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Butterworth and Ross-Gillespie (FISHERIES/2019/NOV/SWG-PEL/34) implemented a simple 

simulation experiment to explore bias in precision estimates of the island closure effect that can arise 

from pseudo-replication when fitting Generalized Mixed Effect Model (GLMMs) to individual 

observations. Based on their findings they made wide ranging conclusions, for example, that “Previous 

analyses [by Sherley et al. 2018 and Sherley PEL32] should ideally be repeated based on year-

aggregated inputs, and future analyses need to avoid repeating this earlier approach.” In this paper, 

we use a ‘common sense approach’ in a first instance to refute this claim by arguing that their 

experiment (1) fails a critical ‘self-test’, which potentially renders any conclusion by 

FISHERIES/2019/NOV/SWG-PEL/34 as invalid based on first principle and (2) that the authors have 

mis-specified the relevant estimation model to support their claim, which prevents any meaningful 

inference about the performance of more adequately specified Bayesian hierarchical mixed-effect 

models by Sherley et al. 2018 and Sherley PEL32. 

 

The Butterworth and Ross-Gillespie simulation experiment  

To explore potential bias on precision estimates of the island closure effect 𝛿 as a result of pseudo-

replication (violation of independence in the data), the authors introduced a ‘hidden covariate’ into 

their first operating (simulation) model (OM1) and subsequently omitted the ‘hidden covariate’ 

again from OM2, presumably to provide a ‘control’.  Both OMs were intended to broadly resemble 

the design of the island closure experiment on penguin response metrics in a simplified manner, 

such that: 

    

𝐹#,%,&,' = 𝑎# + 𝑏% + 𝛿,𝑋#,%. + 𝑐#,&,% + 𝜀#,%.&,'        (OM1) 

𝐹#,%,' = 𝑎# + 𝑏% + 𝛿,𝑋#,%. + 𝜀2#,%,'         (OM2) 

 

where 𝐹#,%,&,'	is the response variable on log-scale, 𝑎#	is the island effect for i = 1, 2 (fixed effect),  𝑏% 

is the normally distributed year effect  𝑏%~𝑁,0, 𝜎89.	(random effect) and 𝛿 is the binary closure effect 
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for a vector with a sequence of 0’s (closed years) and 1’s (open years), such that a negative 𝛿 implies 

a positive closure effect (opposite to Sherley et al. 2018). The key difference between the two OMs is 

the inclusion of the ‘hidden covariate’ 	𝑐#,&,% term into OM1, which is realized by the fixed effect 

term	𝑐#,&,% with 1, 5 or 10 factorial levels z within each island i in year y and normally distributed effect 

sizes  𝑐#,&,%~𝑁(0, 𝜎;9).	  The error term in OM1 is assumed to be normally distributed for the 

measurement error of penguin j, given covariate z on island i in year y, such that 𝜀#,%,&,'~𝑁(0, 𝜎=9)	. 

The error term 𝜀#,%,&,'  is then adjusted for OM2 by incorporating the variance 𝜎;9 from the now omitted 

‘hidden covariate’ into the OM2 error term, such 𝜀2#,%,'~𝜎;9 + 𝜎=9	.   

 

The authors consider three estimation models (EMs) in their simulation experiment, which 

specifically focusses on potential bias in the estimated precision for 𝛿 in the form of the standard 

errors (SE). They define bias as the difference between the  𝑚𝑒𝑎𝑛(𝑆𝐸C), computed from the mean 

of the estimated  𝑆𝐸C,D across the simulation replicates k, and the ‘true’  𝑆𝐸C(𝑡𝑟𝑢𝑒), computed from 

the standard deviation of the estimated 𝛿D across 1000 simulation replicates k  . We note that this 

bias calculation seems to have the undesirable property of relying on unbiased estimates of  𝛿D in 

the first instance (here confirmed to be approximately unbiased for runs 4-11 in Fig. 1A), which may 

not necessarily hold in a less idealized OM setup that considers for example an unbalanced sampling 

design. The three estimation models are specified as: 

 

𝐹#,%,' = 𝑎# + 𝑏% + 𝛿,𝑋#,%. + 𝜀#,%,'        (EMA) 

𝐹H#,% = 𝑎# + 𝑏% + 𝛿,𝑋#,%. + 𝜀#,%          (EMB) 

𝐹H#,% = 𝑎# + 𝛽% + 𝛿,𝑋#,%. + 𝜀#,%        (EMC) 

 

where 𝐹H#,%  in EMB and EMC denotes the mean value of the measured penguin response variable for 

island i and year y and 𝛽% denotes the change to a fixed effect term for the year effect in EMC. 

 

At this point, we point to two important properties of the simulation experiment design, which are 

critical for our argument below:  

(1) The combination of OM2 and EMA represent a “self-test” given the structure of both are identical, 

so that EMA is correctly specified with regards to OM2.   

(2) The combination of OM1 and EMA represents a clear misspecification of EMA, which, unlike Sherley 

et al. (FISHERIES/2019/NOV/SWG-PEL32), omits the appropriate nested random effects structure to 

account for non-independence introduced by the ‘hidden covariate’ in OM1.  
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1. Self-Test Failure 

If the model specification of a data generating OM is identical to the model specification of the EM 

that is fitted to the generated data, all estimators and their variances should be in principle 

unbiased. OM2 and EMA represent such identical model specification, yet Fig. 1B in 

FISHERIES/2019/NOV/SWG-PEL/34 shows a strong negative bias, which we, in contrast to the 

authors, judge simply as implausible.  We suspect that the authors recorded the routine standard 

error outputs for the estimated coefficient 𝛿 (e.g. using the function se.coef() for the fitted lmer() 

object in the R package lme4). However, from the R package documentation we understand that the 

returned standard errors are only approximations for the fixed effects and not the joint (sums of) 

random and fixed effects coefficients, which would typically require use of the delta method, 

bootstrap or MCMC to be estimated reliably. If our suspicion should indeed hold true, this would 

render the conclusions in FISHERIES/2019/NOV/SWG-PEL/34 obviously invalid in its current form.  

 

2. Misleading EMA misspecification for OM1 

Firstly, it is important to reiterate that all models presented in Sherley et al. 2018 and Sherley et al. 

FISHERIES/2019/NOV/SWG-PEL32 consider a hierarchical random effect structures with a random 

effect for year and a second random effect that is nested within year. Each of the choices are 

justified carefully but the common motivation was to minimize the risk of overestimating precision 

due to non-independence of observations. For example, for chick survival we specified a hierarchical 

random effects term for nest identity within year to account for non-independence of chick survival 

information within the same nest. This random effect for nest may also account for other 

unobservable (latent) effects such as the fitness of parents or some hidden covariate associated with 

the spatial location of the nest. The latter also provides an easy to interpret link to the hidden 

covariate  𝑐#,&,% as introduced in OM1, which essentially blocks each island in each year into nc 

groups of penguin observations that are similar (non-independent) within each group and can vary 

notably across groups with respect to the response variable. With this in mind it is then straight 

forward to generalize a correctly specified EM for OM1 with the desirable property that it is also 

consistent with the model structure used in Sherley et al. (FISHERIES/2019/NOV/SWG-PEL32), such 

that: 

 

𝐹#,%,' = 𝑎# + 𝑏% + 𝑑#,% + 𝛿,𝑋#,%. + 𝜀#,%,'       (EMD) 

 

where 𝑏%~𝑁,0, 𝜎89. is the random effect for year and  𝑑#,%~𝑁,0, 𝜎K9.  is a random effect for island i, 

nested within year y. Note that the ‘hidden covariate’ still remains ‘hidden’ to EMD, but it is now 
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correctly specified by providing a means to account for the variation resulting from an unknown 

number groupings nc on the island within a year that are associated with an unobservable effect on 

the response 𝐹#,%,'.   

 

We argue that not considering a hierarchical random effects term 𝑑#,% results in a severe 

misspecification of EMA with respect OM1. Therefore, it is evident that the interpretation of the 

results in Butterworth and Ross-Gillespie (FISHERIES/2019/NOV/SWG-PEL/34) is highly misleading 

and that simulation experiment in its current form fails to provide the basis for a ‘fair’ and 

meaningful comparison to the more adequately specified Bayesian hierarchical mixed-effect models 

used in Sherley et al. 2018 and Sherley et al. (FISHERIES/2019/NOV/SWG-PEL32).    

 

Discussion 

The term ‘hidden covariate’ is also commonly known as unobservable ‘latent effect’ or ‘latent state 

variable’.  Indeed, it is widely accepted that, if ignored, such “latent states will generally cause model 

residuals to be correlated, violating the assumption of statistical independence” (Thorson and Minto, 

2014), which can then lead to over-estimated precision and type II errors. However, modelling 

individual observations with an appropriate hierarchal random-effects structure typically provides 

superior statistical power over an approach that uses aggregated means, which is basically left with 

severely decimated degrees of freedom. This is probably one of the main reasons why hierarchical 

mixed-effects models have been strongly advocated in both fisheries and ecological sciences over the 

past three decades as an important tool for estimating the relative contribution of different 

hierarchical sources of variation (e.g. Hilborn and Liermann, 1998; Gelman and Hill, 2007; Pinheiro and 

Bates, 2009; Zuur et al., 2009; Thorson and Minto, 2014). Unlike the miss-specified EMA in 

Butterworth and Ross-Gillespie (FISHERIES/2019/NOV/SWG-PEL/34), models in Sherley et al. (2018) 

and Sherley et al. (FISHERIES/2019/NOV/SWG-PEL/32) do in fact account for hierarchical sources of 

variation that are implicit to the nested sampling design. We have highlighted this for the response 

‘chick survival’, where we had specified a random effect for ‘nest’ (Sherley et al. 2018), which was 

nested within the year to accommodate latent effects (‘hidden covariates’) that can cause variation in 

chick survival (e.g. due to different fitness of parents or area effects). 

 

To conclude, we agree with Butterworth and Ross-Gillespie (FISHERIES/2019/NOV/SWG-PEL/34) that 

ignoring latent effects at a finer scale than accommodated by the random year effect increases the 

risk of negatively biased precision estimates. We argue, however, that their EMA for individual 

observations should have been correctly specified by introducing an additional (nested) random 
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effect at a lower hierarchical structure (i.e. EMD) to prevent similarly moot and even misleading 

conclusions about the hierarchical mixed-effects models used in Sherley et al. (2018) and Sherley et 

al. (FISHERIES/2019/NOV/SWG-PEL32) in future.  Finally, we suggest that it should have been on the 

onus of the authors to identify and first further explore the apparent inconsistency related to the 

‘self-test failure’ (EMA-OM1) before choosing to make such strong recommendations that “past 

results concerning the statistical significance and probabilities that island closures impact penguins 

from analyses based on individual observations need to be reconsidered”, which we herewith refute. 
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