, 0.3) 0.1 0.2 0.8663 0.02 - 0.5 1.0002 

1000 200 30 5 (0, 0.3) 0.1 0.2 0.50 0.02 - 0.8663 1.0002 

1000 200 30 5 (0, 0.3) 0.1 0.2 0.00 0.02 - 1 1.0002 
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Figure 1A:  Estimates of the mean for the closure effect 𝜹 are shown for 1000 simulations of OM4 and the 
four EMs. In each case, results are shown for a range of four different values for each of the 
observation error 𝝐𝟐 (values indicated by blue text above the plots) and process error 𝜼 (values 
indicated by green text above the plots). Results are furthermore shown for a selection of three 
N values, where N is the number of penguins sampled each year: 𝑵 = 𝟏𝟎 (black leftmost points), 
𝑵 = 𝟑𝟎 (red centre points) and 𝑵 = 𝟐𝟎𝟎 (green rightmost points). The plots show the means 
and 95% confidence intervals4 for the means of 𝜹. The horizontal dashed line is at 0.1, the (true) 
value input for 𝜹 to generate the data – bias is indicated by a difference of the mean value plotted 
from this line.  

 

  

                                                                 
4 The 95% CI is taken to be +-1.96 standard error of the mean, which is calculated as the standard deviation 
divided by the number of simulations. 
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Figure 1B:  Values for 𝑺𝑬𝜹(true) are shown by the open circles (o) and the values for mean(𝑺𝑬𝜹) are shown 
by the crosses (x). 𝑺𝑬𝜹(true) is calculated as the standard deviation of the 𝜹 estimates across the 
1000 simulations, and has been used to calculate the 95% confidence intervals for the mean 𝜹 
estimate in Figure 1A. The statistic mean(𝑺𝑬𝜹) is calculated as the average across the 𝑺𝑬𝜹 values 
for the 1000 simulations. An “x” below an “o” indicates that the estimate of the standard error 
for that 𝜹 estimate is negatively biased. 
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Figure 2: Results are shown for data generated by OM3 and OM4, and Estimation models EMA and EMB. 
The top section (A) shows the estimates for the mean of 𝜹, while the bottom section (B) shows the 
estimates for 𝑺𝑬𝜹(true) and for mean(𝑺𝑬𝜹). Results are shown for the same range of observation 
and process errors as in Figures 1A and 1B, but only for 𝑵 = 𝟏𝟎 and 𝑵 = 𝟐𝟎𝟎. Note that the 
observation error Eps* for OM3 reflects the combination of c and 𝝐, but for OM4 this is simply 𝝐𝟐. 
Furthermore, for the last simulation (Eps*=0.02, Eta=1.0), 𝝈𝒄 is in fact zero for OM3 to keep the 
value of 𝝈𝝐 at 0.02 (see Table 1). 
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Appendix 

Simulation testing methodology 

The simulation test framework consists of four operating models (OMs) and four estimation models (EMs). The 

OMs are used to generate the pseudo data, to which the EMs are applied to evaluate their performance. 

Operating Models (OM) 

1. 𝐹𝑖,𝑦,𝑧,𝑗 = 𝑎𝑖 + 𝑏𝑦 + 𝑐𝑖,𝑦,𝑧 + 𝛿(𝑋𝑖,𝑦) + 𝜖𝑖,𝑦,𝑧,𝑗 

2. 𝐹𝑖,𝑦,𝑗 = 𝑎𝑖 + 𝑏𝑦 + 𝛿(𝑋𝑖,𝑦) + 𝜖2𝑖,𝑦,𝑗 

3. 𝐹𝑖,𝑦,𝑗 = 𝑎𝑖 + 𝑏𝑦 + 𝜂𝑖,𝑦 + 𝑐𝑖,𝑦,𝑧 + 𝛿(𝑋𝑖,𝑦) + 𝜖𝑖,𝑦,𝑧,𝑗 

4. 𝐹𝑖,𝑦,𝑗 = 𝑎𝑖 + 𝑏𝑦 + 𝜂𝑖,𝑦 + 𝛿(𝑋𝑖,𝑦) + 𝜖2𝑖,𝑦,𝑗 

where 

𝐹𝑖,𝑦,𝑧,𝑗 is the response variable for island i, year y, unknown covariate z and penguin j, 

𝑎𝑖 is the island effect for island i where i=1,2 (fixed effect), 

𝑏𝑦 is the year effect for year y where y=1, …, nb, and is assumed to be normally distributed with 
𝑏𝑦~𝑁(0, (𝜎𝑏)2), 

𝜂𝑖,𝑦 is an error term for island i and year y, representing process error, normally distributed 

𝜂𝑖,𝑦,𝑗~𝑁(0, (𝜎𝜂)
2

), 

𝑐𝑖,𝑦,𝑧 is an unknown/hidden covariate effect for island i , year y and covariate z (e.g. this could reflect 
different areas within the colony), and is assumed to be normally distributed with 
𝑐𝑖,𝑦,𝑧~𝑁(0, (𝜎𝑐)2), 

𝛿 is the closure effect, 

𝑋𝑖,𝑦 is a vector of 0’s and 1’s, with a 0 for years for which island i is closed to the fishery, and a 1 where 
it is open, 

𝜖𝑖,𝑦,𝑧,𝑗 is an observation error term for OM1 and OM3 for penguin j, where 𝜖𝑖,𝑦,𝑧,𝑗~𝑁(0, (𝜎𝜖)2) 

𝜖2𝑖,𝑦,𝑗 is an observation error term for OM2 and OM4, where (𝜎𝜖2)2 = (𝜎𝜖)2 + (𝜎𝑐)2 so that the overall 
variance of the F values generated by the OM1 and OM2 pair (and alternatively the OM3 and 
OM4 pair) is the same for the same values of other parameters. 

Data generation 

Multiple sets (M simulations) of data are generated for 𝑛𝑏 years for two islands. Island 1 is assumed to be 

closed to fishing in years 1-3, 7-9, 13-15,… and island 2 to be closed in years 4-6, 10-12, 16-18,… to replicate 

the design of the island closure experiment. Each year, data are generated for 𝑗 = 1,2, … , 𝑁 penguins sampled 

at each of the two islands. For OM1, data are generated in equal numbers for each level for the z covariate, i.e. 

each year 𝑁/𝑛𝑐values are generated for each level, where 𝑛𝑐 is the number of levels. Note that the role of the 

z covariate is to introduce non-independence in the individual penguin observations in OM1 (this is not present 

in OM2). Table 1 in the main text lists the details of the various values assumed to generate data for the 

different runs. 

Estimation models (EM) 

A. 𝐹𝑜𝑏𝑠𝑖,𝑦,𝑗 = 𝑎𝑖 + 𝑏𝑦 + 𝛿(𝑋𝑖,𝑦) + 𝜖𝑖,𝑦,𝑗 

where ai and 𝛿 are fixed effects and 𝑏𝑦 is a random effect, with their values estimated using REML; 

note the absence of the z subscript, as that hidden covariate would not be known to the observation 

process. 
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B. As for (A), but generated F values are fitted not for each individual penguin observation, but instead 

are first averaged for each year for each island; hence the j subscript no longer appears in the 

estimator. 

C. As for (B) (i.e. the model is fitted to annually aggregated data), but 𝑏𝑦 is treated instead as a fixed 

effect. 

D. As for (A) (i.e. the model is fitted to annually dis-aggregated/individual data), but 𝑏𝑦 is treated instead 

as a fixed effect. 

Key output statistics 

For each simulation 𝑘 = 1, 2, … , 𝑀 and for each OM and EM combination, an estimate of 𝛿𝑘 is determined, 

along with its associated standard error estimate 𝑆𝐸𝛿,𝑘 using the EM under consideration. From these values 

a mean(𝛿) and a mean(𝑆𝐸𝛿) are calculated. The true 𝑆𝐸𝛿 is given by the standard deviation of the M values of 

𝛿𝑘. 

Estimation bias is then reflected by the difference of mean(𝛿) from the actual (true) value of δ input, and for 

the standard error estimate of δ by:  mean(𝑆𝐸𝛿) - true 𝑆𝐸𝛿 . 

 

 


