
Molecular DNA markers suitable for population/stock delimitation and assignment

Ralph Tiedemann, University of Potsdam

Concept of molecular markers

<u>Basic idea:</u>

- Individuals are genotyped at particular genetic loci.
- State/variation/divergence at these loci is interpreted as to representing state/variation/divergence of entire population(s).

<u>Assumptions:</u>

- Gene flow among demographically independent units (stocks/populations) is less than expected at random.
- Hence, random mutations and genetic drift will translate into measurable genotype frequency differences among populations

Molecular markers in population assessment

Biological marker characteristics

- Function of marker locus (if any) *Potential influence of natural selection*
- Marker inheratince *clonal (uniparental) or Mendelian*
- Evolutionary mode *Length variation (indels)/ point mutations*
- Evolutionary rate

mutation/substitution rate

Molecular markers in population assessment

Technical marker characteristics

• Accessibility

Is the marker established for the focus taxon ?

• Avoidance of ascertainment bias

Bias-free with regard to the populations of interest ?

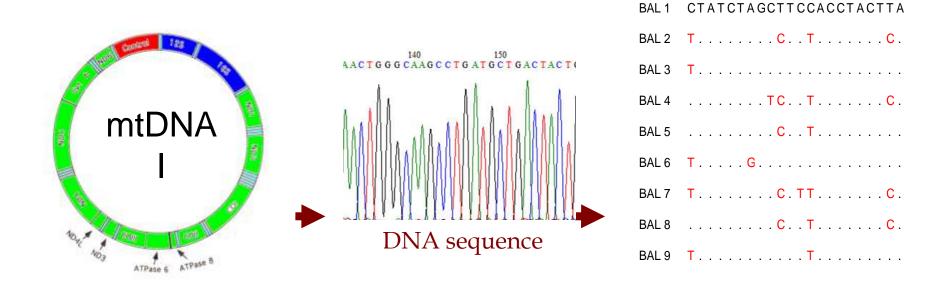
• Reliability

Is suitable organismal material available ?

Is the genotype reliably assessed (e.g., no null alleles)?

• Repeatability/Transferability

Are data comparable across experiments/labs ?


• Costs

Is the approach affordable ?

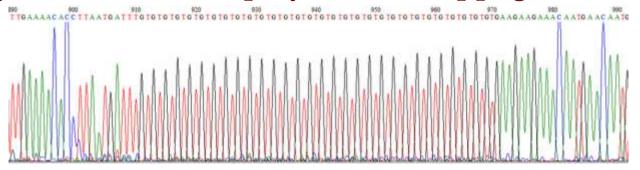
Molecular markers in evolutionary research

Level	mtDNA- sequence	ncDNA- sequence	Multilocus- Fingerprints	Singlelocus- Fingerprint (microsats)	RAPD AFLP	SNPs
Identity	(+)	_	+	++	+	+
Paternity/kinship	(+)	_	+	++	+	+
Populations	++	(—)	(+)	++	+	++
Species	++	+	_	(+)	-	(+)
Genera	++	+	_	(+)	_	-
Families/orders	+	++	_		_	-
Classes/Phyla	(+)	++	_	_	_	-

Sequence analysis of mitochondrial DNA:

haplotypes

Advantages:


- established for many taxa
- high repeatability across labs
- little requirements on sample quality

Caveats:

- maternal clonal inheritance
- only one locus
 - too little variation in some species

Single locus fingerprints (microsatellites):

- Short sequence repeats
- highly variable due to polymerase,,slippage"

Advantages:

- highly polymorphic
- Mendelian inheritance (if autosomal)
- Selectively neutral
- Equal contribution of sexes (if autosomal)
- medium requirements on sample quality

Caveats:

- not directly comparable across labs
- possible mistyping due to stuttering
- possible null alleles

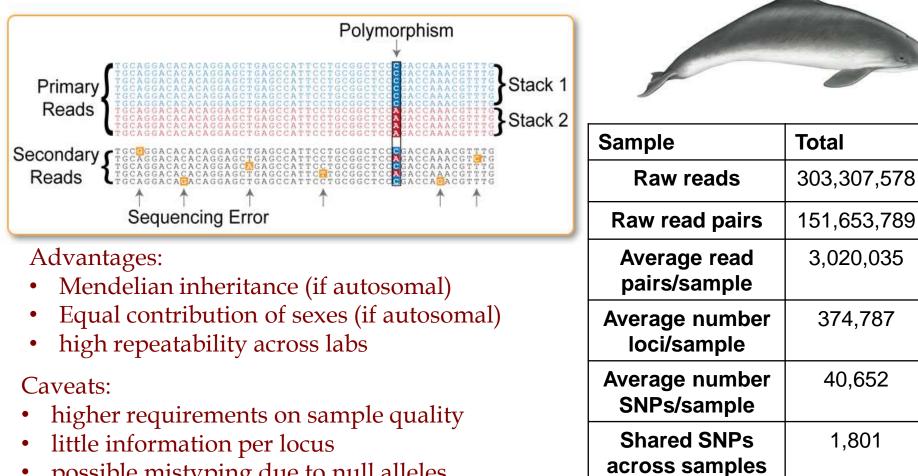
Null alleles:

Heterozygous:

(GT)₈

(GT)₇

Homozygous:

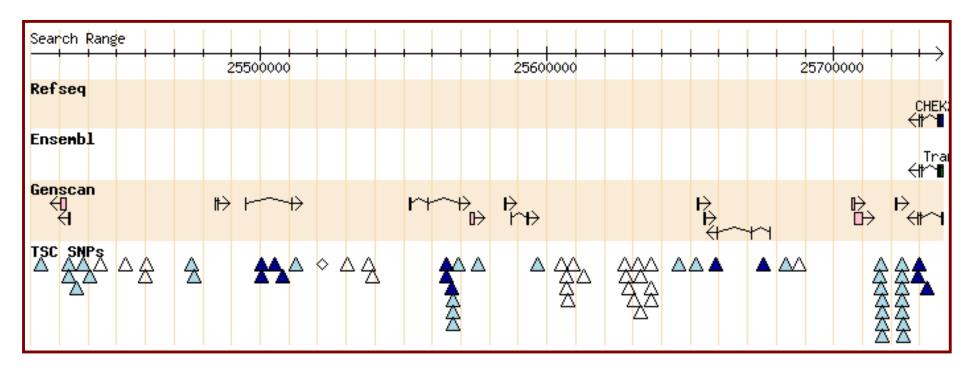

(GT)₈

(GT)₇

Heterozygous (with null allele): $(GT)_8$

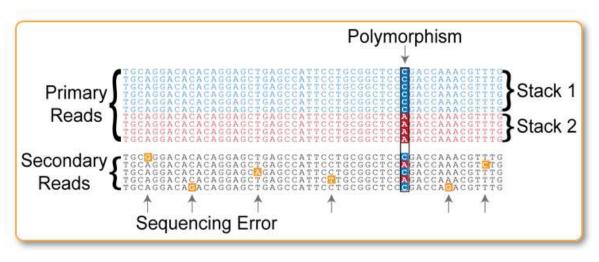
(GT)₇

Single nucleotide polymorphisms (SNPs):



- possible mistyping due to null alleles
- not directly available for many taxa
- potential linkage disequilibrium among loci

100 bp Paired End reads CUTTERS: Mspl, Pstl


49 samples

SNPs on human chromosome 22 from 25.420 Mb to 25.738 Mb, 317,751 bp window (http://snp.cshl.org)

SNP PoolSeq:

Advantages:

• Cost effective

Caveats:

- high requirements on sample quality
- biallelic inheritance cannot be seen
- no individual genotypes
- potentially differential contribution of individuals
- possible mistyping due to null alleles
- Difficult to tell apart polymerase/sequencing errors and rare alleles

Quality issues in PCR-based genotyping:

<u>Contamination:</u>

- Cross-sample contamination
- Contamination with PCR-products

Mispriming:

- Amplification of "wrong" loci
- Non-amplification due to mutations in primer sites ("null alleles")

Genotype errors:

- Polymerase error rate 0,001 0,0001
- Overall error rate typically higher (should be estimated

Quality issues in molecular markers:

Markers ideally used for those species/stocks they have been developed for

If not:

- Potentially biased assessment of genetic variation/stock structure (ascertainment bias)
- Increased likelihood of amplification of "wrong" loci (mispriming)
- Increased likelihood of mutations in primer sites (null alleles)

Molecular markers in population assessment

Microsatellites/SNPs (and sometimes mtDNA) are suitable markers for population/stock assignment, if

- Markers have been validated for the stocks of interest *No ascertainment bias, no null alleles*
- Marker inheritance is taken into account *clonal (uniparental) or Mendelian*
- A sufficiently large number of loci/informative SNPs is screened (ideally in individual specimens)
- Linkage disequilibrium is taken into account
- General rules of data quality are followed