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ABSTRACT

The IWC Scientific Committee recently adopted guidelines for quality control of DNA data. Once data have been collected, the next step is to
analyse the data and make inferences that are useful for addressing practical problems in conservation and management of cetaceans. This is a
complex exercise, as numerous analyses are possible and users have a wide range of choices of software programs for implementing the analyses.
This paper reviews the underlying issues, illustrates application of different types of genetic data analysis to two complex management problems
(involving common minke whales and humpback whales), and concludes with a number of recommendations for best practices in the analysis of
population genetic data. An extensive Appendix provides a detailed review and critique of most types of analyses that are used with population
genetic data for cetaceans.
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before the analyses considered here begin, the DNA data
quality-control guidelines have been consulted and followed
to the extent possible, and that any substantial deviations
have been documented and explained. 

As discussed in detail later, genetic information can
provide insights relevant to many types of problems
associated with conservation and management of living
natural resources. Among other applications, genetic data can
be used to:

(1) identify and delimit biological species, subspecies and
populations;

(2) provide or improve estimates of census population size
(N) and effective population size (Ne); 

(3) help track contemporary movements of individuals, as
well as estimate long-term levels of connectivity among
populations;

(4) quantify genetic diversity within populations and provide
insights into past bottlenecks and population expansions; 

(5) help resolve mixtures of individuals originating from
different breeding populations; and

(6) track products through the marketplace.

However, the most widespread practical application,
particularly in the IWC context, is for the study of stock
structure (genetic differentiation among populations). Before
discussing details of particular genetic analyses, some of the
key issues involved with assessing stock structure are
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INTRODUCTION
Recently, guidelines were adopted for quality control of
DNA data intended for use within the International Whaling
Commission (IWC, 2009; 2015a). Once the data have 
been collected, the next step is to analyse the data and make
inferences that are useful for addressing practical problems
in the management of cetaceans. This is a complex exercise
for two major reasons: (1) many methods can be used 
to analyse genetic data, and an equally wide range of
computer software is available to conduct data analyses; 
and (2) a key objective is to inform those involved in
cetacean management who do not have a background in
population genetics. For these reasons, it has been suggested
that it would be useful to have a document that provides
guidelines for the analysis of population genetic data for use
in a management context. Although it is not possible (nor 
is it desirable) to prescribe specific procedures for all
analyses of population genetic data, it can help to provide
general guidelines for some of the more common types of
analyses conducted in a management context. The latter is
the objective of this paper. Emphasis is on a general
discussion of issues involved in genetic data analysis 
rather than detailed comments about specific computer
software, but some popular programs will be discussed to
emphasise particular points. Given the many analytical
methods (and software packages) available, to focus on
those most relevant to a particular study, the discussion 
has been organised around some common management
problems one might try to address with genetic data. 
These problems are identified below. It is assumed that
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summarised and best practice for assessing issues that may
be complex or challenging are highlighted.

Two major issues related to stock structure/population
differentiation
Two major issues that arise in applying genetic data to
problems in stock structure are: (1) identification of threshold
levels of population differentiation that require separate-
stock management to achieve stated objectives; and (2) using
genetic and other data to determine whether the system under
consideration is above or below this threshold.

Identifying threshold levels of population differentiation
Population differentiation occurs along a continuum (Fig. 1).
At one extreme (completely random mating), every
individual has an equal probability of mating with any other
individual. This situation is referred to as panmixia; although
this is an idealised scenario not known to exist in any natural
population, panmixia is typically adopted as the null
hypothesis against which to compare alternative hypotheses
that involve various degrees of departure from random
mating. The other extreme of the population-differentiation
continuum is characterised by complete isolation among
locally panmictic groups of individuals. In nature, populations
in general are neither completely panmictic nor completely
isolated; instead, they typically are characterised by
intermediate levels of differentiation and linked by restricted
but non-zero levels of migration. In addition, the degree of
connectivity among populations often changes over time.

Several types of data, including genetic information, can
help to determine where a particular species falls on the
population-differentiation continuum depicted in Fig. 1. In
some cetacean species, the level of genetic differentiation
among geographic areas within major ocean basins is
relatively low (toward the panmictic end of the continuum),
whereas evidence for higher population differentiation is
often found among populations from different oceans (e.g.
sperm whales; see Alexander et al., 2016). In other cases,
unexpectedly high levels of population differentiation are

found within and among oceans (e.g. bottlenose dolphins,
Natoli et al., 2005).

Common questions that arise in conservation and
management of living natural resources include the
following: Is the differentiation among groups of individuals
strong enough that they should be considered separate
populations or stocks? Is any statistically significant (e.g. 
P < 0.05) departure from panmixia sufficient to warrant
recognition as separate stocks? If not, how strong must the
differentiation be? Unfortunately, there are no generally
applicable answers to these questions, since the relevant
degree of population differentiation depends on the
conservation/management objectives, the risks associated
with adopting different management strategies, and society’s
tolerance of the resulting consequences. Some general
management objectives/considerations include:

(1) ‘Management units’ or ‘populations’ or ‘stocks’ must be
considered separately because of a legal mandate. In the
US, federal laws that include this type of mandate include
the Endangered Species Act, the Marine Mammal
Protection Act, and the Magnuson-Stevens Fishery
Conservation and Management Act (see Waples et al. 2008
for discussion). Canada has similar provisions in its federal
Species at Risk Act (2002), as do the Biodiversity Law of
Costa Rica (1992), Australia’s Endangered Species
Protection Act (2002), and South Africa’s National
Environmental Management Biodiversity Act (2004).

(2) Sustainable harvest for management stocks should be
maximised while preventing/minimising impacts on
stocks that cannot withstand harvest, because:

(a) locally depleted stocks might take a long time to
rebuild, and/or

(b) local extirpation might represent an irreversible loss
of biodiversity.

Although such general considerations are useful for
providing context, they are qualitative rather than

34 WAPLES et al.: GUIDELINES FOR GENETIC DATA ANALYSIS

Fig. 1. The continuum of population differentiation. Each circle represents a group of individuals that might or might not be a
separate population or stock. Four generic scenarios, with varying degrees of connectivity (geographical overlap and/or
migration), are identified along the continuum: (A) Complete independence. (B) Modest connectivity. (C) Substantial
connectivity. (D) Panmixia (circles are completely congruent). Reproduced from Waples and Gaggiotti (2006).
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quantitative and by themselves will not produce repeatable
outcomes. That is, you could not provide guidance this
general to independent groups of scientists and expect them
to produce similar results, even if they were analysing the
same data. To make these objectives operational, it is
necessary to identify thresholds on the continuum of
population differentiation that do and do not make a
difference with respect to the stated management objectives.

Most management problems related to stock structure
involve population dynamics, and most stock-assessment
models assume a single, closed population. If multiple stocks
exist and they interact demographically to an appreciable
extent, conclusions based on single-stock models can be
misleading. Therefore, many of the stock-structure problems
boil down to determining whether demographic linkages
among populations are strong enough that any deviations from
panmixia can be safely ignored. This has fostered interest in
the concept of ‘demographic independence,’ which (under one
common definition) occurs when immigration rates are low
enough that population dynamic processes are determined
primarily by local birth and death rates. According to this
concept, units that are demographically independent require
separate management because they strongly violate the
standard assumption of a single panmictic unit.

Considering the general importance of this issue, it is
surprising how little effort has been invested into defining
the transition between populations that are demographically
independent and those that are demographically linked. One
study, conducted over two decades ago (Hastings, 1993),
used a simple two-population model and found that with
exchange rates greater than about 10% per generation, the
two populations were demographically coupled (had
correlated population trajectories), but at lower exchange
rates the population trajectories were independent.
McElhany et al. (2000) used this result to help define
demographically-independent populations of Pacific salmon.
Because they wanted to conduct separate viability analyses
for each individual population, McElhany et al. (2000)
refined the concept of demographic independence to mean
that demographic linkages are small enough that they do 
not appreciably affect extinction risk over a 100-year time
frame. However, demographic independence, like genetic
differentiation, occurs along a continuum, and other concepts
of demographic independence might lead to different
quantitative criteria (see discussion in Waples et al., 2008).

The IWC Scientific Committee has spent many years
investigating this issue. In the IWC, the most common form
of the stock-structure problem involves a situation where a
species occurs in two or more geographic areas (areas A and
B), but harvest occurs primarily or entirely in just one of the
areas (area A; see Fig. 2). This corresponds to Stock-structure
Archetype I as defined by TOSSM (Testing of Spatial
Structure Methods; Martien et al., 2009; Lang and Martien,
2012). Assume for the moment that single-stock models
show that, given assumptions about overall abundance and
intrinsic growth rate, a harvest rate of X% per year is
sustainable. The biological consequences of managing for
this target harvest rate depend on what the true stock
structure is. No problems are expected if the two areas
actually are part of a single population or stock and harvest
rate does not exceed X. If the stocks are partially isolated,

however, with regular, net immigration from area B into A
at rate π per year, local harvest will be sustainable only if π
is large enough to regularly offset removal of individuals
from area A and hence demographically rescue that
population. This would represent an example of source-sink
population dynamics.

What is the tipping point – the migration rate below which
demographic rescue is unlikely and management as separate
stocks become necessary? For this simple two-stock
problem, if we assume constant and symmetrical migration
and equal population sizes, an approximate result is that the
localised harvest becomes unsustainable when the net annual
immigration rate drops below the annual harvest rate, less
the local population’s natural growth rate (see a worked
example in fig. 1 of IWC, 2010). However, natural systems
are seldom this simple, and the threshold can vary
substantially depending on a variety of factors (e.g. relative
sizes and productivities of the two stocks; variability in
migration rates). Thus, although the condition where π < X
is a general warning sign that separate-stock management
might be necessary, the threshold that applies to any given
situation has to be evaluated on a case-by-case basis.

Largely for this reason, the IWC has resisted developing
a single, quantitative threshold for differentiation that
indicates separate stocks. This makes it difficult to apply the
‘policy first, then science’ approach advocated by Taylor and
Dizon (1999), in which managers first identify a point on the
stock-differentiation continuum that requires separate-stock
management, and then scientists use genetic and other data
to estimate how strong the stock differences are compared
to this reference point. Instead, the IWC typically uses the
following procedure:
(1) a range of ‘plausible’ stock-structure hypotheses (which

specify the number of stocks and their distribution in
space and time) is developed;

(2) these hypotheses are adjusted to ensure they are
compatible with available information about abundance
and stock composition in space and time, and hypotheses
that are incompatible with the empirical data are rejected
as implausible;

(3) projections are undertaken for various combinations of
assumptions regarding the harvest regime, productivity,
and exchange rates among populations; and
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Fig. 2. Schematic representation of the generic harvest + stock structure
problem. A species occurs in two space/time strata (A and B), but harvest
is only taken in stratum A. If harvest rate is set based on total abundance
of A+B, whether the harvest is sustainable will depend on whether
immigration rates from B to A are high enough to rescue A from local
depletion.
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(4) results identify management regimes that perform
adequately with respect to conservation goals. 

Under this paradigm, there is no intrinsic interest in stock-
structure per se; it only becomes important when failure to
account for stock structure would lead to failure to achieve
management objectives. In this guidelines document, we
have made efforts to provide information relevant to this
procedure. However, this might be considered a rather
esoteric approach to the problem of stock structure, and even
within the IWC there is considerable interest in a broader
approach to stock definition that recognises its value in
conservation and management. Therefore, this paper also
considers the broader aspects of conservation/management
problems associated with differentiation among populations.
For example, an array of populations with diverse ecological
and life history characteristics helps promote stability,
resilience, and long-term sustainability, much as a diverse
portfolio of investments reduces variability due to boom-
or-bust cycles and produces more predictable returns; 
this has been termed the ‘portfolio effect’ (Schindler et al.,
2010).

Estimating rates of migration/levels of connectivity
Another major stock-structure problem that arises is how to
convert estimates of levels of genetic differentiation into
estimates of demographic connectivity, which (as discussed
above) is generally what is needed by managers. This is
challenging for several reasons. First, standard measures of
genetic differentiation are most easily interpreted in terms of
the product of migration rate per generation (m) and effective
population size; the units of this combined term (mNe) are
the effective number of migrants per generation. In contrast,
population dynamic processes depend primarily on the
fraction of the population that is migrants each year (π). It is
therefore often necessary to convert genetic estimates of the
number of migrants per generation into estimates of the
fraction of the population that migrates each year. This can
in principle be done provided one can estimate Ne, N, and
generation length, but this adds additional uncertainty to the
final estimate.

A second major challenge is that the equilibrium
relationship between genetic differentiation and migration 
is inverse and non-linear (Fig. 3). Even modest but 
constant rates of migration (a few individuals per generation)
are sufficient to constrain levels of genetic divergence to 
low levels. Taking Hastings’ (1993) result that the transition 
from demographic independence to demographic linkage
occurs at approximately m = 0.1, and assuming that the
population is moderately large (Ne ~1000), results in a
tipping point at around mNe = 100 migrants per generation.
As seen in Fig. 3, values of FST that produce estimates that
are above and below this value are all very small, which
means that small errors in estimating levels of genetic
differentiation can have a large effect on estimated levels 
of demographic connectivity. As a consequence, the 
ability of genetic data to inform the most common stock-
structure problem for management is asymmetrical. If
differentiation is strong (high FST), it generally will be easy
to show that demographic linkages are small enough 
that separate stock management is required (left part of 
Fig. 3). However, if differentiation is low, it is very

challenging, using genetic data alone, to determine whether
migration is sufficient to allow demographic rescue of a
population subject to local depletion. Unless a great 
deal of data is available, it will be difficult to 
demonstrate convincingly that migration is low enough 
that populations are demographically independent and the
rescue effect is unlikely to occur, just as it will be difficult
to demonstrate that migration is high enough to allow
demographic rescue.

Finally, the above discussions implicitly assume that
migration rate is roughly constant for long enough for the
system to reach a balance between gene flow (which
promotes genetic similarity) and genetic drift (which
increases genetic divergence). However, any given level of
genetic differentiation (and any point on the continuum
shown in Fig. 1) could also be produced by an isolation
scenario that involves no current migration at all. Under an
isolation model, FST is roughly proportional to the ratio of
time since isolation (t, in generations) and Ne. This means
that a small value of FST, which could be interpreted to imply
high levels of equilibrium migration, could also be consistent
with complete isolation for a few generations (if Ne is low)
or perhaps many generations (if Ne is large).

Given these substantial challenges, perhaps the best
approach for providing useful information related to stock
structure to managers is to combine genetic and other data
to characterise the full range of dispersal rates and
isolation/migration models that are consistent with the
empirical data. Some examples of how to do this can be
found in Taylor and Martien (2004), Lang and Martien
(2012), and van der Zee and Punt (2014). Armed with this
information, managers can decide whether local depletions
are likely and take appropriate actions.

To provide a sounder basis for making management
decisions, we recommend the following be considered a
high-priority research topic:

(1) review current and past IWC applications to identify
‘tipping points’ = levels of migration that do and do not
make a difference for conservation outcomes under the
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Fig. 3. Theoretical, inverse relationship between number of migrants per
generation (mNe) and FST (a measure of genetic differentiation), based on
a common population genetics model. The ‘tipping point’ for levels of
migration that do and do not make a difference for management often
falls in the range indicated by the arrow, where small errors in correctly
estimating FST have a large effect on the estimated level migration. For
discussion of this issue, see Waples (1998), Palsbøll et al. (2007), and
Waples et al. (2008).
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IWC - recent work on the maximum sustainable yield
rate (MSYR) might provide some insights in this regard
(IWC, 2014; 2015b);

(2) use simulations to determine under what circumstances
it is likely to be feasible for genetic methods to
distinguish between levels of migration that are above
and below the tipping points (van der Zee and Punt, 2014
and van der Zee, 2014 are examples of these types of
analyses); and

(3) once enough applications have been evaluated, it should
be possible to determine whether these tipping points 
fall within a narrow range of connectivity/migration rates
or are specific to each application – if the former, then 
it might be possible to empirically identify generic
thresholds that are of practical relevance to IWC
management. 

Next we provide an outline of the in-depth material,
followed by a discussion of some difficult IWC management
problems for which genetic data can provide useful insights. 

OUTLINE OF IN-DEPTH MATERIAL
Here we provide an outline of the material that is covered in
more depth in Appendix 2. Appendix 1 provides a glossary.

(1) Species identification/delimitation
Issues related to alpha taxonomy come up consistently,
especially regarding the boundary between populations and
species of small cetaceans (so we expect some overlap with
Section (4)). Because a standardised approach for DNA-
based species identification of cetaceans already exists
(Reeves et al., 2004; see Baker et al., 2003 and Ross et al.,
2003 for details about methodologies), this document 
will focus on analyses of intraspecific genetic diversity.
DNA Surveillance and the comprehensive reference
database, Witness for the Whales10 does not delimit species
but rather identifies specimens based on a reference database.
Ross and Murugan (2006) presented results of a comparison
of cetacean DNA sequences in Witness for the Whales and
GeneBank.

(2) Analysis of diversity within populations
(a) Measures of genetic diversity, including rarefaction

(controlling for sample size in estimating allelic
richness).

(b) Information derived from tests of Hardy-Weinberg
equilibrium (HWE). 

(c) Information derived from tests of linkage disequilibrium
(LD).

(3) Estimating population size and historical demography
(a) Census size, N

(i) Genetic capture-mark-recapture of individuals
(ii) Indirect capture-mark-recapture of individuals

through the genetic identification of close relatives
(iii) Identifying recent population bottlenecks 

(b) Effective population size, Ne 
(i) Historical Ne
(ii) Contemporary Ne

(c) The Ne/N ratio

(4) Analysis of diversity among populations (aka stock
structure)
This is probably the most common type of management
problem that utilises genetic data.

(a) Testing for heterogeneity
(i) Putative populations defined a priori
(ii) No a priori basis (or an uncertain basis) for grouping

individuals into putative populations.
In this case, the analyses are conducted on individuals
rather than groups of individuals.
• Standard clustering methods
• Clustering based on ordination
• Landscape genetics (units = individuals)
• Analysis of close kin

(b) Describing population structure
(i) Estimating degree of divergence

• FST and related measures
• Isolation by distance/landscape genetics (units =

samples)

(c) Estimating migration
(i) Methods that assume migration-drift equilibrium
(ii) Isolation with migration models 
(iii) Methods that estimate contemporary migration

• Assignment methods
• Close-kin analyses

(d) Mixture analysis 

(5) Generic/cross-cutting issues 
Some issues will apply to many of the above analyses.
Examples include: 
(a) Choice of markers
(b) Ascertainment bias
(c) Multiple testing
(d) Mutation rates
(e) Sampling and experimental design
(f) Different approaches to statistical inference
(g) Monte Carlo issues
(h) Integrating genetic and non-genetic data
(i) Possible influence of selection
(j) Interpreting negative results

MANAGEMENT NIGHTMARES
This section highlights two examples that illustrate the
complexity of stock-structure issues for cetaceans. For each
example, the underlying biology and the key management
questions are summarised, and then the major issues related
to genetic data analysis are discussed, drawing on material
discussed in the specific sections referenced in the Appendix. 

North Pacific common minke whales
Background and management context
For a good general summary of this issue, see IWC (2013).
The breeding areas for common minke whales in the western
North Pacific have not been identified but are presumed to
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occur to the south of Japan. Animals are observed and
sometimes taken as they migrate along both coasts of Japan,
as well as in oceanic waters farther to the east. The Okhotsk
Sea is a primary feeding ground, but no common minke
whales are harvested in this area. Convincing evidence
(including differences in morphological and genetic traits
and conception date) exists for the occurrence of at least two
stocks, which have been termed O (more oceanic) and J
(more coastal); however, rigorous characterisation of stocks
is difficult because of the lack of samples from breeding
areas. Existing population-genetic analyses are anchored by
samples from areas thought to contain mostly pure J
individuals or mostly pure O individuals. Some analyses also
detected additional heterogeneity within either the J-like
animals, the O-like animals, or both. One interpretation of
these data is that this heterogeneity simply represents
different mixture fractions of the same O and J stocks
(Pastene et al., 2012); in another view, this heterogeneity
indicates the presence of 2–3 additional stocks, in addition
to O and J (Wade and Baker, 2012). 

Application of genetic data analysis guidelines
Several sections in the Appendix provide detailed treatment
of issues that arise for North Pacific common minke whales.
Examples include:

(1) The total number of individuals sampled is large
(~2,500), which increases statistical power to detect
heterogeneity that might not be biologically meaningful
with respect to stock structure (Section (5)(j));

(2) Conversely, the lack of samples from breeding grounds
raises questions about applicability of many standard
methods (e.g. as described in Section (4)(a)(i)) that
require a priori grouping of individuals into putative
populations or stocks. Without those a priori groupings,
it is necessary to use methods such as cluster analysis
(Section (4)(a)(ii)) that generally require fairly strong
genetic differences to produce robust results. This in turn
tends to produce a substantial degree of uncertainty
regarding underlying stock structure. This lack of power
can in theory be overcome to some degree at least 
by substantially increasing the number of genetic 
markers (e.g. through development of single-nucleotide
polymorphisms = SNPs), but by far the most robust and
reliable method would be to obtain samples from
individuals on or near their breeding grounds;

(3) These datasets and analyses provided ample
opportunities to illustrate both the strengths and
limitations of clustering methods like the program
STRUCTURE (Section (4)(a)(ii)), which has been
widely used both within and outside the IWC arena. They
also provided an opportunity to illustrate the potential
usefulness of a method based on principal components
analysis (PCA; Section (4)(a)(ii));

(4) Some issues arose with respect to standardisation of
analytical procedures from two different laboratories
(Japan and Korea); the DNA Data Quality Guidelines
document (IWC, 2009) discusses this issue;

(5) Most samples are believed to contain a mix of J-stock
and O-stock individuals (and perhaps other stocks as

well), which raises several issues regarding how to
interpret results of tests of HWE and LD (Sections (2)(b)
and (2)(c));

(6) Because most samples are believed to include mixtures,
a variety of strategies were used to try to ‘cleanse’ the
samples by removing individuals thought to belong to a
particular stock. A number of caveats are associated with
this type of approach;

(7) The samples were taken in a seasonal migratory corridor
over a period of several decades, which also represents
several generations for western North Pacific common
minke whales. Therefore, it is important to consider the
effects of temporal variation in genetic characteristics
over time; and

(8) Several other types of data (e.g. conception date,
morphology, identifying marks, etc.) are potentially
relevant for stock structure of this species, so it is
important to consider how best to integrate genetic and
non-genetic data (Section (5)(h)).

Southern Hemisphere humpback whales 
Background and management context
Southern Hemisphere humpbacks breed and calve at low
latitudes during winter and feed in the Southern Ocean (SO)
in summer (except for one small feeding ground in the
Magellan Straits; Fig. 4). Southern Hemisphere humpback
whale population assessments have been carried out with a
focus on breeding ground abundance and the degree of
recovery from past commercial whaling operations.
Breeding grounds of Southern Ocean humpback whales are
somewhat less genetically distinct than those in the Northern
Hemisphere. Whaling data, discovery marks, and satellite
telemetry data link Southern Hemisphere breeding regions
to feeding grounds at a roughly similar longitude; however,
feeding ground ranges are driven by both static (topographic)
and dynamic (winter ice retreat rate) features of the Southern
Ocean (Nicol et al., 2008), so the feeding ground destination
of different SO humpback whale breeding stocks can vary
greatly across SO longitudes between years and areas. 

The central challenges for conducting Southern
Hemisphere humpback assessments are:

(1) Choosing the appropriate spatial scale for assessment
(e.g. stock or sub-stock). High population diversity and
maternal fidelity to breeding grounds and probably also
feeding grounds drives strong genetic sub-structure on
both breeding grounds (e.g. Olavarria et al., 2007;
Rosenbaum et al., 2009) and feeding grounds (Baker 
et al., 2013). Genetic methods for measuring population
composition are therefore central to stock delineation;

(2) To reach agreement on measures of breeding ground
genetic differentiation that are most useful for
management, given that all breeding grounds are 
still recovering from 20th century whaling and hence 
have not had time to achieve genetic/demographic
equilibrium. Genetic methods for measuring population
differentiation, in combination with population
composition approaches (and possibly also multi-strata
mark-recapture models to measure interchange), can be
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used to determine the type of assessment model to apply
(e.g. with and without interchange among stocks);

(3) Accounting for the temporal and spatial components of
humpback use of breeding grounds in sample collection.
Humpback whales are both temporally and spatially
segregated by age and sex; there is evidence for age- and
sex-stratified migratory routes (Chittleborough, 1965;
Brown et al., 1995), as well as different residence times
on the breeding grounds for males and females. Careful
survey design is therefore required to ensure that genetic
samples collected from breeding grounds are fully
representative of that ground; and

(4) To allocate whaling catches from high-latitude feeding
grounds to their associated breeding sub-stocks. This
requires quantifying the use of high-latitude feeding
grounds by each breeding stock and is crucial for
accurate assessment of population depletion and
therefore recovery. The vast majority of whaling catches
were taken on feeding grounds (Clapham and Baker,
2002), so population assessments can be very sensitive
to how feeding ground catches are allocated to breeding
grounds. Mixed stock analysis is therefore a useful 
tool for measuring feeding ground/breeding ground
connectivity, though genetic samples currently available
from high latitude feeding grounds are patchy in
distribution and low in number at some longitudes
(Pastene et al., 2012). However, this approach also
assumes that patterns of connectivity between feeding
and breeding grounds have not substantially changed
since the whaling period – an assumption that could be
violated by shifts in oceanographic conditions or
substantial range contractions following whaling. 

Application of genetic data analysis guidelines
The challenges noted above raise a number of questions
about stock structure of Southern Hemisphere humpback
whales that are relevant to issues covered in the Appendix.
For example: 

(1) If one ignored geography and used only genetic and other
relevant biological information, would the high-latitude
catch allocation boundaries between breeding sub-stocks
change? (see Section (4)(b)(i)). 

(2) Do methods that assume long-term equilibrium
conditions (see Section (4)(b)(2)) provide meaningful
estimates of current levels of connectivity/migration?

(3) To what extent might differentiation measured from
breeding ground samples be biased by limited genetic
sampling (e.g. within one part of a large breeding 
ground, or one collection period within the season)? 
(see Section (5)(e) for experimental design
considerations).

(4) Do current levels of differentiation between sub-stocks
reflect long-term population structure, or have they 
been strongly affected by recent bottlenecks and
fragmentation? (see Section (3)(a)(iii) ). 

SUMMARY AND CONCLUSIONS
The in-depth sections in the Appendix contain a great deal
of detailed information that is, however, likely to be of
interest primarily to specialists. Here we try to briefly capture
some of the key conclusions and recommendations of
practical relevance that emerge from joint consideration of
the in-depth material and the more general conservation and
management issues outlined in the Introduction.
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Fig. 4. Distribution of seasonal feeding areas off Antarctica (rectangles I–VI) and lower-latitude feeding areas (black shading)
for Southern Hemisphere humpback whales. Letters A to G denote breeding/calving areas associated with genetically distinct
breeding stocks (e.g. A, B) and sub-stocks (e.g. C2, C3).
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Best practices
Although every empirical study of natural populations has
its own idiosyncrasies, some core principles of genetic data
should be followed in most or all studies. These include the
following:

(1) Clarify goals and objectives and quantify expectations
before the study begins, as that will help define the
optimal experimental design;

(2) Follow appropriate data quality-control measures (see
IWC, 2009) to determine that the data are reliable
before conducting subsequent analyses and applying
results to management questions;

(3) The first step in analysis of nuclear data should be to
test for agreement with Hardy-Weinberg equilibrium
(HWE). A table of FIS values for each locus in each
population is the most useful way to summarise this
information. Significant departures in excess of those
that can be attributed to chance should be examined for
patterns related to specific loci or samples. Patterns of
linkage disequilibrium should also be examined for
evidence of linked pairs of markers;

(4) Other routine analyses include indices of genetic
diversity, which can influence many downstream
analyses; 

(5) Statistical tests are a useful starting point, but by itself
a significant P value provides no information other than
that the null hypothesis can be rejected. Biological
relevance of a statistical test depends on the magnitude
of the effect size (e.g. genetic distance or migration
rate);

(6) It is important to consider not only the point estimate
of an effect size but the full range of values that are
plausible given the empirical data;

(7) Absence of evidence is not evidence of absence. The
strength of conclusions that can be drawn based on
negative results is proportional to the rigorousness of a
power analyses that determines how large an effect size
could exist and still go undetected, given the amount of
data collected;

(8) It is important to carefully examine implicit as well as
explicit assumptions of the methods used and consider
the consequences of (often inevitable) violations;

(9) Consider the distinction between scientific results,
conclusions, and recommendations. Recommendations
often involve consideration of normative factors such
as societal values and risk tolerance and are most
meaningful when expressed in the context of specific
goals and objectives; and 

(10) In the past, with at most a few dozen allozyme or
microsatellite loci, it has been convenient to assume 
that all markers are independent (i.e. not genetically
linked). However, as we move into the genomics era
where tens of thousands of loci can be easily generated 
for non-model species, that assumption is no longer
tenable, because the markers are necessarily situated 
on a small number of chromosomes. Effects of 

linkage will therefore be important to consider in
genomics studies. 
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Appendix 1

GLOSSARY OF TERMS

Words or phrases in italics have their own entries

adaptation: the process by which the frequency of alleles
that enhance the survival and/or reproductive success (i.e.
the fitness) of individuals in a given environment increases
over time.

admixture: the result of interbreeding and gene flow
between genetically-differentiated populations.

allele: one of two or more alternative forms of a gene or
nucleotide sequence at a given locus.

allele frequency: the proportion of all alleles at a given locus
that are of a specific type within the group being sampled.

allelic richness: a measure of the number of alleles per locus
that uses rarefaction methods to minimise biases associated
with unequal sample sizes. 

allozyme: one of several variant forms of an enzyme coded
by alternative alleles at a single genetic locus; variant forms
typically differ in their charge and/or size and thus can be
discriminated by gel electrophoresis.

ascertainment bias: a bias introduced by the use of an
unrepresentative sample of individuals to identify loci for
use in a population genetic study. For example, an
ascertainment bias would be introduced if a SNP panel
developed using samples from one population is then used
to evaluate genetic diversity in another population. 

assignment test: a statistical method using multi-locus
genotypes to assign individuals to the population from which
they most likely originated. 

assortative mating: nonrandom mating, such that
individuals prefer to mate with other individuals of a similar
phenotype (positive assortative mating) or with other
individuals that are of different phenotypes (negative
assortative mating). 

autosome: a chromosome that is not a sex chromosome. 

balancing selection: a form of natural selection that acts to
maintain polymorphism at a locus within a population.

bottleneck: a temporary reduction in effective population
size that can result in a loss of genetic diversity due to the
increased strength of genetic drift. 

coalescence: the convergence of different alleles or lineages
back through time to a common ancestral allele/lineage. 

connectivity: the degree of exchange between two or more
groups or populations. Connectivity can be demographic, in
which case it relates to the degree to which population growth
and vital rates are affected by dispersal; or genetic, in which
case it refers to the exchange of genes (i.e. gene flow). 

demographic: pertaining to processes that affect the size of
a population (e.g. birth, death, dispersal).
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diploid: having two sets of chromosomes. In sexually
reproducing populations, one set is inherited from the mother
and one from the father. At a given diploid locus, an
individual can have two different alleles (heterozygous) or
two identical alleles (homozygous). Loci with autosomal
inheritance patterns are diploid (see haploid).

directional selection: a form of natural selection that
consistently favors a particular phenotype or allele. 

disruptive selection: a form of natural selection that selects
for divergent values of a trait.

dispersal: movement of an individual away from its natal
population and into another population. As used in this
document, dispersal usually implies that the dispersing
individual subsequently reproduces with members of the
new population, resulting in gene flow; however, that is not
always the case. In many species, but not cetaceans, passive
dispersal of gametes or larvae is common.

effective population size (Ne): the size of an ‘ideal’
population that would experience the same rate of genetic
drift as the population in question. In an ideal population
(also called a Wright-Fisher population), generations are
discrete, mating is random, and every individual has an equal
probability of contributing genes to the next generation—in
which case Ne = N. In most species, including cetaceans, Ne
is typically smaller than the number of individuals in a
population (see population size).

epistasis: the interaction between different genes, such that
the expression of a given gene depends on the expression of
one or more other genes. 

fitness: a measure of the contribution of an individual, in
terms of its genotype and/or phenotype, to the next
generation’s gene pool. 

fixed: in population genetics, this term is used to describe
an allele that is found at a frequency of 100% within a
population, such that no variation exists within the
population.

FIS: a measure of whether the genotypic frequencies
observed in a sample are compatible with those expected
under Hardy-Weinberg equilibrium. Positive FIS values
indicate a deficiency of heterozygotes compared to HWE,
while negative values indicate a deficiency of homozygotes
compared to HWE.

FST: a measure of the decrease in heterozygosity, relative to
that expected under random mating, that occurs as a result
of population structure. Low values of FST indicate that allele
frequencies are similar among the groups being compared,
while higher values indicate more genetic differentiation
between groups.

gene flow: exchange of genes between populations or
groups. Gene flow can result from an individual moving to a
new population/group and successfully reproducing with
members of that group, or through interbreeding between
individuals of different populations or groups without any
permanent movement of individuals (only gametes) between
groups. 

genetic distance: a measure of genetic differentiation
between two groups.

genetic differentiation: the accumulation of genetic
differences (allele frequencies or sequence substitutions)
between groups. Genetic differentiation can occur due to
limited gene flow as well as to natural selection on non-
neutral genes in sympatric groups.

genetic divergence: the process of accumulating genetic
changes (mutations) between two groups or lineages over time. 

genetic diversity: genetic variation that occurs within
individuals, within populations, and among populations.

genetic drift: random change in allele frequencies from one
generation to the next. Drift is expected to have a greater
effect as the effective population size of the population
decreases. 

genotype: the genetic makeup (allelic composition) of an
individual, either of the entire genome or more commonly
of a certain locus or set of loci (see phenotype).

haploid: having a single set of chromosomes, such that only
a single copy of an allele or sequence exists at a given locus.
In cetaceans, mtDNA is an example of a haploid marker, as
it is inherited only from the mother. Sex-specific markers,
such as Y-chromosome markers, also exhibit a haploid
inheritance pattern (see diploid). 

haplotype: the combination of alleles at loci that are found
on a single chromosome or DNA molecule and thus tend to
be inherited together. In cetaceans, haplotype typically refers
to the mitochondrial DNA sequence held by an individual.
Phased nuclear alleles, e.g. SNP variants physically located
on the same chromosome, also constitute a haplotype.

Hardy-Weinberg equilibrium (HWE): an idealised state
under which the genotypic frequencies in a population are
simple products of allele frequencies. In theory, HWE is
achieved in randomly-mating populations of infinite size that
do not experience migration, natural selection, or mutation. 

heterosis: a case when hybrid progeny have greater fitness
than either of the parental organisms. Also referred to as
hybrid vigor.

heterogeneity: the presence of multiple genetically or
demographically distinct groups within a set of samples.

heterozygosity: a measure of the proportion of individuals
in a group or population that carry two different alleles at a
given locus (may also be averaged over loci). Observed
heterozygosity (HO) is the actual frequency of heterozygote
individuals within a group, while expected heterozygosity
(HE, often referred to as genetic diversity) is the proportion
of heterozygotes that would be expected in the group under
Hardy-Weinberg expectations (e.g. random mating).

heterozygous: having two different alleles at a gene locus
(e.g. Aa).

hitchhiking: a process that results in a change in the
frequency of an allele at a selectively neutral locus due to
physical linkage with an allele of another locus that is under
natural selection.
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homozygous: having two copies of the same allele at a gene
locus (e.g. AA).

hybridisation: mating between individuals from two
genetically distinct populations or species.

identity by descent: when two alleles are identical because
they were both inherited from a common ancestor. In
contrast, identity by state occurs when two alleles are
identical for other reasons (e.g. convergent mutation).

inbreeding: mating between individuals that are more
closely related than by chance alone. Inbreeding is expected
to increase homozygosity because there is a greater
probability that the genotype of an inbred individual will
contain alleles that are identical by descent (inherited from
a common ancestor).

inbreeding coefficient: the probability that two alleles found
at a locus within an individual are identical by descent (i.e.
were inherited from a common ancestor). 

infinite sites mutation model (infinite alleles model): a
model of evolution under which each mutation leads to a 
new allele in the population, and all allele types are 
equally different from each other (see step-wise mutation
model). 

introgression: incorporation of genes from one species 
or population into another through hybridisation and
backcrossing.

intron: a region of non-coding sequence that is positioned
between exons (coding regions) in a gene. 

isolation by distance: a decrease in genetic similarity
between pairs of individuals or populations as geographic
distance increases. 

landscape genetics: the study of the interaction between
landscape or environmental features and population genetic
parameters, such as gene flow and genetic differentiation.

lineage sorting: the process by which different genetic
lineages within an ancestral taxon are lost by genetic drift or
replaced by unique lineages evolving in different derived
taxa. Incomplete lineage sorting is the persistence of an
ancestral polymorphism through a speciation event, resulting
in a shared lineage among different species. 

linkage: a measure of the degree to which alleles of two loci
do not assort independently. Two loci in close proximity on
a chromosome have a higher probability of being inherited
together than do two loci that are further apart and hence are
said to be linked. Nonrandom associations of alleles at
different loci can also occur by natural selection, migration,
or genetic drift without physical linkage.

linkage equilibrium: the random association of alleles
between loci. Also called gametic equilibrium.

linkage disequilibrium (LD): the nonrandom association of
alleles between loci, often because the loci are located close
together on the same fragment of DNA. Also known as
gametic disequilibrium. Random LD also occurs in all
populations due to genetic drift, with magnitude inversely
proportional to effective population size.

locus (plural loci): a stretch of DNA at a particular place on
a particular chromosome; often used to refer to a gene.

Mendelian inheritance: inheritance of traits or genes 
in accordance with the laws defined by Gregor Mendel,
which include segregation of chromosomes, independent
assortment and homologous exchange.

microsatellite: a genetic marker comprised of short DNA
sequence units that are repeated multiple times (e.g.
ATATATATAT). Although microsatellites can be found on
sex chromosomes and in mitochondrial DNA, use of this
term in cetacean population genetics typically refers to loci
that are bi-parentally inherited and of nuclear origin.
Microsatellite alleles are usually labeled according to the
number of repeated units (and thus the size) contained in a
given allele, as opposed to being directly sequenced. 

migration: this term is commonly used in two different ways,
to refer to: a) seasonal movements between two geographical
areas that are related to the population’s reproductive cycle,
changes in their physical environment (e.g. ice formation),
and/or prey availability; and b) movement of individuals
between groups or populations, which might or might not
result in successful reproduction and gene flow. Unless
otherwise specified, as used in this document ‘migration’
implies both movement between populations and gene flow. 

mitochondrial DNA (mtDNA): a small, circular DNA
molecule (in animals ~16–20 kbp long) found in the
mitochondria (i.e. outside of the nucleus) of a cell. In
cetaceans, mtDNA is inherited only from the mother and is
thus an example of haploid inheritance. 

mixture: a group of individuals that are aggregated within a
common area but which are from more than one different
breeding population. In cetaceans, a mixture of individuals
often occurs when animals, such as humpback whales, from
different breeding populations migrate to a common feeding
area. 

monomorphic: having only a single allele.

monophyletic: term used to describe a group of taxa or
lineages that includes a common ancestor and all of its
descendants (see paraphyletic). 

mutation: a change to the genetic material of a cell.
Mutations can include single nucleotide changes, deletions,
and insertions, as well as duplications, losses, inversions, and
translocations of segments of DNA sequence. 

mutation-drift equilibrium: within a population, a state at
which the loss in genetic variation due to genetic drift is
balanced by an increase due to mutation. 

natural selection: differential contribution of genotypes to
the next generation due to differences in survival and/or
reproduction.

nuclear DNA (nDNA): DNA found in a cell’s nucleus. In
cetaceans, autosomal nuclear DNA is bi-parentally inherited,
such that an individual’s genotype at a given locus contains
one allele inherited from its mother and another allele
inherited from its father. Nuclear DNA also includes DNA
found on sex chromosomes.
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nucleotide diversity: a measure of genetic variation
calculated from DNA sequence data, which measures the
average proportion of differences between all DNA
sequences (i.e. the average difference between two randomly
taken sequences) in a group. 

neutral: not influenced by natural selection.

null allele: an allele that fails to amplify to detectable levels
during PCR analysis. 

numt: a segment of mtDNA sequence that has been
transposed into the nuclear genome; numts are typically not
expressed and hence constitute pseudogenes.

outbreeding: mating between unrelated individuals that is
more frequent than would be expected on the basis of chance
alone. Outbreeding can occur due to negative assortative
mating.

overdominance: a condition in which heterozygotes have
higher fitness than homozygotes.

panmixia: a state that occurs when all individuals within a
population are mating randomly with each other. When used
as an adjective, the term is panmictic.

paraphyletic: a term used to describe a group of
taxa/organisms that share a common ancestor and some but
not all of its descendants (see monophyletic).

phenotype: the observable or detectable characteristics of
an individual, including physical and physiological traits,
which are determined (to varying extents) by the individual’s
genotype and/or by environmental factors (see genotype).

phylogenetic: a term used to describe evolutionary
relationships among taxa.

phylogeography: the study of how the genetic lineages of a
taxon are distributed across the landscape, in order to better
understand its evolutionary history (its origin and spread).

polymorphic: having more than one allele at a locus. This
term is typically used to refer to a group/population rather
than to an individual, which is considered to be heterozygous
if more than one allele is present.

polyphyletic: a term used to describe a group of taxa or
lineages that do not all share the same most recent common
ancestor This scenario can occur if taxa or lineages are
grouped together based on a shared trait that has evolved
independently in multiple taxa in response to environmental
or other adaptation. 

population: a group of individuals that co-occur in space
and time and freely interbreed. Terms that are often used
synonymously with ‘population’ include ‘subpopulation’ and
‘stock,’ although the latter can also refer to units of
management convenience that do not imply interbreeding 

population size (N): the number of individuals in a
population, often denoted as the census size (Nc). Commonly
used to refer either to all individuals or only adults (see
effective population size).

positive selection: natural selection for an allele that
increases fitness.

probability of identity (I): the probability that two unrelated
(randomly sampled) individuals would have an identical
genotype. This probability can also be calculated assuming
that full siblings are available to be sampled.

pseudo-overdominance: an increase in fitness of
heterozygotes at a neutral locus due to linkage disequilibrium
with another locus that is under natural selection.

pseudogene: a nonfunctional member of a gene family that
has been derived from a functional gene.

random mating: mating in which the probability that any
two individuals in a group will mate is the same for all
possible pairs of individuals. 

rarefaction: a method by which sample sizes are randomly
reduced to the size of the smallest sample using simulations. 

reciprocally monophyletic: a term used to describe two
groups that are both monophyletic taxa or lineages and share
a more recent common ancestor than either shares with any
other taxa or lineage.

recombination: in sexually reproducing organisms, a
process by which genetic material is exchanged between
maternal and paternal chromosomes during meiosis,
resulting in offspring that may have different combinations
of genes from their parents. Genes that are located further
apart on the same chromosome have a greater likelihood of
undergoing recombination. 

relatedness: a measure of the proportion of genes that are
identical by descent (i.e. derived from a common ancestor)
among two individuals.

single nucleotide polymorphism (SNP): DNA sequence
variation that occurs when a single nucleotide (A, T, C, or
G) differs at a specific site among individuals or within an
individual (for diploid markers).

step-wise mutation model: a model of microsatellite
evolution which assumes that mutations result in the gain or
loss of a single repeat unit, such that alleles that are more
similar in size are more closely related (see infinite alleles
model).

substitution: a mutation that results in the replacement,
within a population, of one nucleotide with another
nucleotide. In contrast to the spontaneous mutation rate,
which reflects the probability of a mutation occurring
between a parent and its offspring, the substitution rate only
measures those mutations that accumulate over time in a
surviving lineage.

underdominance: natural selection against heterozygotes.

Wahlund effect: a type of heterozygote deficiency that
occurs when two or more genetically differentiated groups
are sampled and included as part of the same strata in
analyses. 

Wright-Fisher model: an idealised, discrete-generation
model of reproduction in which all individuals contribute
equally to a very large gamete pool, which unites at random
to form individuals in the next generation.
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There has been a long-standing debate about species
concepts, some of which would lead to differing
classifications with obvious complications for the objective
of species delimitation (see de Queiroz 2007). The
phylogenetic species concept (Eldredge and Cracraft, 1980)
groups organisms according to a shared evolutionary history
and has been promoted recently by the interest in DNA
barcoding (see Monoghan et al., 2009). Eldredge and
Cracraft (1980) proposed a ‘phylogenetic’ species to be ‘the
smallest group of individuals that share a common ancestor
and can be distinguished from other such groups’.
Confidence in the assignment of a phylogenetic species can
be provided through congruent reciprocal monophyly (where
all specimens defined as that species fall into the same
lineage) among phylogenies constructed from different genes
(see Balloux, 2010). Exceptions to the strict monophyly rule
can occur, for example when a population colonising a new
geographic area evolves into a separate monophyletic
species, rendering the ancestral range of the species
paraphyletic (where some but not all members of a lineage
share a common ancestor within that lineage). Other species
concepts (of which there are many, see Mayden, 1997) are
often more difficult to test (such as the ‘biological species
concept’ which focuses on reproductive isolation; see Mayr
1942). Efforts to define a ‘unified’ species concept have
included ideas associated with relative fitness (most
consistent with the biological species concept; Hausdorf,
2011) and phylogenetic lineages (de Queiroz 2007). There
has been a tendency for conservation biologists to favor the
phylogenetic approach, as it typically identifies a greater
number of species – Agapow et al. (2004) conducted a meta-
analysis focused on this issue and discussed the implications
for conservation management. Here, given the nature of the
available data and the key objectives (effective conservation
and management), we will focus on phylogenetic concepts
of species delimitation. 

Cetacean taxonomy is difficult, in part due to a recent
radiation of diversity, especially among Odontocete taxa, but
also due to the lack of good quality type specimens in many
cases. A good example is that of the beaked whales, a group
in which some named species were identified on the basis of
just a few damaged bones, and later phylogenetic
assessments based on both nuclear and mtDNA genes have
led to some significant revisions (Dalebout et al., 2004,
2008). There has also been incongruence between
morphological taxonomic and molecular phylogenetic
assessments of species delimitation for several groups of
delphinid taxa, especially in the genera Tursiops, Delphinus,
Stenella, and Lagenorhynchus. Both Tursiops and Delphinus
have been subdivided into up to 20 named species at one
point, then collapsed back down to one, only to be divided
again (but this time to 2–4 species). It is clear that Tursiops
in particular can be divided into multiple lineages, and
several of these are now recognised as separate named
species, with further resolution and clarification likely
necessary (e.g. Wang et al., 1999, Natoli et al., 2004,
Charlton-Robb et al. 2011; Moura et al. 2013a). There is a 

consistent pattern of differentiation among habitat or resource
specialists, such that some nearshore and offshore populations
of Tursiops (Hoelzel et al., 1998a) and Delphinus spp. (Natoli
et al., 2006) form reciprocally monophyletic lineages (though
not all), as do resource specialists in the genus Orcinus (see
Hoelzel et al., 2002, Morin et al., 2010). However, in
Orcinus, mtDNA phylogenies show reciprocal monophyly
among matrifocal populations, while nuclear markers suggest
ongoing male-mediated gene flow (Hoelzel et al., 2007, Pilot
et al., 2010) and a genomic phylogeny based on 1.7MB
nuclear DNA showed a different topology compared to the
mtDNA tree (Moura et al., 2015). This emphasises the
importance of using multiple markers for phylogenetic
studies at and below the species level. Various stochastic
processes can lead to random differences among single gene
trees, so several molecular markers are needed to characterise
the genetic structure of species.

The analysis of phylogenetic lineages for the identification
of robust monophyletic groups is useful from a conservation
and management point of view regardless of the eventual
taxonomic rank assigned, because it serves to identify
cohesive and distinguishable units. It is expected that the
conservation of these defined units of diversity will facilitate
the potential for species to respond through natural selection
to a changing environment, and this has become a core
objective in conservation genetics. This approach is reflected
in policy in the US, where ‘distinct population segments’
representing genetic populations that are discrete from other
conspecific populations and represent a significant
component of the overall diversity can be protected under
the Endangered Species Act (ESA) (Waples, 2006). The
killer whale (Orcinus orca) provides a case in point, where
a regional population in decline (the ‘southern resident’
community in Puget Sound, WA) was protected under this
provision of the ESA. In fact, in spite of some evidence for
ongoing gene flow, killer whale populations show a level of
differentiation that merits regional protection (including the
recognition of sympatric populations of ecotypes, see
Hoelzel et al., 1998b), illustrating the importance of a
mechanism to protect diversity prior to official recognition
of named taxonomic units (e.g. species and subspecies).

Given a mechanism to protect diversity at the population
level, a more important application of species delimitation
studies is the identification of cryptic species. Specifically,
this means the recognition of relatively deep and
monophyletic lineages that have not been previously
recognised or named. Recent cetacean examples have
included populations that are morphologically similar to
named species. For example, the specimens eventually
named Balaenoptera omurai were collected in Indo-Pacific
waters near the Solomon Islands in the 1970s. They were
initially recognised as distinct from other species in 
this genus based on allozyme studies (Wada et al.,
1991) and classified as a small form of the Bryde’s 
whale (Balaenoptera brydei). Later investigations more
comprehensively assessed their morphology (Wada et al.,
2003) and molecular phylogeny (based on mitochondrial and
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nuclear DNA sequence data; Sasaki et al. 2006) and named
them B. omurai, proposing a further classification for another
small form of the Bryde’s whale as B. edeni (Wada et al.,
2003, Sasaki et al., 2006). Based on a morphological study,
Wada et al. (2003) described B. omurai as actually most
similar to fin whales (Balaenoptera physalus), but smaller.
Although the full classification of this group of whales
remains uncertain and controversial, the lineage representing
B. omurai is clearly divergent from other named species in
the genus and warrants independent conservation status.

The analytical methodology for species delimitation is
based on finding a robust representation of evolutionary
histories, typically using a phylogenetic reconstruction
approach. A phylogeny is essentially a hypothesis about the
pattern of evolutionary histories among taxonomic units, and
its accuracy is dependent on the quality and quantity of the
data, together with an appropriate choice of evolutionary
model and set of taxonomic units to compare. For a given set
of taxonomic units there is an exponentially rising number of
possible trees as the number of taxa increases. The objective
is to find the best tree for a given method, and to then compare
among methods and among markers (preferably including
both morphological and multiple genetic markers). There are
two primary approaches to phylogenetic tree construction, one

based on similarities (e.g. DNA sequence similarity resulting
in a ‘phenetic’ tree), and optimality methods, based on some
criteria (such as finding the shortest tree using the ‘maximum
parsimony’ method, or the most probable, ‘maximum
likelihood’ tree). For a review of the various methodologies
see Lemey et al. (2009). Recent multi-locus phylogenies of
delphinid species have supported some traditional taxonomic
classifications, while raising questions about others, even at
the genus and family level (e.g. Harlin-Cognato et al., 2006,
Steeman et al., 2009). These studies have made clear the
necessity for further work to help establish appropriate units
of conservation for whales and dolphins.

In the context of cetacean management issues, phylogenetic
reconstruction methods help to establish boundaries among
management units that merit conservation, and in the case of
cryptic species, to recognise diversity that was previously
unmanaged. Once taxonomic units are established, the same
general methodology can be used to facilitate the identification
of species from specimens that cannot easily be recognised by
morphology (for example, processed materials in commercial
trade). The process of identifying species using one or a few
loci and phylogenetic methods has been termed ‘DNA
barcoding’ and has found increasing applications in
conservation biology (see Kress et al., 2015).
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(2) ANALYSIS OF DIVERSITY WITHIN POPULATIONS

(a) Measures of genetic diversity 
A common estimator of genetic variation within a population
is average heterozygosity (H), which is the fraction of
individuals that are heterozygotes (and have two different
alleles at a gene locus). Individuals with two of the same
alleles are homozygotes (frequency 1–H). Typically, H reflects
an average across a number of gene loci. Just enumerating the
heterozygote individuals yields the observed heterozygosity,
Ho. One can also calculate the expected heterozygosity 
(He), which is the fraction of individuals expected to be
heterozygous under the assumption of random mating, as 

He = 1 – Σ pi
2, 

where pi is the frequency of the ith allele at a locus.
Conceptually identical to expected heterozygosity is gene
diversity (often used for mtDNA and then called haplotype
diversity, h), which is the likelihood that the alleles of two
individuals randomly taken from the population are identical.
Both expected and observed heterozygosity and genotype
diversities range from 0 (all genotypes homozygous and
identical) to 1 (all genotypes heterozygous and different).
Estimates of observed and expected heterozygosity based on
finite samples of size n individuals are biased, and unbiased
estimates can be obtained by multiplying the empirical values
by the factor n/(n–1) (Nei 1978).

At polymorphic microsatellite loci, many different alleles
often occur, which produce high heterozygosities. The
number of alleles NA found in a sample is an additional
measure of genetic diversity. NA is not an unbiased measure,
as it scales with sample size (up to a certain point, which can
be estimated by rarefaction). To overcome this problem,
allelic richness AR is calculated through rarefaction: sample
sizes are randomly reduced by Monte Carlo simulation to the
size of the smallest sample (e.g. Thompson et al. 2016). A

related measure is the effective number of alleles, ñ,
calculated according to

ñ = 1/(1– He)

Both AR and ñ provide estimators of allele diversity not
biased by sample size (in the case of ñ provided that He has
been corrected for sample size; see above).

The measures above are primarily used to characterise
levels of diversity in contemporary populations. Another
measure of genetic diversity, θ (theta), is widely used to draw
inferences about historical demographic processes, based on
the theoretical expectation that, at mutation-drift equilibrium,
theta is expected to be a simple function of the mutation rate
(μ) and effective population size (Ne): 

θ = 4Neµ

See Section (3)(b)(i) for more information about this
relationship. Usually neither Ne nor μ are known for natural
populations. A variety of methods are used to estimate θ from
genetic data. For practical reasons, we only cover a few
common approaches here: For sequence data, the most
common approach to estimate θ utilises the fact that
(assuming an infinite site mutation model) θ = π, where π is
the nucleotide diversity. π is calculated according to

π = ΣΣpipjπij 

where pi and pj are relative frequencies of the alleles i and j
in the population and πij is the proportion of polymorphic
nucleotides in pairwise comparison among i and j.

For microsatellites, a strictly stepwise mutation model is
typically assumed, which implies that alleles with a similar
number of tandem repeats are more likely to be identical by
descent (IBD; Slatkin 1995). Under this mutation model, the
expectation of θ is 
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where n is the number of investigated gene copies (for
diploid loci, twice the sample size), ai is the repeat number
of the ith allele, and ā is the average repeat number. This is
equivalent to

θ = 2σ2 ,
where σ2 is the variance in repeat number among all sampled
gene copies.

(b) Information derived from tests of Hardy-Weinberg
equilibrium
An initial step in analysis of most population genetic datasets
is to test for agreement between observed genotypic
frequencies and those expected according to the Hardy-
Weinberg principle. Often this is referred to as testing for
Hardy-Weinberg Equilibrium (HWE; reviewed by Waples
2015), but HWE does not represent a true equilibrium;
instead, it describes the expected relationship between allele
frequencies and genotypic frequencies in a randomly-mating
population that is not experiencing any evolutionary forces
(drift, migration, selection, mutation). Under these
conditions, the frequencies of genotypes are simple functions
of allele frequencies. For example, if the population
frequency of allele ‘a’ is p, under HWE the frequency of the
‘aa’ homogzygote genotype will be p2. Statistical tests of
HWE that account for effects of sampling error can help to
identify samples or genetic markers for which a) one or more
of the above assumptions are not met, or b) sampling or
laboratory artifacts have affected the data.

Agreement with HWE can be measured by Wright’s
inbreeding coefficient, FIS: 

FIS = (He – HO)/He

Positive values of FIS indicate deficiencies of heterozygote
individuals compared to expected HWE proportions, and
negative values indicate excesses. As discussed below and
by Waples (2015), deviations from HWE can be caused by
laboratory artifacts and/or biological processes that depart
from HW assumptions. Here we assume that HW evaluations
have been conducted as part of the DNA data quality 
control step. If a sample consistently deviates from 
HWE-expectations at multiple loci, this can be indicative 
of population-level processes such as migration or
interbreeding (see Table A1). 

Heterozygote deficiency (positive FIS): A significant
deficiency of heterozygous individuals can arise from true
or apparent null alleles, which in turn can be related to
sample quality or laboratory procedures (see Tiedemann 
et al., 2012). These effects are generally locus-specific. A
deficit could also occur through non-random sampling, if
heterozygotes are less likely to be sampled because of some
aspect of their phenotype. Some biological causes of
heterozygote deficiency are:

• Undetected population structure. What is assumed to be
a sample from a single population might include
individuals from more than one gene pool. This could
occur because of seasonal mixing (e.g. sampling
different breeding stocks on a common feeding ground)
or because of incorrect population definition (either
spatially – the sample covers the range of more than one

E( v ) = (2 / (n –1)) (ai – a )2

i=1

n population, or temporally – lumping individuals from
different seasons or years). This type of heterozygote
deficiency is known as the Wahlund effect, and it should
produce a positive correlation between FIS and FST across
all loci (Waples 2011, 2015; see also discussion of null
alleles in De Meeûs, 2018 and Waples, 2018).

• Disruptive selection/local adaptation at or near the
evaluated marker. Marker loci or loci closely linked to
them might be affected by selection. While this might
be of interest in itself in some contexts, it can
compromise the validity of population genetic
estimators that assume selective neutrality. However,
even strong directional selection does not necessarily
lead to departures from HWE (Lewontin and
Cockerham 1959; Waples 2015). This effect, when it
occurs, should be locus-specific.

• Inbreeding due to positive assortative mating. If
individuals tend to mate with close relatives, or with
individuals with similar phenotypes to theirs, the result
can be a deficiency of heterozygotes. This should affect
loci across the genome. 

Heterozygote excess (negative FIS): Data quality problems
in the laboratory can produce heterozygote excesses (see
Koehn, 1972 for an extreme example), as can sampling that
favors collection of heterozygotes. Possible biological causes
include the following: 

•  Recent population admixture. If two genetically
dissimilar populations interbreed, the result will be an
excess of heterozygotes in the offspring. This would
affect many loci across the genome, but it would be
transient, as it takes only a single generation of random
mating to re-establish HWE.

•  Selection favoring heterozygotes (balancing selection).
An excess of heterozygous individuals can indicate 
a selective advantage of the heterozygous state. A 
classic example of heterozygote advantage involves the
locus for sickle-cell anemia in humans, where the
heterozygote form has higher resistance to malaria.
Heterozygote excesses that have been observed at
immune system loci could also be due to selection
favoring heterozygotes (Hedrick 2002). In addition to
these locus-specific effects, selection could also favor
individuals that generally have higher heterozygosity
across the genome, in which case heterozygote excesses
might be found at many gene loci.

•  Outbreeding. This occurs when mates are consistently
less related than expected at random. Hedrick et al.
(2016) described an example involving wolves from
Yellowstone National Park (USA), where more
matings than expected by chance occurred between
individuals with different coat colors. Another possible
cause of outbreeding is gender-specific dispersal, when
one sex (in mammals often the female) disperses much
less than the other. Outbreeding would affect loci
across the genome.

•  A small number of parents. This is the basis for the
heterozygote excess method of estimating effective
population size (Pudovkin et al., 1996); when it occurs,
it should affect loci across the genome. 
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Note that failure to reject HWE does not necessarily imply
statistical support for HWE, as not getting a significant result
can be caused by low statistical power. Fairbairn and Roff
(1980) showed that the power to reject HWE generally is
relatively low, even for large sample sizes. Although
statistical tests of HWE are useful, more important than the
resulting P value are the magnitudes of any departures and
what they mean for (a) the biology of the species, and (b)
any downstream genetic analyses that assume HWE. Both
of these latter topics are in need of further research
(discussed in Waples, 2015).

(c) Information derived from tests of linkage
disequilibrium (LD)
Linkage disequilibrium is the non-random association of
alleles at different gene loci. If two loci are physically
‘linked’ because they are close together on the same
chromosome, they do not assort independently, which leads
to LD. When only a handful of allozyme or microsatellite
markers were available, it was convenient to ignore LD and
assume the markers were unlinked. This was probably not
unreasonable, given two facts: 1) the probability that any
random pair of loci are on different chromosomes (and hence
not physically linked) is (c–1)/c, where c is the number of
chromosomes, and 2) even if two loci are on the same
chromosome, they could be far enough apart that they are
nearly independent. Currently, however, it is possible to
generate many thousands of SNP loci for any species.
Increasing the number of loci does not increase the
proportion of pairs that are linked, but it does ensure that at
least some pairs of loci will be physically linked (Waples et
al., 2016). Linkage can affect both bias and precision of
population genetic analyses, and the consequences of this are
still being evaluated; some analyses are much more sensitive
to linkage than others. If detailed information is available
about the arrangement of genes on the chromosomes, one

locus of a linked pair could be removed so the analysis
focused only on unlinked markers. 

LD can also arise from a variety of processes even when
markers are not physically linked (see Table A1), including:

•  A small number of parents. This is the basis for the LD
method of estimating effective population size (see
Section (3)(b)(ii)); this type of LD should affect loci
across the genome. 

•  A mixture of individuals from more than one
population. Mixture LD is the two-locus analogue of
heterozygote deficiency (Wahlund effect) caused by
population mixture. This type of LD should produce a
positive correlation between FIS and FST across all loci.

•  Admixture (interbreeding of individuals from different
populations). Unlike HWE, which is restored with a
single generation of random mating, LD at unlinked
loci only decays by 50% each generation. The rate of
recombination and decay of LD is much lower for
physically linked markers. This means that genetic
signatures of past interbreeding events can potentially
be detected many generations later.

• Natural selection. Genes rarely work in isolation; their
effects depend on the genetic background of the entire
genome. Effects of one gene on another are called
epistasis. Epistatic interactions of genes on different
chromosomes can cause LD, but these associations are
difficult to maintain because half of them decay by
recombination every generation.

• Hitchhiking. Loci that are tightly linked to a new
advantageous mutation can rapidly increase in
frequency through a process called hitchhiking
(Barton, 2000). Hitchhiking effects are important to
consider in evaluating results of methods to detect
natural selection.
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Table A1 
The most common causes of linkage disequilibrium (LD) and departures from Hardy-Weinberg proportions. Reproduced from Waples 
(2015). 

Observation/possible cause Locusa specific? Sample specific? Comments 

Positive FIS    
Positive assortative mating Yes Perhaps Effect is expected only if phenotype is correlated with genotype 
Self fertilisation No Yes – 
Wahlund effect Yesb Yes b FIS should be positively correlated with FST 
True null alleles Yes No – 
Apparent null alleles Yes Perhapsc cCould depend on sample quality 
Non-random sampling Perhaps Perhaps Expected if heterozygotes are less likely to be sampled   
Underdominance Yes Perhaps Selection against heterozygotes 
Negative FIS    
Negative assortative mating Yes Perhaps Effect is expected only if phenotype is correlated with genotype 
Non-random sampling Perhaps Perhaps Expected if heterozygotes are more likely to be sampled  
Overdominance Perhapsd Perhaps Selection favors heterozygotes 
Selection differs in M and F Yes Yes Allele frequency differences between sexes cause het excess 
Sex linkage Yes Perhapse Allele frequency differences between sexes cause het excess 
Small Ne No Yes – 
LD; r2 significantly > 0    
Small Ne No Yes – 
Wahlund effect Yesf Yes fr2 should be positively correlated with FST(1)*FST(2)  
Epistasis Yes Perhaps A wide range of patterns is possible 
Hitchhiking Yes Perhaps – 

aRecognising that random variation will occur among loci, even if ‘No’ is indicated in this column. bSee ‘Comments’ column. cSee 
‘Comments’ column. dIf heterozygote advantage is due to general heterosis, locus-specific effects are not expected. eSee Marshall et al. 
(2004) for an example of sample-specific departures from HWP due to sex linkage. fSee ‘Comments’ column. 
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Estimating the number of whales found in a specific
geographic area (whether these are termed ‘stocks’,
‘populations’, or ‘sub-populations’, etc.) is a critical
component of IWC considerations, and such estimates can
be obtained from sighting surveys as well as through use of
genetic analyses. In addition to ‘census’ population size
(typically denoted by N or Nc; i.e. the number of individuals),
population and conservation genetic inferences are also
concerned with the ‘effective’ population size (Ne). 

(a) Census size, N
Census population size can be estimated in two ways using
genetic data; by capture-mark-recapture methods and
rarefication curves. 

(i) Genetic capture-mark-recapture of individuals
If the genotype for a sufficient number of variable genetic
markers is available, then each individual will end up with a
unique genetic ‘profile’ (multi-locus genotype). Individual
whales can then be uniquely identified from their genetic
profiles, in which case the genetic data become equivalent
to any other tagging data (e.g. external tags or photographic
identification) and can be used to estimate abundance by
standard capture-mark-recapture methods (Garrigue et al.,
2004; Palsbøll et al., 1997; Seber, 1982). 

Genetic capture-mark-recapture is subject to the same
general caveats that apply to other tagging methods used for
capture-mark-recapture estimation of abundance, including
capture heterogeneity (different capture probabilities among
individuals), underlying assumptions (e.g. open or closed
population, mixing between sampling events etc.), and tag
loss and mis-identification (Hammond et al., 1990; Schwarz
and Seber, 1999). For genetic capture-mark-recapture, the
most fundamental criterion is to ensure that individuals are
identified correctly, which implies that (i) each individual
has different multi-locus genotypes and that (ii) different
tissue samples from the same individual all have identical
genetic profiles. The first issue is resolved by genotyping a
sufficient number of loci, and the second is correlated with
the genotyping error rate, which in turn is a function of DNA
quality as well as the overall laboratory quality control.
Measures to minimise errors and recommended ways to
report error rates are detailed in the guidelines document for
DNA quality control (Tiedeman et al., 2012).

Assessing how many loci are required to ensure that every
individual has a unique genetic profile is typically determined
on the basis of the so-called ‘probability of identity’ (I,
Paetkau et al., 1995), which denotes the probability that two
individuals have an identical genetic profile by chance. I is
estimated from the observed allele frequency distribution.
One potentially important aspect of I is the fact that closely
related individuals have higher Is due to elevated levels of
identity by descent in comparison to unrelated individuals.
The issue of related individuals is typically circumvented by
genotyping sufficiently many loci to ensure that, even if all
individuals were related as full-siblings (which have the
highest expected I), the expected number of different
individuals with identical genetic profiles will be below an a
priori threshold (Waits et al., 2001). This approach is perhaps

overly cautious as not all specimens are likely to be related;
except in very small populations, the fraction of related
individuals will be far less than that of unrelated individuals
(Paetkau, 2004; Rew et al., 2011). The estimation of I is based
upon an assumption of random mating and the observed allele
frequencies. Consequently, ignoring significant genetic sub-
structuring (sub-populations, or social structure, such as
maternally related pods) within samples might result in an
under-estimate of the number of loci necessary to reliably
identify individuals. No general assessment has been
conducted to determine what levels of sub-structuring cause
problems in this regard. If such issues are suspected, then it
is advisable to undertake simulations to estimate the potential
bias of I and to assess the effect upon the individual genetic
identification and the final estimate of N. 

It should be noted that simply genotyping more loci in each
specimen to satisfy an I of high relatedness is not without
problems either, because the error rate per individual is
positively correlated with the number of loci used for the
individual genetic profile. Accordingly, the optimal number
of loci is a balance between the rigor of individual
identification and the chance of mis-matching genotypes due
to errors (Paetkau, 2004; Rew et al., 2011). This optimal
number will typically be a few more loci than the bare
minimum suggested by the estimate of I (for unrelated
individuals). In such cases, mis-matches due to low error rates
are readily identifiable as nearly identical genetic profiles (i.e.
two samples with identical genetic profiles at all but a single
locus), which then can be retyped at the loci in question.

(ii) Indirect capture-mark-recapture of individuals
through the genetic identification of close relatives
A previously captured individual genetic profile can be ‘re-
captured’ indirectly by the identification of parts of its
genome in other individuals, i.e. the identification of close
relatives to the captured individual. This can be done, for
instance, using paternity analysis during which a previously
sampled individual male genetic profile can be re-captured
in offspring he has sired. Each of such paternities assigned
to previously captured males constitutes a ‘recapture event’
of the male in question. The final data can be used to conduct
a capture-mark-recapture estimate of census population size
(Pearse et al., 2001; Palsbøll, 1999; Nielsen et al., 2001;
Garrigue et al., 2004). Such indirect recapturing of individual
genetic profiles through the identification of their close
relatives can, in principle, be extended to any degree of
relatedness. However, in contrast to more traditional capture-
mark-recapture assessments, relating the number of
recaptures to census population size is less straightforward
for this kind of indirect genetic recaptures. The re-capture
probability of a captured and marked individual depends not
only on population size but also on the demographic
parameters such as survival, birth and dispersal rates as well
as the reproductive variance in addition to the degrees of
relatedness targeted in the estimation. (Palsbøll et al., 2010;
Fountain et al., 2017; Bravington et al., 2016a, b). Often
tissue samples are collected over extended longer time
periods (i.e. not during one sampling session) which adds
further complexity to such an estimation.
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There are a number of different statistical approaches to
estimating the degree of relatedness among individuals
(Blouin et al., 1996). However, the LOD method appears to
be the least biased (Milligan 2003). Typically, this kind of
estimation requires more loci to be genotyped in each
individual compared to the re-capture of individuals (Section
(3)(a)(i) above), since identification of related individuals is
subject to greater uncertainty. The number of loci required
(i.e. the statistical power in the observed data to detect pairs
of individuals of the targeted relatedness category) can be
assessed in silico (Wang, 2006). As with the identification
of individuals, estimation of relatedness among individuals
is based on observed allele frequencies assuming Mendelian
transmission of alleles and random mating. No general
statistical framework has yet been developed for this
approach, and hence this kind of estimation will typically
require some level of simulation to calculate abundance and
the associated statistical uncertainty (e.g. Palsbøll et al.,
2005). 

Nielsen et al. (2001) employed paternity to estimate male
abundance in North Atlantic humpback whales and a recent
implementation of this approach in a large marine fish
population (southern bluefin tuna) illustrates many of the
issues involved (Bravington et al., 2016a, b). An example
using cetaceans is the study by Garrigue et al. (2004). 

(iii) Identifying recent population bottlenecks
When a population decreases in abundance, so does the
effective population size (Ne – see Section (3)(b)). Genetic
diversity, in turn, decreases due to random genetic drift at a
rate that is inversely proportional to the new, lower Ne.
However, the loss of genetic diversity is not instantaneous.
The time lag until the population attains mutation-drift
equilibrium corresponding to the post-bottleneck Ne is a
function of pre-bottleneck Ne, as well as the nature and
degree of decrease. During this transitional phase, rare
alleles, heterozygosity, and several other diversity indices
(e.g. nucleotide diversity and the variance in number 
of repeats) decline at different rates, and these differences
form the basis for a general class of tests of deviation 
from mutation-drift equilibrium (aka “bottleneck” tests). 
The general principle in these tests is to compare a ratio 
(or sum as in the case of Tajima’s D, Tajima 1989) 
of diversity indices against the expectation under 
mutation-drift equilibrium, which serves as the null
hypothesis.

The two most commonly-used methods to detect a recent
bottleneck are; (i) a test for heterozygote ‘excess’ (Cornuet
and Luikart, 1996), and (ii) the M-ratio test (Garza and
Williamson, 2001). Both tests are based upon microsatellite
genotypes. In the case of (i), coalescent-based simulations
are used to generate the null distribution of heterozygosity,
given the observed number of alleles under mutation-drift
equilibrium. During a bottleneck, alleles are lost faster than
heterozygosity declines. If the observed heterozygosity is
higher than expected given the number of alleles, a
bottleneck is inferred. The M-ratio test (ii) compares the size
range of alleles to the number of alleles (the ‘M-ratio’).
During a bottleneck, the number of alleles decreases faster
than the size range. Coalescent simulations are also

employed to estimate the null distribution of the M-ratio 
(i.e. under equilibrium conditions). A lower than expected 
M-ratio is indicative of a bottleneck. The outcome of both
approaches relies heavily on the underlying mutation model
(essentially the fraction and mean length of mutations larger
than a single repeat; Peery et al., 2012; Williamson-Natesan,
2005). With both tests, an incorrect mutation model can
generate results suggesting a bottleneck when none has
occurred. In addition, the power of these tests varies
substantially depending on the nature of the bottleneck (pre-
bottleneck population size, and the nature and degree of the
reduction), as well as the amount and kind of data; therefore,
absence of a statistically significant result cannot be
interpreted as indicating that no bottleneck has occurred.
Since both tests are sensitive to the above issues, it is
important to test the rigor of the observed outcome by
simulations before drawing final conclusions (Peery et al.,
2013). 

Another class of analytical methods aims at estimating the
time and relative change in abundance over time. These
approaches all employ coalescent theory, which implies that
they are likely sensitive to the above issues regarding the
underlying mutation model (mode as well as rate).
BATWING (Wilson et al., 2003) and MSVAR (Beaumont,
1999) allow the use of microsatellite genotypes, whereas
other approaches are based solely on DNA sequence data
(e.g. skyline plots, Drummond et al., 2005; stairway plots,
Liu and Fu, 2015). 

The underlying population models in these methods are
generally simple and might ignore (and thus violate) key
aspects of the biology of real species. One example of a
potentially important parameter is migration, which is
ignored in estimation procedures that are based upon a single
closed population model.

In the event that the desired population model and history
are not available in any of the existing methods, coalescent-
based simulation software, such as SIMCOAL, (Excoffier et
al. 2000) can be utilised in an Approximate Bayesian
Computation (‘ABC’, Beaumont et al., 2002) framework to
estimate the posterior probability distributions of user-
defined demographic scenarios across pre-defined prior
ranges of the relevant parameter values (Cornuet et al.,
2008). The goodness-of-fit of different demographic
scenarios can also be evaluated using model selection criteria
(Cornuet et al., 2010). This framework might be used to
estimate the mutation model as well, thereby potentially
circumventing the above issues with the mutation model. In
a recent study of Antarctic fur seals using microsatellite and
mtDNA data, Bayesian skyline and ABC approaches
strongly supported a recent, severe bottleneck due to sealing,
while little support was found using empirical methods, or
through analysis of mtDNA alone. The ABC approach was
able to estimate the magnitude and time of the sealing
bottleneck, giving ranges that were robust to expansion in
the mutation rate prior and exclusion of mitochondrial DNA
(Hoffman et al., 2011). However, in practice ABC methods
often use simple models to simulate the data, and hence they
can be subject to the same types of biases from model-
misspecification as other types of analyses (Peery et al.,
2012; 2013).
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Constraints on bottleneck size are of interest for informing
population trajectory-based assessments of recovery at the
IWC (IWC, 2007). Lower bound constraints are currently
imposed on single-stock assessments using the number of
mtDNA control region haplotypes in the contemporary
population as a proxy for the minimum number of surviving
mothers. This is multiplied by three as a conservative ad hoc
lower boundary, considering a number of factors (IWC,
2012). First, the contemporary sample usually provides only
a subset of all haplotypes (maternal lineages) found in the
population, and more are sometimes yielded at longer
sequence lengths. Second, mtDNA lineages alone do not
reflect the additional males and immature individuals present
in the population at the time of the bottleneck. Third, there
are likely to be multiple mothers with the same haplotype at
the bottleneck (rather than one haplotype for each mother as
assumed here) (Jackson et al., 2011). The impact of these
different correction factors on population assessment
outcomes has been explored for southern right whales and
Antarctic blue whales (Branch and Jackson 2008; Jackson et
al., 2008; Jackson et al., 2009). This approach can provide
an independent test of population dynamic model predictions
using genetic data; that is, do population dynamic
bottlenecks give abundances that are significantly smaller
than those inferred from genetic data? However, this
approach cannot yet adequately account for population sub-
structuring and dispersal effects. 

(b) Effective population size, Ne
The effective population size (Ne) is defined as the size of an
‘ideal’ population (a random mating, closed population
unaffected by mutation and natural selection and with non-
overlapping generations) that would show the same rate of
loss of diversity over time as the observed population
(Wright, 1938). The ecological interpretation of the effective
population size is (roughly) the number of breeding
individuals, but this does not capture variation among
individuals in reproductive success. Effective population size
determines the rate of loss of genetic variation from a
population/species, which has implications for the short- 
and long-term persistence due to the adverse effects of
breeding among genetically similar individuals (inbreeding
depression) and loss of evolutionary potential. Small Ne also
leads to the random loss of adaptive traits due to the
dominance of random processes at small effective population
sizes (where typical levels of selection are insufficient to
overcome random effects).

(i) Historical Ne
Coalescent theory defines a relationship between the
expected number of mutations (denoted θ) between any two
random gene copies as the product of the per-generation
mutation rate (µ) and the effective population size (Ne) in a
single idealised population, at a single diploid Mendelian-
inherited locus (Ewens, 1972; Hudson, 1990; Watterson,
1984):

θ = 4Neµ

Consequently, if an estimate for µ is available, then it is
possible to infer the long-term effective population size from

an estimate of θ when the assumptions underlying the
relationship between θ, Ne, and µ are upheld. The estimation
is subject to a large number of assumptions and it is not
always clear what time point the final estimate applies to (see
Palsbøll et al. 2013 for a detailed review). 

The value of θ can be estimated using various summary
statistics such as the heterozygosity, nucleotide diversity, the
number of segregating sites and the variance in repeat number
at microsatellite loci, as well as more complex coalescent-
based estimation methods. The various estimation methods
can be divided into single or multi-population models, and
these can be further sub-divided into approaches that do or
do not assume equilibrium (with respect to mutation and
genetic drift, and in some cases migration). The relevant
timeframe is the time since the most recent common ancestor
(TMRCA). The TMRCA is expected to be 4Ne generations
for an autosomal diploid Mendelian-inherited locus, and 2Ne f
for a mitochondrial locus, where Ne f denotes the Ne of females
(Ewens, 1972; Hudson, 1990). The estimate for θ reflects the
single most likely value for the entire genealogy (i.e. since
TMRCA) and hence is not restricted to a specific time or even
location, unless the population is closed to immigration or
migration. Violation of the assumption of a closed population
can lead to an overestimate the local Ne, such that the mean
estimate of a single population could reflect instead the mean
Ne for the global population (see Hudson, 1990). Using this
general method, it is possible to estimate long-term Ne,
assuming that the population has been isolated and has
reached equilibrium between mutation and genetic drift (e.g.
as implemented in the program migrate-n; see Beerli and
Palczewski, 2010).

Some additional refinements to the above approach
attempt to assess historical Ne during more defined periods
of time, or even changes in Ne over time. The first of these
approaches, ‘isolation with migration’ (see Hey and Nielsen,
2004 and Section (4)(b)(ii)2), provides estimates of Ne for
populations following an estimated time of divergence,
together with an estimate of the ancestral population size.
Because this approach also attempts to infer the divergences
among populations, the parameter estimates are likely
improved when (as is probably the case for most studies)
populations are not in migration-drift-mutation equilibrium.
However, the final parameter estimates are, as in the above
analyses, the most likely single estimates across the
‘estimation period’, which is before and after the populations
diverged. An important assumption is that there are no 
un-sampled ‘ghost’ populations exchanging migrants with
the study populations (or among ancestral populations). Such
populations might even be extinct and hence their existence
might be unknown or samples not available. Violation of this
assumption can inflate the estimated ancestral Ne. Some
recent modifications of the method (allowing for the
inclusion of multiple populations) are intended to help
address this problem (see Hey, 2010).

A coalescent analysis involves looking backwards in time
through gene genealogies to where lineages come together
(‘coalesce’). There is, furthermore, a relationship between
the time intervals between the coalescent events and the
effective population size (Kingman, 1982). Historical
dynamics can be assessed by taking advantage of this
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relationship. The general approach is known as a ‘skyline
plot’ (Pybus et al., 2000). Generating a skyline plot is a 
two-step process – first a genealogy is estimated, then 
the population history is estimated from the genealogy
(exploiting the information on coalescent intervals derived
from the genealogy). Refinements to the method (reviewed
in Ho and Shapiro, 2011) now permit a reconstruction of
historical dynamics that can be quite accurate (based on tests
against simulated datasets; Heled and Drummond, 2008),
especially if chronological data are included (e.g. by
incorporating sequences from ancient DNA, as implemented
in the program BEAST; Drummond and Rambaut, 2007).
The method assumes a closed population, however, and
while empirical data suggest that it is fairly robust to
violations of this assumption, this has not been fully tested.
An alternative method for tracking historical trends is to
compare modeled scenarios by generating simulations 
and assessing the relative support of different scenarios
among those simulations through ‘Approximate Bayesian
Computational’ – ‘ABC’ analysis (see Beaumont et al.,
2002). This method was recently used to identify a
population bottleneck in the Greek population of common
dolphins (Delphinus delphis) estimated to have been within
the last 50 generations (Hoffman et al., 2011, Fontaine et al.,
2012, Moura et al., 2013b).

Another study (Ho et al., 2008) applied the Bayesian
skyline plot method (Drummond et al., 2005) to bowhead
whales (Balaena mysticetus), building on data originally
published by Rooney et al. (2001) and Borge et al. (2007).
The bowhead has been heavily exploited in the past,
especially between the 17th and early 20th centuries, and so
tracking their historical population size to assess the extent
of the impact and the nature of their recovery could provide
important information in support of conservation efforts. An
essential question is how the pattern of population dynamics
relates to particular historical events; to make that possible,
an appropriate estimate of the substitution rate is required
(see Ho et al., 2008 and Section (5)(d)). Incorporating data
for 99 dated ancient DNA samples (from Borge et al., 2007)
Ho et al. (2008) calculated a substitution rate of 0.159
subs/site/Myr (95% HPD: 0.051–0.272 subs/site/Myr) for
bowheads. Then, based on three separate analyses—one
using only ancient DNA data, one using only modern data
(from Rooney et al. 2001), and one incorporating both
modern and ancient sequences – they found evidence for a
population expansion in the late Pleistocene (after the last
glacial maximum). All three analyses showed the same
pattern (Ho et al., 2008). A more recent pattern of contraction
was not observed, and the confidence limits were large, but
this is to be expected, given the genetic material available (a
single mitochondrial DNA locus). Very recent events are
unlikely to be revealed by skyline-plot analyses; however,
inclusion of multiple loci using the same methods will
increase the accuracy and the chance of revealing more
recent trends (see Heled and Drummond, 2008, Hoffman 
et al., 2011). This becomes increasingly practical with the
development of next generation sequencing methods and
DNA capture (see Horn, 2012). Genome sequencing can also
provide sufficient data for much deeper Ne profiles (dating
back up to a million years or so) using the pairwise

sequentially Markovian coalescent (PSMC) model. An
example is provided by a recent study that revealed a severe
bottleneck at the time of the last glacial maximum in killer
whales (Orcinus orca) based on whole killer whale genome
sequences (Moura et al., 2014a). 

In general, the long-term estimates of Ne (or estimates of
the average Ne since some point of divergence) have the
potential to be useful in cetacean management applications
provided that the temporal context is well understood. These
estimates are averages with relevance over an extended
period of time, not necessarily reflecting contemporary or
even recent Ne (see next section). As modern methods
increasingly facilitate generation of data from large numbers
of loci, estimates of historical population trends (for
example, using skyline-plot methods) become more
accurate. It will likely become more practical to estimate
these trends over time frames that allow harvesting or other
anthropogenic impacts to be tracked; however, it is important
to appreciate the limitations of these methods and the
difficulty associated with tracking very recent trends using
genetic data.

(ii) Contemporary Ne
The term ‘contemporary Ne’ generally refers to effective
population size for a time period roughly encompassed by
the samples being analysed. The key variables required to
calculate contemporary Ne are N (census population size) and
the mean and variance of number of offspring produced by
each individual (k̅ and Vk, respectively). A standard formula
for effective size for species with discrete generations (Crow
and Denniston 1988, Caballero 1994) is:

With modern molecular techniques, it is possible to
genetically match offspring to their parents with high
precision, which allows direct evaluation of reproductive
success (reviewed by Jones et al. 2010) and calculation of
effective size. However, Ne depends on the mean and
variance of lifetime reproductive success, and such data are
very challenging to collect for long-lived species like
cetaceans. As a consequence, it has become common to use
genetic methods to indirectly estimate contemporary Ne
based on genetic indices that are influenced by random
genetic drift.

Genetic methods for estimating contemporary Ne all
depend on a signal of genetic drift that is a function of 1/Ne,
and they all depend on sampling a finite number of
individuals (S), which introduces random sampling error of
approximate magnitude 1/S. Therefore, all else being equal,
best results are obtained when relatively large samples are
used to study relatively small populations, in which case the
drift signal is relatively large compared to sampling error.
Once Ne becomes relatively large (>500–1000 or so), the drift
signal is so small that it is hard to distinguish from that
produced by a very large or infinite population. Methods that
estimate contemporary Ne assume that genetic drift is the
primary evolutionary factor responsible for the genetic
signal, which means that these methods typically assume the

Ne =
kN – 2

k –1+Vk k

.

52 WAPLES et al.: GUIDELINES FOR GENETIC DATA ANALYSIS

MARAM/IWS/2019/Hake/BG6

20



genetic markers are selectively neutral, the target population
is closed to immigration, and mutation is unimportant over
the time frames considered.

Two main genetic approaches are used to estimate
contemporary Ne: single-sample methods and two-sample
(temporal) methods. The temporal method estimates changes
in allele frequency (or occasionally heterozygosity) over
time within a single population and hence requires at least
two samples spaced in time. The premise for the temporal
method is that a measure of the standardised variance 
of allele frequency over time due to genetic drift (F) is a
simple function of Ne and elapsed time in generations 
(t): E(F) ≈ t/2Ne. The smaller the Ne, the larger the change in
allele frequencies over time. After accounting for effects 
of sampling error on estimates of F (F̂ ), it is easy to 
rearrange the above equation to obtain an estimate of 
N̂e: Ne≈t/[2(F̂ – 1/S)]). This so-called ‘standard’ temporal
method was developed 40 years ago (Krimbas and Tsakas,
1972) and is still widely used, although likelihood based
methods (e.g. Wang, 2001; Anderson, 2005) have been
developed more recently. Because it is based on the variance
in allele frequency over time, the temporal method provides
an estimate of variance Ne. If Ne varies over time, then the
temporal method estimates the harmonic mean Ne for the
time period between temporal samples.

As their name implies, single-sample methods require
only one sample and produce an estimate that applies to a
single point in time (generally this is Ne in the parental
generation, although in some cases it might be affected by
Ne in other recent generations; see Waples, 2005). The most
widely-used single-sample method is that based on linkage
disequilibrium (LD; see Section (2)(c)). In the LD method,
the inter-locus associations are estimated by the squared
correlation coefficient r2, and theory indicates that r2 due to
random genetic drift in a finite population is a simple
function of 1/Ne and 1/S. Several other single-sample
methods have recently been developed. The software
package OneSamp (Tallmon et al., 2008) is an approximate
Bayesian computation (ABC) method that simulates data
using a variety of true Ne values and finds the value that
produces the best match to the empirical data. OneSamp’s
summary-statistic approach uses a variety of genetic indices,
but the most important is r2. The heterozygote excess method
(Pudovkin et al., 1996) is based on the fact that a small
number of parents cause small departures from Hardy-
Weinberg expectations. The molecular coancestry method
(Nomura, 2008) is based on the pattern of shared alleles
among individuals, and the sibship reconstruction method of
Wang (2009) estimates the value of Ne that is most consistent
with the estimated pattern of relationships among the
sampled offspring. A related method (parentage analysis
without parents; Waples and Waples, 2011) uses a matrix of
pairwise relatedness estimates to reconstruct the distribution
of offspring number per parent, which allows calculation of
Ne from a standard demographic formula. For this latter
approach to be applicable, data (genetic or behavioural) 
need to be available to rigorously identify half- and 
full-sibling pairs. For a given inferred pedigree, the sibship
and parentage-analysis-without-parents methods provide
essentially the same estimate (Ackerman et al., 2016).

Some evaluations of sensitivity to model assumptions
have been conducted, but much work remains to be done.
Wang and Whitlock (2003) developed a modified temporal
method that can account for immigration and jointly
estimates Ne and migration rate (m). However, it assumes a
rather improbable migration model (an infinite source
population with known and constant allele frequencies sends
a fixed proportion of migrants to the focal population every
generation), which limits its general usefulness. Waples and
England (2011) showed that the LD method is relatively
robust to migration that is constant enough to produce an
equilibrium between migration and drift, but it can be
strongly affected by non-equilibrium, pulse migration (or, of
perhaps more relevance for cetaceans, inclusion of migratory
individuals from another population in a local sample).
Gilbert and Whitlock (2015) did extensive simulations of
performance of both single-sample and temporal estimators
under various types of migration. They concluded that the
Wang/Whitlock temporal method and the LD method were
most robust to departures from the assumption of a closed
population. Wang (2016) conducted extensive simulations to
evaluate single-sample methods and concluded that the
sibship and LD methods performed much better than the
molecular-coancestry or heterozygote-excess methods.
Waples and Yokota (2007) evaluated performance of the
temporal method when it is applied to species with
overlapping generations; this can bias N̂e either up or down,
depending on the species’ life history and the life stage(s)
sampled. The modified temporal method of Jorde and
Ryman (1995) can estimate Ne directly in iteroparous species,
but it requires samples from consecutive cohorts and
information about age-specific vital rates. A new version
(Jorde, 2012) extends this model to allow samples from
cohorts spaced any number of years apart. Waples et al.
(2014) evaluated performance of the LD method for
iteroparous species with overlapping generations, including
simulations based on a life table for the bottlenose dolphin.
This study (as well as Waples et al., 2013) showed how the
relationship between effective size per generation (Ne) and
the effective number of breeders in one year (Nb) depends on
the species’ life history.

Markers that are physically linked (and hence have
recombination probability <0.5) create more LD than
unlinked markers, and this adds power (for estimating Ne) 
to the analysis if the recombination rate is known. In 
most non-model species this information is not available,
however, in which case the default assumption of no linkage
will lead to downward bias in N̂e if LD due to linkage is
misinterpreted as due to drift. This problem might not be
serious for most current studies based on at most a few 
tens of markers, but will require careful consideration as
large numbers (100s or 1000s) of SNP loci become more
generally available. Lack of independence of markers should
not bias estimates obtained with the temporal method, but 
it will lead to an overestimate of precision because 
the information content of the markers is not as large as
assumed. Selection can take a wide variety of forms and it is
possible to imagine all sorts of effects on N̂e, but effects on
estimates of contemporary Ne have seldom been explored.
One option researchers can use to address the effect of
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selection is to estimate Ne using both the complete dataset
and a reduced dataset that omits loci thought to be under
selection.

Results of simulations with ‘known’ (specified in the
model) Ne show that, although inclusion of numerous rare
alleles can increase bias for some methods, low precision is
more likely than bias to limit practical usefulness of methods
that estimate contemporary Ne. Reduced precision for large
Ne can be mitigated to some extent by using more genetic
markers (in which case the average drift signal will be closer
to the true 1/Ne) and/or taking larger samples, which reduces
the noise from random sampling error (Waples et al., 2018).
For more discussion, see Waples and Do (2010) and Waples
(2016a).

Because the drift signal 1/Ne is nonlinear, the distribution
of N̂e is skewed, which has two important consequences.
First, it means that confidence intervals for are N̂e
asymmetrical, being wider on the upper end than the lower
end. Second, the skew means that the arithmetic average is
not a good measure of central tendency. If one wants to
average a number of estimates of Ne, the harmonic mean
should be used; if the number of estimates is large enough,
the median will generally be close to the harmonic mean. 

Likelihood-based methods use more of the data than the
moment-based temporal and LD methods and should be
more precise, and this is generally reflected in tighter
confidence intervals. However, because they are so
computationally demanding, performance of these methods
has not been as rigorously evaluated, especially for large
populations. All of the likelihood and ABC methods require
the user to specify a maximum Ne for the target population,
and this can give the illusion of greater precision regarding
the upper bound to Ne. However, it should be remembered
that this upper limit is a user input and not an output of the
model. 

Because the various methods have different strengths and
weaknesses, it can be useful to use more than one method
with a particular dataset and compute a weighted harmonic
mean across methods to arrive at an overall estimate, as
described in Waples and Do (2010). In doing so, however,
one should be careful about combining estimates that apply
to different time periods, as discussed below (Ne/N ratios)
and in Waples (2005). Good reviews of genetic methods for
estimating contemporary Ne can be found in Wang (2005)
and Luikart et al. (2010), with the latter including discussion
of several of the newer single-sample methods developed
after Wang’s (2005) review was published.

Summary and relevance to cetaceans:
Current molecular methods cannot reliably distinguish
between contemporary effective sizes that are relatively large
(Ne ~ 1000) and very large (Ne > 10000, say), but they have
much more power to distinguish between relatively small
and relatively large populations (Ne – 100 vs Ne = 1000). As
the Ne/N ratio can be considerably less than 1 (see next
section), these methods could potentially provide useful
information for a wide range of cetacean populations. The
temporal method will be of limited practical use, unless 1)
DNA from archived samples can be accessed (to allow a
number of generations of genetic drift between samples) or
2) individuals can be aged accurately and age-specific vital

rates can be estimated, in which case the Jorde and Ryman
(1995) modification for age-structured populations can be
used. Single-sample methods should be of more general
value, although more work is needed to help interpret results
for age-structured species like cetaceans. The LD method is
the most widely-used single-sample estimator; the ABC
method of Tallmon et al. (2008) and the sibship method of
Wang (2009) have considerable potential but performance
needs to be evaluated across a wider range of realistic
scenarios.

(c) The Ne/N ratio
The Ne/N ratio has attracted a good deal of attention in the
literature (e.g. Nunney, 1993; Frankham, 1995; Hedrick,
2005; Waples, 2016b). This ratio is of interest because Ne is
difficult to measure or estimate, particularly for long-lived
iteroparous species such as cetaceans, so if the ratio is known
and N can be estimated, a reasonable estimate of Ne can also
be obtained. Conversely, in some cases it is easier to estimate
Ne from genetic methods than it is to obtain an unbiased
estimate of total population size. In that situation, an estimate
of abundance can be obtained from an estimate of Ne and
knowledge of the ratio Ne/N. 

Simple rearrangement of the standard demographic
formula for Ne (see Section (3)(b)(ii)) leads to the following,
which assumes that population size is stable (so k̅ = 2):

This formula shows that the ratio Ne/N is inversely related
to the variance in reproductive success among individuals
(Vk). If Vk > 2, Ne/N is less than one. An uneven sex ratio is
one factor that increases Vk and reduces Ne: since half the
genes for the next generation have to come from males and
half from females, members of the less numerous sex on
average have higher reproductive success. However, the sex
ratio has to be highly skewed to have a substantial effect 
on Ne. 

Age structure is another factor that influences Ne. A
modification to the discrete-generation formula that accounts
for overlapping generations is (Hill, 1972):

where L is generation length, N1 is the number of offspring
in each cohort, and Vk• is the lifetime variance in reproductive
success among all individuals in a cohort. Vk• is difficult to
measure in natural populations because it is necessary to
integrate reproductive success across the entire lifetime of
individuals. For species with constant survival and fecundity
with age (as might be approximately true for many
cetaceans), adult lifespan depends on the adult mortality rate
(d = annual probability of death), generation length is given
by L = 1/d + α–1 (where α is age at maturity), adult census
size is N = N1/d, and lifetime variance in reproductive
success is given by Vk• = 4(1–d) + 2ϕ (Waples, 2016b). The
parameter ϕ indicates the ratio of the variance to the mean
reproductive success in one time period of individuals of the
same age and sex. For example, if all 10-year old males act
like a mini Wright-Fisher population with random variation

Ne
N

= 2
1+Vk / 2

.

Ne =
4LN1

2+Vk•

.
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in reproductive success in that year, then ϕ = 1. Putting 
this all together and substituting into the above equation 
yields this expression for the effective: census size ratio 
for iteroparous species with constant vital rates (Waples,
2016):

This equation shows that the Ne/N ratio depends on 3 key
parameters: d, α, and ϕ. Approximations for the first two can
be made based on cetacean biology. Annual adult mortality
must be about 0.1 or lower in a long-lived species, and for
many cetaceans, age at maturity will be about 5–10 years. If
we take α = 10 and d = 0.1 as examples, then the above
equation simplifies to:

ϕ = 1, Ne is approximately the same as N.
Very little information is available about ϕ in natural

populations of any species. Realistically, female cetaceans
can only produce one or zero offspring per year. In this
situation, it can be shown that female ϕ cannot exceed 0.5,
so female Ne/N is probably about 1 or a little higher. This
suggests that the overall Ne/N ratio in cetaceans depends
heavily on the value for male ϕ, about which there is
essentially no information. If reproductive success of males
of the same age is random (ϕ = 1), then male Ne/N is
approximately 1. Male Ne/N drops to 0.5 when male ϕ = 5
and to ~0.1 when male ϕ is as high as 35–40.

What scenarios produce ϕ = 5 or 40? First, we need to
identify the denominator of ϕ, which is the mean number of
offspring produced per individual (k̅). In a stable population
with constant vital rates, the mean number of offspring
produced each year by an individual is twice the annual
mortality rate, d (Waples, 2016), so in our example k̅ = 0.2.
Under these conditions, it can be shown that ϕ is
approximately 5 when only one in every 25 males
successfully produces offspring in a given year, and ϕ is
approximately 40 when only one in every 200 males
successfully reproduces. Paternity studies to date have
generally not found a large variance in reproductive success
among male cetaceans (Nielsen et al., 2001; Cerchio et al.,
2005).

The Hill (1972) model used in the above analyses assumes
that survival and reproduction are independent across years.
That is not true in female cetaceans, who generally skip one
or more years after giving birth. This ‘skip breeding’ scenario
was evaluated by Waples and Antao (2014), who showed
that, for a life history like that of the bottlenose dolphin, skip
breeding by females could reduce Nb per year by up to 10–
20% (because fewer females are available to breed each
year). However, skip breeding increases Ne slightly in the
bottlenose dolphin (by < 10%) because it tends to equalise
lifetime reproductive success. Therefore, the above analyses
of Ne/N are largely robust to skip breeding. Lee et al. (2011)
evaluated a situation in which individuals were consistently
either good or bad at producing offspring. They found that

Ne / N 1.9
(3+ ) / 2 – 0.1

, 

which can be approximated by  Ne / N 4
3+

.  Note that if

Ne / N 1+ d( –1)
(3+ )2 – d

.

persistent differences in reproductive success reduced Ne/N;
the maximum reduction they found was from about 0.5 to
0.1–0.2. 

Collectively, these results suggest that, if the assumptions
of the Hill model are met, rather extreme scenarios involving
overdispersion of male reproductive success would be
required to reduce cetacean Ne to as low as 50% of N.
Accounting for skip breeding has a relatively small effect.
However, if reproductive success is persistently centered on
a relatively small number of individuals, the Ne/N ratio could
potentially be reduced several fold.

A key issue in computing the ratio Ne/N is definition of N.
N generally refers to the census population size, but which
individuals are included in the census? Should it be all
individuals alive at a given point in time, all individuals 
that have reached age at maturity, or only individuals that are
still reproductively active (hence excluding senescent
individuals)? Each of these definitions has been used in the
literature, and each might be appropriate, depending on the
species and the research question at hand. This should be
kept in mind when comparing estimates of Ne/N for different
populations or species. In all of the above analyses, N is
taken to be the number of adults alive at a given point in
time. If juveniles or subadults are counted as part of the
census size, Ne/N ratios would be lower.

Another important consideration is to ensure that estimates
of Ne and N apply to the same time period; if not, the resulting
ratio can be misleading for populations in which Ne and or N
vary over time (see Waples 2005 for details). For example,
most single-sample methods estimate Ne in the generation
prior to the generation that is sampled, in which case
comparing N̂e with current census size is not particularly
meaningful.

Statistical analysis of ratio data is tricky. In general, the
median value or geometric mean is a better measure of
central tendency than the arithmetic mean. Ratios of Ne/N
across multiple generations also require some consideration.
Long-term Ne is the harmonic mean across the years under
consideration. Some authors (e.g. Frankham, 1995) have
computed long-term Ne/N as the harmonic mean Ne divided
by the arithmetic mean N. However, mixing harmonic and
arithmetic means creates a statistical artifact, such that any
variation in Ne or N across generations reduces the long-term
ratio Ne/N even if the ratio is the same every generation (see
Kalinowski and Waples, 2002). Using the harmonic mean of
both N and Ne to calculate the long-term ratio solves this
problem.

Summary and relevance to cetaceans:
Knowledge of the Ne/N ratio can provide important insights
into demographic and evolutionary processes in cetacean
populations. Analyses conducted here show that variance in
male reproductive success and whether some individuals
consistently dominate reproduction are the key factors that
determines this ratio. Assuming N represents the number of
mature adults, Ne/N in long-lived cetaceans should be close
to 1.0 unless (a) the variance in male reproductive success
per year is greatly overdispersed, or (b) individual
differences in reproductive success persist over time.
Therefore, collecting more data on these parameters should
be a high priority.
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(a) Testing for heterogeneity
The most commonly applied approach to detect ‘stock
structure’ is to assess whether there is some degree of genetic
heterogeneity among the sampled specimens. Such an
assessment can be conducted with or without an a priori
partition of the specimens into putative stocks or populations.
Partitioning of specimens is typically geographic or temporal
(e.g. to pre-defined management units). 

(i) Putative populations defined a priori
Detection of possible stock structure among a priori
partitioned samples is typically conducted using a
contingency table test of allele or genotype counts (Hudson
et al., 1992; Moritz, 1994) to assess the probability that
different samples are drawn from the same underlying
distribution (Sokal and Rohlf, 1995). If the probability of
homogeneity in a single test is estimated at below a pre-
defined α-value (typically 0.05), homogeneity is rejected and
genetic structuring is typically inferred (Brosi and Biber,
2009; Morin et al., 2009; Palsbøll et al., 2007; Waples and
Gaggiotti, 2006). This general approach has recently attracted
criticism Waples, 1998; Waples and Gaggiotti, 2006; Fallon,
2007; Palsbøll et al., 2007; Bernard et al., 2009). The problem
is that the ability to detect heterogeneity is a function not only
of the effect size (i.e. the degree of genetic divergence among
sample partitions), but also of the amount of data (the number
of loci and specimens analysed) but only the effect size is of
management relevance. Consequently, a homogeneity test
might fail to detect heterogeneity (i.e. detect stocks) even
when the genetic divergence among stocks is high (and hence
migration rates low), stemming from low statistical power
due to insufficient data. Accordingly, the failure to detect
statistically significant levels of genetic heterogeneity does
not necessarily imply the absence of heterogeneity (i.e.
different stocks); it could simply be due to insufficient
statistical power (Taylor and Gerrodette, 1993). Conversely,
in cases where statistical power is high (large number of
genetic markers analysed in many specimens), statistically
significant levels of heterogeneity can be detected even when
the effect size is very small and of little management
relevance (i.e. at low genetic divergence, Waples, 1998;
Palsbøll et al., 2007; Waples and Gaggiotti, 2006). Therefore,
when significant levels of heterogeneity have been detected,
the biological relevance of the magnitude of genetic
divergence should also be assessed. Another important factor
to consider is whether the pattern of heterogeneity makes
sense in terms of stock structure, or is better explained by
other factors, such as age structure.

A number of statistics have been developed and
implemented to conduct homogeneity tests using a priori
partitioned genetic data. One of the most common
assessments is a simple randomised χ2 test, which, appears
to have high statistical power (Hudson, 1992; Hudson et al.,
1992; Roff and Bentzen 1989). Often, the test statistic is one
of the more common estimators of genetic divergence, such
as Wright’s FST (Wright, 1931) or related measures such as
ΦST (Excoffier et al., 1992) and KST (Hudson et al., 1992).
The latter two statistics were developed for use with DNA
sequence data where the haplotype phase is known. 

Advantages of homogeneity tests for stock structure:

• Well-established framework and conceptually simple;

• Implemented in many standard packages;

• Statistical power increases with more data without too
much additional computational overhead.

Disadvantages include:

• No measure of relevant parameters (e.g. migration);

• The high power with rich data sets implies rejection of
homogeneity at biologically insignificant levels;

• With other kinds of genetic structuring the analysis can
produce rejection of homogeneity;

• Requires the user to define the strata to be tested a
priori, so less useful for problems involving mixtures.

(ii) No a priori basis (or uncertain basis) for grouping
individuals into populations
Standard clustering methods
Clustering programs attempt the very challenging task of
decomposing a mixture of individuals into component
groups or populations, all without using any a priori
information about potential source populations (i.e. without
any baseline information such as that used in genetic mixture
analysis or assignment tests). The genetic clustering
programs that are now in widespread use (such as
STRUCTURE, Pritchard et al., 2000, Hubisz et al., 2009)
are model-based in the sense that they assume random
mating and linkage equilibrium within source populations
(some versions allow explicit consideration of linkage). The
programs then shuffle individuals among potential groups in
an attempt to find the combination that minimises departures
from Hardy-Weinburg equilibrium and linkage equilibrium.
With anything but very small datasets, the number of
potential solutions is so vast that MCMC (or other algorithms
for sampling from probability distributions, see Section
(5)(g)) are essential. In general, several replicates with
different starting points and long ‘burn-in’ (initial steps that
are discarded, typically in the tens of thousands) and very
large numbers of steps should be run to check for
‘convergence’ (different replicates all arrive at a stationary
distribution). For each presumed number of populations or
gene pools (‘k’), output of STRUCTURE and similar
programs includes the estimated allele frequencies in each
population, estimated FST values among populations, and the
fraction of each individual’s genes derived from each
population. In addition, the relative likelihoods of the model
‘fits’ for different presumed values of k can be compared to
determine the most likely number of ‘populations’.

Application to a large number of real and simulated
datasets has shown that STRUCTURE and similar programs
can produce very impressive results, provided genetic
differences among populations are at least moderately large.
On the other hand, the ability to resolve mixtures breaks
down as genetic differences among populations become
small, generally at FST around 0.05 or less, although this
threshold varies with sample size and number of markers. 
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In some cases, STRUCTURE can produce positively
misleading results, where the program assigns a much higher
likelihood to a scenario with the wrong k. A classic example
of the latter is a STRUCTURE result that gives a high
likelihood to k = 2 but concludes that every individual is a
roughly 50:50 mixture of the two putative gene pools – a
highly implausible result biologically that would only occur
if two divergent populations hybridised and the entire
mixture was composed of essentially all F1 hybrids. 

The authors of STRUCTURE admit that their approach 
to identifying the optimal value for k is ad hoc and 
suggest caution in its use – an admonition that is routinely
ignored by users. Evanno et al. (2005) proposed an
alternative algorithm, based on the second derivative of
changes in the likelihood function with k. This method was
designed to address the empirical observation that in many
scenarios the likelihood creeps up indefinitely with
increasing k, making it difficult to select a discrete optimal
value and leading to overestimates of the number of
populations. Waples and Gaggiotti (2006) examined both the
standard and Evanno et al. methods for inferring k with a
limited number of simulated datasets and did not find
improved performance of the latter method, but the data 
were simulated with an island model while Evanno et al.
suggest their method should be most useful for evaluating
hierarchically-structured populations. It is important to 
note that because the Evanno method evaluates the rate of
change in the log likelihood as k increases, it cannot be used
to test the hypothesis that k = 1 (i.e. a single panmictic
population).

Options for analysis include choosing allele frequencies
that are correlated, or not and ‘admixed’, or not. In general,
analysing with admixture and correlated allele frequencies
both selected is appropriate if the putative populations are
thought to be linked by gene flow, while no admixture and
uncorrelated frequencies are appropriate for mixtures of pure
individuals (as on a feeding grounds). However, the authors
suggest trying both options as sometimes better resolution is
achieved with the ‘wrong’ model. 

HWLER (Pella and Masuda, 2006) is a recently developed
clustering program that uses a different MCMC sampling
method and can outperform STRUCTURE in at least some
circumstances. However, it has not been widely used or
extensively evaluated. GENELAND (Guillot et al., 2005)
and TESS (Chen et al., 2007) are similar to STRUCTURE
but can accept spatially explicit sampling information for
each individual, which is then used to help guide formation
of clusters. This option would not be likely to be useful, and
might produce misleading results, for analysis of migratory
individuals whose sampling locality is not indicative of its
natal origin.

Summary and relevance to cetaceans:
Results discussed above indicate that although clustering
programs can be very powerful, they often struggle to
produce valid results under the low levels of population
differentiation that characterise many cetaceans. More
research is needed to better characterise the parameter space
under which these programs can and cannot be expected to
produce reliable results for cetaceans. Steps a researcher can
take to maximise usefulness of these methods while

minimising the likelihood of spurious results include the
following:

• evaluate convergence by testing whether different
starting points and run times produce comparable results

• check whether the inferred genetic makeup of
individuals is consistent across runs

• consider whether the estimated pattern of genetic
structure is biologically plausible

Clustering based on ordination
Over thirty years ago, Menozzi et al. (1978) introduced the
use of Principal Component Analysis (PCA) to the study of
genetic data. PCA is a general method for representing high-
dimensional data, such as individual genotypes or population
allele frequencies, in a smaller number of dimensions. In
essence, PCA searches for orthogonal axes (uncorrelated
components) along which projected objects (individuals or
populations) show the highest variance and then returns the
position of these objects along those axes or principal
components (PCs). Typically, most of the variance is
explained by the first few PCs so that they can be used to
explore the structure of variation in the sample(s). 

Cavalli-Sforza et al. (1994) used PCA to summarise allele-
frequency data collected from worldwide populations of
humans. The results were visualised using so-called PC maps
depicting how the PC values of sampled population vary
across geographic space (with each PC displayed on a
separate map). The observed spatial patters were then
explained in terms of population processes such as past
population expansions and admixture events. Although 
this particular use of PCA is currently being questioned
(Novembre and Stephens, 2008; Francois et al., 2010), PCA
became a standard statistical tool for the analysis of
population genetics data. Initially PCA was used as a data-
exploration tool but recent theoretical developments have
extended its use to test for population structure and to cluster
genetic samples (Patterson et al., 2006; Jombart et al., 2010).
In this section we focus on its use to test for heterogeneity. 

The simplest but least rigorous approach to investigate
heterogeneity using PCA is through the spatial representation
of PC scores on maps, as done in the seminal work of
Cavalli-Sforza et al. (1994). Gaggiotti and Gascuel (2011)
applied this approach to investigate the stock structure of
North Pacific minke whales using individual genotype data.
They used the adegenet package (Jombart, 2008) for the R
software (R development Core Team, 2008) to carry out the
PCA and then constructed maps of PCA scores using Kriging
as implemented in the R package fields. Areas with similar
PCA scores can be considered genetically homogenous 
and abrupt changes in PCA scores represent genetic
discontinuities. This visual approach needs to be followed
by a formal test. Gaggiotti and Gascuel (2011) use the Tracy-
Widom test developed by Patterson et al. (2006). This test is
based on rigorous statistical theory that also allows one to
estimate how much data will be required to find population
structure, given a level of genetic divergence. The test is
applied to each eigenvalue and provides an approximate way
of estimating the number of populations. In principle, given
a large enough number of markers and assuming there are K

J. CETACEAN RES. MANAGE. 18: 33–80, 2018 57

MARAM/IWS/2019/Hake/BG6

25



distinct populations represented in the sample, we expect to
find K – 1 eigenvalues and K – 1 corresponding eigenvectors
that are significant. Thus, we can reject panmixia if the first
eigenvalue is significant, which would mean that our sample
contains individuals from a least two populations. The test
has been implemented in the program SMARTPCA and
included in the software package EIGENSOFT 3.01.

A more recent method to estimate the number of genetic
clusters combines Discriminant Analysis (DA) and PCA
(Jombart et al., 2010). PCA is not really appropriate for
obtaining a clear picture of between-population variation
because it aims to summarise the overall variability among
individuals, which includes both within- and among-groups
genetic variability. What is needed is a method that focuses
on between-group variability. This is what DA does. More
precisely, DA produces synthetic variables that maximise
among-groups variation while minimising within-group
variation. However, DA requires the number of alleles (i.e.
the variables) to be less than the number of individuals (the
sample size). Also, it requires alleles and loci to be
uncorrelated. To resolve this problem, Jombart et al. (2010)
proposed to transform the data using PCA and then use the
PCA scores to carry out the DA. When there is no prior
information about groups, it is possible to use K-means
clustering of PCs to identify groups of individuals. In this
case, it is then possible to use the Bayesian Information
Criterion (BIC) to infer the number of genetic clusters.

Landscape genetics, units = individuals
Landscape genetics merges the fields of molecular
population genetics, landscape ecology and spatial statistics
to study how features of the landscape affect processes of
microevolution such as gene flow, natural selection, local
adaptation and genetic drift (Manel et al., 2003; Storfer et
al., 2007; Holderegger and Wagner, 2008; Segelbacher et al.,
2010). Unlike most traditional approaches to the study of
population subdivision, landscape genetics does not
necessarily require the a priori assignment of individuals to
populations, although that can be done as well. Often in
landscape genetics the individual is the operational unit, and
thus the experimental design can be free of assumptions (and
their potential biases) about population structure. This also
allows for studies on a much finer scale than is possible for
analyses that require individuals to be grouped together into
putative populations. Landscape genetics typically focuses
on contemporary evolutionary processes; in this respect, it
differs from phylogeography (another approach that links
genetics to geography), which seeks to identify phylogenetic
lineages and thus looks at the consequences of population
structure over considerable periods of time.

The general aim of landscape genetics is to identify
genetic discontinuities (i.e. population structure) that
correlate with landscape and/or environmental features.
From a conservation biology perspective, understanding the
functional connectivity of populations across landscapes is
an important goal (Van Dyck and Baguette, 2005). One
primary application is to aid in the identification of
management units, and the method can be particularly useful
in cases where it is difficult to assign individuals to
populations a priori. This is especially important for

continuously distributed species, for which any a priori
grouping into putative populations risks being arbitrary.
Spatial patterns that potentially can be identified include
clines, genetic discontinuities, metapopulations, isolation by
distance, and random patterns. In the final analysis,
validation of patterns of functional connectivity is ultimately
based on gene flow estimates (Cushman et al., 2009).
Obviously, obtaining accurate locality data for each
individual is a critical requirement of sampling. Genetic and
statistical methods are used to identify spatial genetic
patterns and their correlations with landscape and
environmental features. Landscape genetic analyses can use
any of the typical molecular markers, including mtDNA,
microsatellites, SNPs, AFLPs, and allozymes. Neutral
markers are useful for identifying some ecological and
demographic processes, but targeted genes undergoing
selection can potentially provide novel information about the
genetic basis of adaptation, adaptive differentiation, and
speciation. Sampling across ecological gradients can help to
identify environmental factors that might drive selection. 

Landscape genetic studies in which individuals can be a
priori assigned to populations can employ standard
population genetic methods such as F-statistics and
assignment tests (see Section (4)(b)). However, in cases
where the individual is the operational unit, application of
Wright’s Neighborhood concept can be useful, particularly
for detecting patterns of isolation by distance. For
continuously distributed species, Wright (1943) defined the
genetic ‘neighborhood’ as the basic unit of population
structure. In Wright’s model, neighborhood size is 4πDσ2,
where D is population density and σ2 is mean squared parent–
offspring distance along one axis. Statistical procedures for
use in landscape genetics include Mantel’s test for isolation
by distance (Mantel 1967). Regression analysis of genetic
distance with geographic distance allows the estimation of
neighborhood size and thus dispersal distance. Spatial
autocorrelation analysis allows one to identify spatial patterns
such as clines and test whether distance is the main
determiner of population structure. Bayesian clustering
methods (see Section (4)(a)(ii)) can be used to assign
individuals to populations by a method that minimises HW
or linkage disequilibria among groups. Multivariate analyses
like Principal Components Analysis (PCA) are used to
summarise variation among many loci across an area.
Interpolation of the major components into a synthesis map
gives insight into spatial patterns and can allow identification
of patterns such as clines. Two popular methods (Barbujani,
2000) to identify genetic boundaries or discontinuities are
Monmonier’s algorithm, which visualises data contained in
a genetic distance matrix on a geographical map to identify
boundaries, and wombling, which ‘locates boundaries across
a surface for an interpolated variable (i.e. allele frequency
surface) by searching for regions in which the absolute value
of the surface slope is large’ (Manel et al., 2003). 

Studies of landscape genetics often apply methods of
Bayesian clustering to more objectively group individuals
into populations. The program STRUCTURE (Pritchard et
al., 2000) is the most widely applied Bayesian clustering
approach. However, because of limitations to this program
and to the use of isolation by distance models in general,
Segelbacher et al. (2010) suggest that a new trajectory for
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investigations in landscape geneticists will be the study of
population genetic structure and isolation by distance under
computer-simulated dynamical models. 

Statistical approaches also exist that allow for the
correlation of genetic patterns with environmental variables.
Mantel tests are used to correlate genetic distance to a wide
variety of variables. Alternatively, canonical correspondence
analysis (CCA) can be used to relate genetic diversity to
environmental factors, at the same time testing for
environmental factors that explain variation in genetic
diversity. Geographical information systems (GIS) visualise
spatial genetic patterns. Because GIS allows overlay of
environmental or landscape variables onto genetics data, it
facilitates development of hypotheses about the cause of
spatial genetic patterns. 

There are limitations and constraints to the use of
landscape genetics, as with all analytical methods. Some
analyses assume random mating, which might be violated by
many cetacean populations. In addition, gametic
disequilibrium and departures from HW proportions can
result from processes besides population structure, including
small populations, bottlenecks, inbreeding and admixture;
hence, these factors can obscure patterns related to population
structure. Schwartz and McKelvey (2009) showed that the
program STRUCTURE identified varying numbers of
clusters which were dependent on sampling scheme.
STRUCTURE can thus provide misleading population
assessments because genetic gradients or similar patterns
likely are common in nature. A more general limitation is that
isolation by distance mathematical models strongly depend
on the assumption of migration-drift equilibrium (Rousset,
1997). Studies of great whales will often deal with non-
equilibrium populations. Indeed, as a final caveat, the historic
over-harvest of great whale populations and its resulting
bottlenecks could represent a significant violation of the
assumptions of certain analyses, particularly those that
assume demographic and genetic equilibrium. 

Analysis of close kin
An alternative to data analyses that employ allele frequencies
is approaches utilising measures of relatedness among
individuals. It follows intuitively that a random, finite sample
of individuals from a small population will contain more
pairs of closely-related individuals than a similar-sized
sample from a larger population. The same is the case for
dispersal; when the dispersal rate is high, the probability
increases that pairs of closely-related individuals are sampled
in different populations, whereas that will be rare when the
dispersal rate is low. Thus, the fraction of all pairs of
individuals that are closely related within and among
populations is a function of the population sizes as well as
the dispersal rates among populations. 

Kinship-based approaches have two main advantages
compared to most other methods of population genetic
analysis. First, detection of closely related individuals does
not require any degree of genetic differentiation among
putative populations. Most methods for detecting population
structure perform poorly when allele frequency differences
among the gene pools involved are low (FST << 0.05), a
situation that occurs quite commonly with cetaceans. This is
particularly true for clustering and assignment method, such

as STRUCTURE, DAPC, and BAYESASS. Second,
whereas most traditional methods for estimating dispersal
depend on equilibrium assumptions and therefore integrate
information across evolutionary time scales, kinship-based
approaches provide information about contemporary
evolutionary processes. The latter is typically more useful
for conservation and management.

The expected proportions of pairs of randomly-sampled
individuals that fall in different relatedness categories, within
and among populations, can be derived analytically under
simplifying assumptions (no migration, random reproductive
success, etc.). Several implementations have been published
during the recent years that rely upon restrictive assumptions
like these (Peery et al., 2008; Wang, 2014). The effects of
these simplifications on estimates of population size and/or
migration rates have not yet been explored in detail. Two
factors are key to successfully applying kinship-based
approaches: (1) the proportion of the population sampled must
be sufficiently large that pairs of closely-related individuals
are among the sampled individuals; and (2) a sufficient
number of independent diploid loci must be genotyped to
estimate relatedness with sufficient statistical rigor to achieve
the study objectives (Wang, 2006; Kopps et al., 2015).

Developing an experimental design that is both powerful
and feasible is a non-trivial endeavor, as it depends on the
underlying vital rates (survival and reproduction) as well as
dispersal rates and population sizes – which usually are
unknown parameters a study is attempting to estimate. For a
given level of precision, the required sampling proportion is
inversely correlated with population size and positively
correlated with dispersal rates, but it also depends on the
statistical methods used to estimate abundance or detect
population structure. In the latter case, two different
approaches are commonly employed: homogeneity testing
or estimating dispersal rates. 

Homogeneity testing relies on rejecting a homogenous
distribution of close relatives across space or time. Økland
et al. (2010) proposed this approach for identification of
management units. Their assessment evaluated whether the
number of pairs of individuals inferred to be closely related
was higher than expected by chance. In this respect it is
similar to a standard population genetic test of panmixia
proposed by Moritz (1994) for allele frequency data. Økland
and colleagues defined ‘closely-related’ to be either first-
order (parent-offspring or full siblings) or second-order (half
siblings or grandparent-grandoffspring). Using simulations,
they showed that power to reject homogeneity was high
(>90%) unless only a few (~5) genetic markers were used or
migration rates were high (m = 5 × 10–3/year and a generation
time of 20 years). Interestingly, the power to reject
homogeneity does not increase linearly with the sampling
fraction: power using 300 individuals sampled from
populations of size 7,500 was roughly the same as for 400
individuals sampled from populations of size 15,000. 

Estimating dispersal rates from the spatio-temporal
distribution of pairs of closely-related individuals is also
possible but relies on estimates (or simplified assumptions)
of key demographic parameters, such as birth and mortality
rates, as well as reproductive variance. Peery et al. (2008)
estimated immigration rates in a seabird (the marbled
murrelet, Brachyramphus marmoratus) from the number of
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parent-offspring pairs contained in a sample of 271 birds
taken from a population estimated at 660 individuals. A total
of 70 pairs of individuals were inferred to be related as parent
and offspring which yielded an estimate of an annual
immigration rate at 4–6%. Wang (2014) published a
likelihood estimator of m based upon genetic parentage,
which he showed to have higher precision than BAYESASS
and to be unbiased unless the number of parent and offspring
pairs detected was very low (<10). However, the approach
by Wang was based on a simple population and migration
model (e.g. no migration by mature individuals), which is
unlikely to apply to most cetacean populations. Kinship-
based estimations of abudance have also been undertaken
(see Section (3)(a)).

A key limitation in the above approaches is the reliance
on assigning each pair of individuals to a specific relatedness
category – typically parent and offspring, full siblings
(common in many species but less likely to be relevant for
cetaceans), half siblings, or unrelated. While parent-offspring
and full-sibling pairs generally can be identified with
reasonably high statistical power, power to assign individuals
to other relatedness categories is typically much lower
(Wang 2006; Skaug et al., 2010; Kopps et al., 2015).
Unfortunately, in cetaceans as in other organisms, the
relatedness categories that can be detected with the highest
certainty (parent-offspring pairs and full siblings) usually
compromise a much smaller fraction of a random population
sample compared to more distantly related pairs of
individuals. Accordingly, adding more distant relatedness
categories is likely to increase the accuracy and precision 
of kinship-based estimates of abundance and dispersal 
rates substantially. However, these more distant relatedness
categories remains elusive; even with substantial ‘genomic’
scale datasets, the part of the genome that is identical 
by descent decreases rapidly with the degree of relatedness
and consequently so does the ability to assign pairs of
individuals to a specific relatedness category (Kopps et al.,
2015). Furthermore, realistic evaluations of how much
statistical power will increase if hundreds or thousands 
of SNP loci are used must explicitly account for the fact 
that those loci must be packaged into a small number of
chromosomes, and this substantially limits the total amount
of information that can be extracted from the data
(Thompson, 2013).

(b) Describing population structure
(i) Estimating degree of divergence
FST and related measures
The so-called fixation index, FST, is one of the F-statistics
originally suggested by Sewall Wright (see, e.g. Hartl and
Clark 1989). FST is a measure of population divergence under
a scenario where one investigates whether a population is
genetically subdivided into partially or completely isolated
subpopulations. These putative subpopulations have to be
defined a priori. FST then can be used to evaluate whether
gene frequencies are indicative of restricted gene flow across
these subpopulations (rejection of panmixia). For
conservation and management issues, FST is often used as a
tool for analysis of molecular data to identify ‘stocks,’
‘management units,’ or ‘units to conserve.’

A common formulation for FST is:

where HeT is the expected heterozygosity in an entire
population and HeS is the mean expected heterozygosity
within the subpopulations. The expected heterozygosity is
the probability that a randomly chosen individual is
heterozygous at a given locus. It is calculated from allele
frequencies and ranges from 0 (all individuals are expected
to be homozygous, indicating that there is only a single fixed
allele at an investigated locus) to 1 (all individuals are
expected to be heterozygous, indicating that all alleles at 
an investigated locus are different). The underlying logic 
of FST is as follows: Under the null hypothesis of no 
divergence among subpopulations, HeS measures for single
subpopulations are unbiased estimators of the heterozygosity
HeT of the entire population. Hence, HeT – HeS = 0 and as a
consequence FST also equals 0. Maximum divergence is
reached if every subpopulation is fixed for a different allele.
Then, He = 0 in every subpopulation, so FST = (HeT – 0)/
HeT = 1.

If more than one locus is investigated, different ways of
calculating multilocus FST (either averaging single-locus FST
values, or averaging expected heterozygosities across loci
and using those average values in Equation 1) can yield
different values. 

Fixation indices calculated from haplotype and/or gene
diversity are sometimes identified with a different symbol
(GST), but – as formula and concept are identical – most
authors have adopted FST as the ‘one-fits-all’ name, regardless
whether it is calculated on the basis of heterozygosity,
haplotype diversity, or gene diversity. Because the theoretical
distribution of FST remains unknown, significance of any
deviation from the null hypothesis of panmixia is typically
evaluated by permutation analysis. Rejection of the null
hypothesis means that FST is significantly larger than 0,
indicating that the subpopulations exchange fewer
individuals than are expected under totally random dispersal
(= panmixia).

The strength of FST as a measure of population divergence
is threefold: (a) it is easily calculated and tested for
significance for various types of molecular data; (b) the
interpretation is straightforward, i.e. adoption (FST = 0) or
rejection (FST >0) of panmixia; and (c) it provides a measure
of the fraction of total genetic variance that is apportioned
among subpopulations. This has made the FST a very
commonly used measure of genetic divergence. 

There are, however, a number of known limitations to FST:

(1) It is based on diversity estimators (i.e. heterozygosity,
haplotype diversity) that solely classify alleles/genotypes
according to identity/non-identity, without any
consideration of the level of difference among the
alleles/genotypes;

(2) The theoretical maximum of FST = 1 can only be reached
if each subpopulation is fixed for a single unique allele.
If there is variability within any subpopulation, the
maximum FST is (1 – HeS). Unfortunately, this limit to the
maximum FST is often overlooked. The maximum value

FST =
HeT – HeS

HeT

,
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for FST is smaller the more variable a marker is, and the
effect can be especially dramatic for microsatellites,
which often exhibit high HeS (over 0.9, in which case the
maximum FST is only 0.1). In the extreme (yet possible)
scenario of two subpopulations completely divergent (i.e.
not sharing a single allele), but both with HeS approaching
1 (i.e. all individuals are expected to be heterozygous
because of high allelic diversity), FST becomes
meaningless, as its theoretical maximum is then 0 (see
Fig. 1 in Jost 2008 for a graphical representation);

(3) While the significance of FST is a good indicator of
deviations from panmixia, the same information can be
obtained more directly by testing equality of allele
frequencies in different samples (Section (4)(a)(i)); and

(4) Translation of FST into dispersal estimates, although
mathematically straightforward for populations assumed
to be in equilibrium between genetic drift and gene flow,
is very challenging for most real-world situations (see
Section (4)(b)(ii)1). 

Alternative measures of divergence have been suggested
to overcome some of the limitations of FST:

(1) Some measures of population divergence incorporate the
degree of divergence among genotypes. The FST -related
measure ФST explicitly accounts for mutational
differences (Excoffier et al. 1992). For sequence data,
divergence can also be expressed as nucleotide diversity
(π), see Section (2)(a):

Analogously to HeT and ĤeS, one can calculate 
πT as nucleotide diversity for the entire population and
mean πS as the average nucleotide diversity within
subpopulations. Subtracting mean πS from πT yields a
measure of average % sequence difference due to
divergence among subpopulations (Quinn and White,
1987). For microsatellites, one can reasonably assume a
step-wise mutation model, in which case alleles of
similar allele size are likely to be more closely related.
This is incorporated in the divergence measure RST
(Slatkin, 1995):

where Sw is the sum over all loci of twice the weighted
mean of the within-population variances in allele size
within subpopulations and S̅ is the sum over all loci of
twice the variance in allele size in the entire population.

(2) From a mathematical point of view, the theoretical range
of possible FST values can be easily re-adjusted to the
interval [0,1] by a correction factor (Hedrick, 2005):

This correction, however, has not been widely applied.
In addition, there is so far neither a theoretical nor an
empirical evaluation of the impact of such a correction
on the distribution of FST. As a consequence, it remains

=
ij
pi p j ij .

RST =
S – Sw
S

,

FST  adjusted =
HeT – HeS

HeT (1– HeS )
.

unclear whether FST adjusted also suffers from the limitations
mentioned under (3) specifically, that identical values do
not necessarily imply an equal level of divergence.

(3) It has been recently argued that a true measure of
differentiation should decompose overall diversity into
two parts: (a) the variance within the subpopulations 
and (b) the variance because of divergence among
subpopulations (Jost, 2008). To yield an unbiased
measure of the divergence component in heterozygosity,
this author suggests a formula very similar to that above,
i.e. 

where HST is the heterozygosity component caused by
divergence among subpopulations. To yield the final
estimator of differentiation (D) with values on the
interval [0,1], HST is multiplied by (n/(n – 1)) where n is
the number of subpopulations (Jost, 2008). As neither HST
nor D are implemented in the most widely used data
analysis software packages, these measures are rarely
used. In addition, Jost’s D has been found (a) to be (like
FST) also affected by levels of heterozygosity, and (b) not
to be conceptually related to basic population genetics
quantities (effective population size, gene flow),
rendering it potentially inferior to FST as a standard
measure of population differentiation (Ryman and
Leimar, 2009).

In summary, FST is an easily calculated measure of
population differentiation and a good indicator of the
presence/absence of panmixia. It has, however, limitations
due to (a) neglect of the amount of genotype divergence and
(b) dependence of the divergence estimator upon the within-
subpopulation diversity. Alternatives to FST, which could at
least partially overcome these limitations are available, but
some are only rarely used and/or not generally accepted (in
particular, HST and D). Given its widespread application and
its sound theoretical foundation, FST can be considered as a
valuable measure to infer population structure from genetic
data, if a priori information about putative subpopulations
is available. However, it is recommended to bear the
limitations of FST in mind and to treat numerical comparisons
among FST values with caution.

Isolation-by-distance/landscape genetics, units = samples
If populations are inferred to have genetically diverged, the
stratifying factors remain to be identified. When inferred
populations are geographically separated, a possible
stratifying factor is simply the geographic distance
separating populations – a pattern known as isolation-
by-distance. To test for such isolation-by-distance, the
correlation of a metric of pairwise genetic divergence
between populations (e.g. FST) to their respective geographic
distance is estimated. The pairwise distance measures (both
genetic and geographic) are arranged in distance matrices of
equal organisation and rank, and from these matrices, the
standard Pearson’s Parametric Product-Moment-Correlation
Coefficient (r) can be calculated. As any population is
included repeatedly in the analysis (as part of multiple

HST =
HeT – HeS

1– HeS

,
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pairwise comparisons), statistical significance of r is
evaluated by a matrix correlation test (Mantel test) by
permutation analysis, i.e. randomly permutating the order of
elements in the matrices (i.e. exchanging rows and columns
in tandem) and comparing the resulting correlation
coefficients to r derived from the original matrices.

Any genetic divergence measure (e.g. FST, RST, π) can be
employed for this use. The geographic distance is –
depending on landscape features – not necessarily the
shortest geographic distance between two populations, but
the shortest distance along a possible migration route for the
organism under study. For cetaceans, this is considered the
shortest distance by water (see Wiemann et al., 2010 for a
cetacean example).

Populations can be stratified by environmental factors 
other than geographic distance. The general aim of landscape
genetics is to identify genetic discontinuities (i.e. population
structure) that correlate with landscape and/or environmental
features. With a priori defined populations, any environmental
factor for which pairwise quantitative measures can be
calculated across populations can be used to produce a matrix,
which subsequently can be compared to genetic distance with
a Mantel test along the lines outlined above.

Indirect methods based on population genetics models are
an alternative to the estimation of migration rates by mark-
release-recapture methods. They typically require far less
effort in the field, although a carefully planned sampling
design aimed at collecting tissue samples for DNA extraction
and analysis is needed for the subsequent inference of
population size and migration rates. 

Estimation of migration rates requires use of model-based
methods, typically maximum likelihood or Bayesian
approaches, that make various assumptions about the
demographic history of populations. Broadly speaking, two
main groups can be distinguished: (1) methods that provide
estimates of migration rates averaged across long-time scales
(often referred to as ‘evolutionary time’) and (2) methods
that estimate recent migration rates. The former group of
methods can be further subdivided into (i) methods that
assume an equilibrium between migration and genetic drift,
and (ii) non-equilibrium methods that allow for recent
population divergence. The latter are described in a separate
section below, so in what follows we only describe the
former type of methods.

(c) Estimating migration
(i) Methods that assume migration-drift equilibrium
The first group of migration-estimation methods considers 
a scenario where extant populations have diverged from 
the ancestral population sufficiently long ago that we can
assume that an equilibrium between migration and genetic
drift has been achieved. The earliest method in this category
is based on the well-known relationship between FST and the
effective number of migrants, mNe (the product of the
population effective size, Ne, and the per-generation
migration rate, m): mNe = 1/4 (1/FST – 1). This method, first
proposed by Sewall Wright (1931), has come under criticism
due to the simplistic assumptions (constant and equal
effective sizes and migration rates across populations) of 
the underlying genetic model (e.g. Waples, 1998; Whitlock

and McCauley, 1999). Recent progress in population
genetics theory and statistics has led to the development 
of methods that avoid these assumptions. Note, however, 
that they still make other simplifying assumptions (see
below). 

Several of the methods that fall in this category are based
on coalescent theory (Kingman, 1982). In a nutshell, the so-
called ‘coalescent’ describes the properties of samples of
genes based on their genealogical and mutational history
(Rosenberg and Nordborg, 2002). The probability that two
genes in a sample ‘coalesce’ as we go backwards in time
depends on population size and the co-occurrence of genes
in the same deme. Therefore, migration between populations
influences the coalescence process. Analytical models have
been developed to describe the properties of gene
geneologies in subdivided populations (Hudson, 1990;
Wakeley, 2004) and have been used to implement several
statistical methods to estimate mNe. All of these methods
carry out the joint estimation of the gene genealogy, mNe
and several other parameters and, therefore, require
computationally intensive methods such as MCMC (Brooks,
1998).

It is important to keep in mind that the estimates of
migration provided by coalescent approaches can represent
long-term averages across the evolutionary history of the
species. Thus, they are not well suited to management
situations that require estimates of contemporary migration. 

Two sister programs, MIGRATE (Beerli, 2009) and
LAMARC (Kuhner, 2006), allow the estimation of migration
rates using a wide range of molecular markers, including
microsatellites and mtDNA. MIGRATE estimates effective
population size and migration rates between n populations,
allowing asymmetric migration and different effective
subpopulation sizes. 

LAMARC has many of the features of MIGRATE, but can
also estimate additional population genetics parameters, such
as population growth, recombination rate, and selection.
Both programs allow users to choose between maximum
likelihood and Bayesian inference approaches and provide a
wealth of detailed results ranging from point estimates
(mean, mode) and confidence or credible intervals to profile
likelihoods and curve files. Thus, users should be willing to
climb a steep learning curve to take full advantage of these
sophisticated methods. 

Both methods provide estimates of migration and effective
population sizes that are scaled by the mutation rate. Thus,
effective population size is estimated by θ = xNe µ (where 
x = 4 for diploids and 2 for haploid species, Ne is effective
population size and µ = the mutation rate). Migration rate is
estimated as m/µ, where m is the migration rate per
generation.

Summary and relevance to cetaceans:
Methods that assume migration-drift equilibrium provide
estimates of migration rates that represent long-term
averages over the evolutionary history of the species. An
additional difficulty is that the estimates obtained are scaled
by the mutation rate and, therefore, migration rate estimates
useful for management can only be obtained if mutation rate
estimates are available (and reliable). 
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(ii) Isolation with migration models 
Evolutionary models that form the basis for genetic
comparisons of different populations have typically been
based on either of two extreme scenarios. One model
considers populations that have been exchanging migrants
at a constant rate for an effectively infinite period of time 
(an ‘equilibrium migration model’). The other considers
populations that descended from some common ancestral
population at some point in the past, and have since then
evolved independently without gene flow (an ‘isolation
model’). Many of the population comparisons in the
literature use measures based on Wright’s inbreeding
coefficients (especially FST; Wright, 1965 – see section
4(b)(i) above). The problem is that, by itself, a measure of
genetic distance such as FST can’t differentiate between the
two scenarios described above. A low FST could mean either
a relatively high rate of gene flow over time, or the recent
cessation of gene flow altogether (because differentiation by
genetic drift or selection will take some time to accumulate).
Isolation with migration (IM) models allow both cases to be
considered together and therefore (potentially) distinguished.
This is important from a management perspective when
trying to distinguish population segments for which there is
some ongoing connectivity from populations that have
become isolated (and are potentially incipient species).
Boundaries to gene flow can be difficult to identify in the
ocean, and several examples of cryptic cetacean species have
been identified in recent years (e.g. Wada et al., 2003). There
are also a number of poorly resolved radiations of species
that are polyphyletic (e.g. species in the subfamily
Lissodelphininae), and species that have been variously
recognised as single species or divided into multiple sub-
species or species (e.g. Delphinus delphis and Orcinus orca;
see below for an example). IM can help resolve these
questions associated with alpha taxonomy, and thereby better
identify management units. IM models can also help identify
the relevant mechanisms and processes that regulate gene
flow, and thereby improve the efficiency of management
strategies. 

An early example of an IM model was described by
Wakeley (1996), based on the observation that the variance
of pairwise nucleotide differences (a measure of the extent
of diversity) is smaller under isolation than under
equilibrium migration. However, any single statistic such as
this will necessarily leave out much of the complexity likely
to be reflected in real demographic histories. This fact
inspired an approach that could simultaneously estimate
multiple population size/migration parameters, initially
described by Nielsen and Wakeley (2001). It is a two-
population, one-ancestor model, and the parameters
estimated are the effective population size of each of the
three populations (N1, N2, & NA), the migration rate from
population 2 into population 1 (m1), the migration rate from
population 1 into population 2 (m2), and the splitting time
between the two extant populations (t). Under the
assumption that N1 = N2 and m1 = m2, there are four total
parameters to estimate. Thus, the IM model simultaneously
estimates parameters related to both the equilibrium-
migration and isolation models. The input is sequence data
from a single locus, and the model assumes an infinite allele

model of mutation (all new mutations are novel), selective
neutrality, constant population size, no recombination, and a
closed system (no other populations exchanging alleles with
the focal populations). The model was tested in both
likelihood and Bayesian frameworks. A later version allowed
for the application of a finite site model of evolution
(Palsboll et al., 2004). This approach is especially
appropriate for the analysis of mtDNA sequence data (no
appreciable recombination), but a finite site mutation model
(such as HKY; Hasegawa et al., 1985) is better suited to
mtDNA where mutation rates are comparatively high.
Another limitation of the original model was addressed in a
paper by Hey and Nielsen (2004). The Nielsen and Wakeley
(2001) method (implemented in the program MDIV) was
based on a single locus, but single gene trees can be strongly
affected by stochastic processes (including lineage sorting,
Neigel and Avise, 1986) or natural selection, and become
unrepresentative of the true history. 

Hey and Nielsen (2004) extended the IM method to
include multiple loci (implemented in the program IM). The
parameterisation is also different in this model, where
population size, migration rate, and splitting time are all
scaled by mutation rate. It is assumed that the loci included
have been drawn from all loci at random (that is, that none
are atypical with respect to the depth of the gene tree 
or degree of gene flow), and as before, that they have
evolved neutrally. Additional parameters are required to
accommodate the additional loci (scalars to account for
differences in mutation rate and the mode of inheritance). As
described in a later paper (Hey, 2005), the IM program can
also model populations that are expanding or contracting
(through the addition of the ‘s’ parameter). Three mutation
models are available in the IM program: the infinite sites
model (often appropriate for nuclear genes that evolve
relatively slowly), the HKY finite-site model (better suited
for relatively fast evolving sequences, such as mtDNA), and
the stepwise mutation model (appropriate for microsatellite
DNA loci). Note that mutation rates are input as per locus
per year.

The programs that test these models employ Markov chain
Monte Carlo (MCMC) simulations, and a major challenge
with this approach is to verify that the output corresponds to
something like reality. It is, unfortunately, quite easy to
generate data that looks plausible but is in fact quite wrong.
For MCMC analyses a number of precautions are necessary,
including the need to run the same simulations for a
sufficient number of steps, and at least three times. The first
run allows some assessment of the effectiveness of the
chosen input parameters, while the last two full runs allow
confirmation that independent runs (with different random
number seeds) give equivalent results. While a detailed
explanation is beyond the scope of this summary, the key
objective is for the simulation to converge on the ‘stationary
distribution’ (the distribution that you want to estimate with
your sample of parameter values). Convergence is necessary
if the results are to be credible, and therefore a variety of
indicators need to be assessed during the progress of the run.
A description of these indicators and a more detailed
explanation of the problem can be found in the support
documents for the program IM. A consequence of this is that
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the simulations sometimes need to run for a very long time
(often weeks or more, depending on the speed of the
computer processors). One feature in the program IM that
helps is the ability to run a number of chains in parallel
(called ‘Metropolis coupling’). A further advance was
implemented in a second version of the program (IMa; Hey
and Nielsen, 2007), whereby approximations of the values
for some parameters allows the program to progress more
quickly. 

A few applications of the IM approach have been
published for cetacean species. In one study, fin whales
inside and outside the Mediterranean basin were compared,
and a model of ongoing gene flow (at about 2 females per
generation) was shown to be better supported that the
alternative of recent isolation (Palsboll et al., 2004). Pastene
et al. (2007) used IM to explore radiation and speciation of
the common minke whale. In another study, the timing of the
founding of populations of killer whales currently using
coastal habitat was found to post-date the last glacial
maximum (after habitat was released from under ice), and
ongoing gene flow was indicated between populations of
different ecotypes in the eastern North Pacific (Hoelzel et
al., 2007). These same ecotypes have recently been proposed
as different species (Morin et al., 2010), though this was
based only on mtDNA (mitogenome) sequences. Nuclear
markers suggested ongoing gene flow both from IMa
(Hoelzel et al., 2007) and individual genotype and parentage
analyses (Pilot et al., 2010). 

An important limitation of the model (as applied in the
program IMa) remains. The two-population, one-ancestor
model means that there should not be other populations more
closely related to the sampled populations than they are to
each other, and that no unsampled (‘ghost’) populations have
exchanged genes with either the focal populations or the
ancestral population. Violations of these assumptions can
inflate the apparent size of the ancestor population and make
estimates of gene flow between the focal populations (which
might in fact be signals of gene flow through intermediaries)
misleading. To help address this problem, a new version of
IMa (IMa2) has now been released which allows inclusion
of up to 10 populations (including ghost populations; Hey
2010). The difficulty with using a multi-population model,
however, will be the introduction of new parameters to
estimate, as well as more expansive requirements for
sampling. This analysis would need to be supported by a
large number of highly informative loci to produce reliable
results; even then, obtaining reliable estimates for closely
related populations is likely to be very challenging. As
described in Section (3)(b)(i), DNA capture methods and
next generation sequencing will facilitate the acquisition of
sequence data from large number of loci and the application
of the IMa2 method.

(iii) Methods that estimate contemporary migration
Assignment methods
Efforts to estimate levels of connectivity from genetic data
have traditionally relied on equilibrium models that integrate
information over evolutionary time periods (see Section
(4)(b)(ii)1). The last decade has seen increasing interest 
in so-called ‘assignment methods’ that do not require

equilibrium assumptions and instead can estimate
contemporary patterns of migration over time frames
encompassed by the samples. ‘Assignment tests’ (Paetkau
et al., 1995; Manel et al., 2005) are a type of discriminant
function analysis in which the discriminant functions are
based on genetic traits that differ in frequency among
potential source populations. Multilocus genotypes are 
used to ‘assign’ individuals to the most likely source
population, guided by learning samples collected from
potential sources. If an individual is assigned to a population
other than the one it was sampled from, it can be inferred
that the individual is a recent migrant (Waser and Strobeck
1998; Berry et al. 2004). The program GeneClass (Piry 
et al., 2004) includes several different assignment test
methods and offers the user various options for attempting
to identify first-generation migrants. Other programs 
attempt to identify second-generation migrants (Wilson and
Rannala, 2003) or estimate the fraction of genes in each
individual that are derived from each population (Pritchard
et al., 2000).

Assignment methods have some advantages for estimating
migration: they don’t require one to assume migration-drift
equilibrium, as do most standard models; they can
potentially provide very detailed information about
connectivity (both magnitude and direction); and they
provide information about contemporary dispersal, which
might be of interest for a variety of reasons. However,
assignment methods also have some substantial limitations
for studying dispersal. First, these methods provide
information about movement of individuals but not
reproductive success of the migrants; therefore, they do not
provide any direct information about gene flow. Second,
assignment methods provide information about dispersal
only for the time frames encompassed by the sampling.
Because dispersal is a stochastic process, samples taken from
only one or a few years might not provide a representative
picture of migration. This can be contrasted with equilibrium
models, which can provide an estimate of long-term patterns
of gene flow from samples taken at a single point in time.
For any given application, these two factors might or might
not represent serious limitations, depending on the nature
and objectives of the research program. 

A third factor – statistical power – is potentially a more
general limitation on use of assignment methods to study
contemporary dispersal. Power to detect migrants with
genetic methods depends on two things: the amount of data
one has (samples of individuals, gene loci, and alleles), and
the magnitude of genetic differences among populations. The
researcher has control over the former but not the latter, and
therein lies a conundrum: power is highest when genetic
differences among populations are large, but in that case
migrants will be rare and difficult to detect without a very
ambitious sampling program; conversely, if migration is high
enough to provide reasonable prospects for finding migrants,
the resulting levels of gene flow should erode most
differences among populations, making it difficult to
genetically distinguish migrants from residents. 

Two examples illustrate the inherent difficulty related to
power. Paetkau et al. (2004) used computer simulations to
evaluate power to detect first generation migrants. They
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found that even with fairly large amounts of data (50
individuals sampled per population; 20 microsatellite-like
gene loci), power to detect true migrants was <50% 
when gene flow rates were high enough (mN ≥ 5) to keep 
FST values below about 0.05. These conditions would apply
to a substantial fraction of potential applications for
cetaceans.

Second, the power issue sets up an inherent tradeoff
between Type I errors (incorrectly labeling a resident as a
migrant) and Type II errors (failing to detect a true migrant),
either of which can seriously bias estimates of migration.
Consider this hypothetical example: a group of populations
with N = 100 individuals each are connected by 1%
migration per generation (m = 0.01). This leads to mN = 1 (a
low level of gene flow) and relatively large genetic
differences among populations. Optimistically, assume that
these large differences lead to ~100% power to detect
migrants using assignment methods (as found by Paetkau et
al., 2004 for data-rich scenarios). So, a large sample would
on average contain 1% true and correctly-identified migrants.
But if the standard tolerance for Type I error is used 
(α = 0.05), then 5% of the sample would also be incorrectly
identified as migrants. In this case, even with perfect
statistical power, the estimate of migration rate (0.01 + 0.05
= 0.06) would be six times the true level. The only solution
to this problem is to adopt a very low α level, but doing so is
likely to compromise power unless genetic differentiation is
very strong.

The conundrum regarding power does not necessarily
represent an insurmountable problem for using assignment
methods to study contemporary dispersal – for example,
Berry et al. (2004) reported reasonably good agreement
between genetic and mark-recapture estimates of dispersal
in a series of populations of the grand skink, Oligosoma
grande, for which FST values ranged between 0.04 and 0.11.
However, the issues discussed above do indicate that careful
attention to experimental design is essential, as is a realistic
assessment of prospects for producing useful information.
Three general strategies can help improve performance.
First, in theory at least, it is possible to achieve high power
to identify migrants among populations with very low levels
of genetic differentiation, provided that arbitrarily large
numbers of loci and alleles can be scored. The ability to do
this with non-model species is rapidly increasing. Second,
adopting a very low tolerance for Type I errors (e.g. α ≤ 0.01)
can help reduce some of the most serious sources of potential
bias, but this will likely compromise power unless genetic
differences are moderately large and/or very large amounts
of data are available. Third, the major challenges to these
methods arise from uncertainty in identifying individual
migrants. Using an analogue to Genetic Stock Identification
(resolution of mixed-stock fisheries using genetic data –
Shaklee et al., 1999; Manel et al., 2005), if focus is shifted
from identifying individual migrants to estimating an overall
migration rate, then uncertainty about origins of individuals
might not preclude precise and accurate estimates of
migration. This would require developing, or at least
refining, some new analytical techniques. One software
program, BayesAss (Wilson and Rannala, 2003) does
actually attempt to estimate migration rate, but its

performance with weakly differentiated populations has not
been encouraging (Faubet et al., 2007). Another Bayesian
program (BIMr; Faubet and Gaggiotti, 2008) estimates the
fraction of immigrant genes in subdivided populations and
finds environmental variables associated with patterns of
migration.

Finally, the conundrum regarding the inverse relationship
between the level of migration and genetic differentiation
largely disappears if the system one is analysing involves
populations that historically have been strongly isolated (and
hence are well differentiated genetically) but which are
currently exchanging sizeable numbers of migrants. This
non-equilibrium situation cannot persist for long unless the
migrants have little or no reproductive success, but in the
interim could provide a large number of migrants to sample
and high power to distinguish them from residents. This
scenario, in fact, is one that the Wilson and Rannala (2003)
program was designed to study. It is not clear how often this
scenario might occur with cetaceans.

Summary and relevance to cetaceans:
Assignment methods have considerable potential to provide
insights into contemporary movement of individuals without
resorting to equilibrium assumptions, as many widely-used
models do. They are most powerful for studying genetically
divergent populations, in which case individual migrants can
be identified with a high degree of certainty. Two general
scenarios are conducive to this type of analysis: (1) divergent
populations that have only recently come into genetic
contact; (2) analysis of mixtures of migrant individuals that
co-occur but do not interbreed (e.g. if sampled on feeding
grounds). For populations that regularly exchange even a
modest fraction of individuals that successfully interbreed,
genetic differences will generally be small, and considerable
care is needed to evaluate results in the context of the
inherent tradeoff between Type I and Type II errors in
identifying migrants.

Close-kin analyses
See Section (4)(a)(ii) for a discussion of use of close-kin
analyses to estimate dispersal.

(d) Mixture analysis
This method, often called Genetic Mixture Analysis (GMA)
or Mixed-stock Analysis (MSA) or Genetic Stock
Identification (GSI), uses samples from potential source
populations (the ‘baseline’) to resolve mixtures of individuals
from different populations. In general this does not involve
hybridisation or ‘admixture’ (interbreeding); rather, it is used
to analyse mixtures like those found on feeding grounds of
cetaceans or in oceanic catches of salmon. If the goal is to
identify the source populations for specific individuals (e.g.
for a forensic application), assignment methods (see Section
(4)(b)(ii)3.A) would generally be the method of choice.
However, assignment methods allocate entire individuals to
the most likely source, and this ignores uncertainty associated
with each assignment. Therefore, if the underlying question
is, ‘What fraction of the mixture comes from each source
population’, then a form of GMA/MSA/GSI is better. These
mixture programs deal with uncertainty by fractionally

J. CETACEAN RES. MANAGE. 18: 33–80, 2018 65

MARAM/IWS/2019/Hake/BG6

33



allocating each individual based on its relative likelihood of
coming from different sources. 

The original maximum likelihood GSI model developed
almost 40 years ago (Grant et al., 1980) to analyse mixed-
stock catches of salmon was constrained by the assumptions
that (1) baseline allele frequencies were known without error,
and (2) all stocks that might contribute to the mixture are
represented by samples in the baseline. Smouse et al. (1990)
developed an unconstrained model that relaxed both
assumptions, by allowing baseline allele frequencies to vary
based on estimated composition of the catch and by allowing
a test of the hypothesis that one or more unsampled stocks
are present in the mixture. However, this model was not
widely adopted because it was computationally very
demanding for computers available at the time. All of the
likelihood and Bayesian models currently in widespread use
(e.g. Pella and Masuda, 2001; Kalinowski et al., 2007) now
treat baseline allele frequencies explicitly as samples, but
most are still constrained by the second assumption.
STRUCTURE, however, has completely relaxed the
assumption about comprehensive baseline samples, as no
baseline samples are required at all. However, power is
considerably reduced as a result, and even if the mixture can
be successfully resolved into component gene pools it is not
clear how to use this information to guide allocation
decisions.

Performance of several MSA programs has been
extensively evaluated using simulated mixtures (e.g.
Koljonen et al., 2005). Here is a brief summary of results:

(1) The main factors that influence precision are the magnitude
of genetic differences among source populations and the
sizes of the baseline and mixture samples.

(2) Because stock composition estimates are constrained to
the biologically-plausible domain [0–1], estimates for

stocks that are rare or absent from mixtures tend to 
be biased upwards. Although this bias might be small 
in absolute terms (typically a few per cent or less), it 
can mean that the estimate from that stock is several
times its true value. This bias is reduced if the low-
contributing stocks are genetically very distinctive.
However, even with perfect power to genetically resolve
the mixture, strong inferences about contributions of
small stocks is limited by the size of the sample from the
mixture. 

(3) Misallocations most frequently are allocated to other
populations that are genetically similar. When the desired
level of precision is not achievable at the individual
population level, one commonly used option is to create
larger “management” or “reporting” groups, whose
allocation is the sum of the allocations to stocks within
the group (Hess et al. 2011).

(4) Care is needed in using simulations to assess power to
resolve mixtures involving specific natural populations
that have been sampled to obtain baseline frequencies. In
these situations, overly optimistic conclusions about
power can be reached unless proper cross-validation is
used (Anderson et al., 2008).

Bootstrapping or other resampling methods can be used
to produce confidence intervals around point estimates. In
the case of Bayesian GSI methods (e.g. Pella and Masuda,
2001; Gaggiotti et al., 2004) it is possible to obtain credible
intervals (the equivalent of frequentist confidence intervals).
Some of the methods can accommodate haploid markers 
like mtDNA and/or other characters potentially useful 
for stock identification, such as scale patterns, otolith
microchemistry (Smith and Camapana, 2010), or incidence
of parasites.
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(5) GENERIC/CROSS-CUTTING ISSUES 

(a) Choice of markers
The choice of molecular markers depends on the purpose of
a study. Markers can be classified by:

• inheritance mode (autosomal vs. unisexual)

• degree of polymorphism

• reliability of genotyping

• likelihood to be affected by natural selection

With regard to the inheritance mode, autosomal markers
(autosomal microsatellites, autosomal SNPs, other sequences
on autosomes) are inherited through both sexes and can
hence provide a comprehensive assessment of population
structure. For sex-specific assessment (e.g. for the estimation
of gender-specific dispersal), markers located on the
mitochondrial DNA can be used for inference of female
population structure and dispersal, as mitochondrial DNA is
inherited maternally. If a study aims at a female-specific
analysis, male mtDNA should be excluded, because in 
long-lived species like cetaceans, inclusion of males will
potentially bias dispersal estimates (Tiedemann et al., 2000).

In mammals (like cetaceans), male-specific dispersal can 
be analysed by targeting the Y-chromosome, although
polymorphic Y-chromosome markers are not yet available
for all species of interest.

For population genetic analysis, the most informatively
polymorphic mtDNA region in most mammals (including
cetaceans) is the Control Region (= D-loop). Cytochrome b
has also been frequently targeted. With the advent of cheap
sequencing technologies, entire mitochondrial genomes are
now being used for population genetic analysis, yielding the
most reliable phylogenetic inference of mitochondrial
lineages. Yet, because mtDNA is effectively inherited as a
single locus, even full mitochondrial DNA analyses cannot
overcome all the limitations of single locus studies, such as
cross-species introgression and ancestral lineage sorting. The
very same issues apply also for the Y-chromosome, but an
additional complication there might be a lack of knowledge
regarding polymorphisms in the species of interest.

The most commonly applied autosomal markers are
microsatellites and single nucleotide polymorphisms (SNPs).
A single microsatellite locus potentially provides more
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information than a SNP, because a single microsatellite can
exhibit many alleles and their size difference may contain
additional divergence information (see above). Therefore,
microsatellites are still useful, especially when budgets 
are limiting. However, Next-Generation-Sequencing (NGS)
methods such as restriction associated DNA sequencing
(RADseq; Baird et al., 2008) are being increasingly used.
They provide much higher resolution (thousands of loci), the
potential to investigate loci under selection, and do not
require a genome reference sequence for the study organism.
Furthermore, reference genomes are quickly being produced
for non-model organisms (including cetaceans), which
facilitates the re-sequencing of whole genomes and the
interpretation of RADseq data. SNP analyses can be upscaled
and automated relatively easily, and the limited amount of
information provided by a single nucleotide polymorphism
is overcome by the high number of SNPs that can be
analysed per specimen.

Unless a study is targeted on adaptive processes, the
general assumption for molecular markers to be used for
population genetic inference is selective neutrality, i.e. none
of the genotypes/alleles is favoured by natural selection.
There are known examples for occasional positive selection
among mtDNA genotypes. One should remember this
possibility and test for selection, if mtDNA analysis yields
unexpected results inconsistent with the results of
microsatellites and other nuclear markers.

Despite a few indications of selective disadvantages of
particular microsatellite alleles, microsatellite variation can
be generally considered selectively neutral. A microsatellite
locus can, nonetheless, be situated in close proximity to a
functional locus, such that selection at that locus will impact
the variation at the linked microsatellite locus. If a
microsatellite locus is suspected or inferred to be affected by
selection, it can be excluded from the population-genetic
analyses. A powerful approach is to look for selective sweeps
affecting particular loci with a genome scan of the respective
region. Significant deviation from HWE can also point to
selection, although HWE deviation can occur for a variety
of other reasons as well (see Section (2)(b)).

SNPs can be situated in any part of the genome. Hence,
they can be positioned both in non-coding and coding
regions. It is generally assumed that – because SNP analyses
typically cover very many SNPs – that selection at single loci
will not significantly impact population genetic inference. 
If there is, however, sufficient evidence that a single
polymorphic site is under positive selection, this locus might
be of interest on its own right (potential for local adaptation),
but can be excluded from analyses that assume selective
neutrality. 

If SNP data sets comprise hundreds or thousands of loci,
there is high likelihood for linkage disequilibrium among
particular sets of SNP data. Researchers analysing SNP data
in a population genetic context should be aware of whether
their analytical method of choice assumes linkage equilibrium
and how sensitive the method is to violations of that
assumption. For such methods, linked (= ‘phased’) SNPs 
can be combined to haplotypes/alleles which are subjected 
to further analysis. Alternatively, only one SNP out of an
identified linkage group can be retained for subsequent
analysis.

(b) Ascertainment bias
Ascertainment bias means a bias introduced by the
specimens from which molecular markers are derived, prior
to their application in population genetic studies. The bias
can be particularly strong when the investigator selects
markers based on levels of genetic diversity. Different
populations often have different levels of diversity at
different markers, so the markers that are developed 
depend to some extent on which populations are included 
in the initial screening panel. The biases arise when the
resulting suite of markers is treated as representative of 
the entire genome, or when they are used to describe patterns
of diversity in populations not included in the original 
panel.

The mitochondrial DNA of animals is rather small and
well described. Within cetaceans, protocols are available to
readily analyse any part of the mitochondrial genome in 
any species, such that ascertainment bias is a non-issue. 
In microsatellite development, people generally target
polymorphic loci. Here, ascertainment bias can occur, if
specimens of only one population or one geographic region
are used for marker development. Furthermore, if only loci
which are polymorphic are retained in these specimens, there
will be a bias towards overestimation of genetic diversity in
this population. Heterologous microsatellite loci (= loci
developed for another species) are likely to be more prone
to this effect than species-specific ones. Comparisons of
levels of diversity among populations or species are most
meaningful when they are based on random sets of markers,
including monomorphic ones.

The most serious issue is ascertainment bias during SNP
development. As the sole criterion for a SNP is to be
polymorphic (with a threshold frequency for the minor allele,
often ≥ 5%; e.g. Hao et al., 2008), the choice of specimens
for SNP development constrains the SNPs found to be those
polymorphic among these specimens. If the screened
specimens are not representative of the entire geographic
region to be targeted, there will be a strong bias towards
overestimation of diversity in the populations for which the
SNPs were established and underestimation in the others. In
addition, many potentially informative SNPs will remain
undetected, if the specimens used for development are not
truly representative. Some simulation methods take into
account the potential confounding effect of ascertainment
bias (e.g. Guillot and Foll, 2009). Nonetheless, to minimise
these effects, it is highly recommended to (1) make the best
effort to develop markers from a panel of specimens
representative for the planned study, and (2) to keep track of
this panel and its eventual limitations, should the markers
later be used in a different context than they were originally
developed for. In some SNP methods (e.g. RAD sequencing),
the initial data analysis outputs both monomorphic and
polymorphic loci. If both data sets are retained for later
analysis, initially monomorphic loci could be repeatedly
checked for polymorphisms when additional specimens are
added to the analysis.

(c) Multiple testing
Some analyses routinely involve multiple tests of the same
hypothesis (e.g. tests of HWE and LD, or pairwise tests of
heterogeneity between populations). In these applications, it
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is common practice to use a correction for multiple testing,
such as the Bonferroni correction, in which the critical P
value is inversely proportional to the number of tests. Two
points should be kept in mind when using this type of
correction for multiple tests.

• The Bonferroni correction is widely known to be
conservative and hence will fail to detect some actual
departures from the null hypothesis. 

• If the correction is performed, then the expectation is
(with probability 1–P) that the number of adjusted
significant tests will be zero. Therefore, even a single
adjusted significant test cannot easily be attributed to
chance and requires an explanation.

If a multiple testing correction is to be performed, a better
option might be the ‘false discovery rate’ (FDR: the fraction
of tests in which the null hypothesis is falsely rejected;
Benjamini and Hochberg, 1995), which adjusts for multiple
testing without sacrificing as much power as the Bonferroni
correction. In addition, it is recommended that results are also
presented for unadjusted tests, as the distribution of unadjusted
P values provides valuable information about agreement with
the underlying null hypothesis (see Waples, 2015).

(d) Mutation rates
The parameter θ = 4Neµ plays a key role in both theoretical
and applied population genetics. θ is a composite parameter,
proportional to the product of effective population size (Ne)
and mutation rate (µ). Although this fact adds complexity to
some analyses, it can be used to advantage by a simple
rearrangement of the above equation: 

Ne = θ/(4µ). 

This means that if θ can be estimated from population
genetic data (as is routinely done with microsatellite profiles,
mitochondrial and nuclear DNA sequence data or single
nucleotide polymorphism (SNP) data), then insights into Ne
can be obtained if one can also estimate mutation rate. The
effective population size that is estimated in this way is a
long-term, or ‘historic’, Ne that depends (among other things)
on the assumption that measured levels of genetic diversity
reflect an equilibrium between mutation and genetic drift
(see Section (3)(b)(i)). This general approach has a variety
of practical applications, such as estimating historical
effective population size; estimating divergence times
between populations or species; and estimating population
demographic patterns over time (see Beaumont and Rannala,
2004, Nielsen and Beaumont, 2009). Several factors,
however, contribute to uncertainty and limit the practical
usefulness of these approaches. 

First, only four kinds of DNA bases occur (termed A, T,
C, G for short), and DNA sequences are typically compared
by counting the fraction of sites at which they have different
bases. Once a mutation has occurred at a particular site (e.g.
from A to T), a subsequent mutation at that site will still
result in only a single difference compared to the reference
sequence (if the mutation is from T to G or C) or will negate
the original change (if the mutation is a back mutation from
T back to A). This ‘saturation effect’ is of particular relevance

for estimates of mutation rates for mtDNA, which are
typically obtained by the ‘phylogenetic method’ that involves
comparing sequences from different species. In addition to
making duplicate mutations more likely, this approach
introduces potential sources of error in developing
calibration points for divergence times – typically derived
from the fossil record, which is relatively poor for cetaceans. 

Second, mutation rates can vary considerably among
species and among regions of the genome within species. For
many years, a ‘2% rule’ was used for mtDNA, based on
calculations using the phylogenetic method suggesting that,
for vertebrates, the average rate of base substitution was
about 2% per million years (Wilson et al., 1985). However,
rates vary among regions of the mtDNA molecule, and for
the mitochondrial control region, the estimates are
considerably higher (12% to 38% per million years in
humans; see review in Henn et al., 2009). Furthermore, the
mtDNA control region itself is heterogeneous for mutation
rate, with the central, very conserved, region being flanked
by two ‘hypervariable’ regions (HVR1 and HVR2).

Finally, recent estimates of mutation rate over shorter time
frames for intraspecific comparisons often differ greatly from
those based on the phylogenetic method. An extensive
analysis (Howell et al., 2003) provided an estimate for the
human HVR1 of 95% per million years (0.95 changes/site/
million years). Similar approaches applied to other species,
including C. elegans (Denver et al., 2000) and Adélie
penguins, Pygoscelis adeliae (Millar et al., 2008), have also
produced estimates that are 1–2 orders of magnitude higher
than suggested by the ‘2% rule’. Henn et al. (2009)
suggested that for humans, the high mutation rates decay
after about 15,000 years, but for penguins the elevated rate
seemed to extend back further in time (Millar et al., 2008).
These elevated rates have been reported for a broad range of
species, including cetaceans (see Ho et al., 2007). This effect
can be associated with the time associated with slightly
deleterious mutations segregating prior to fixation or loss.

From the form of Equation 6, it is easy to see that errors
in estimating the mutation rate directly translate into
proportional errors of the same magnitude when estimating
Ne. For example, if mutation rate is underestimated by a
factor of two, Ne will be overestimated by the same amount.
This fact, together with the wide range of published estimates
of mutation rates, has helped spawn much of the controversy
that has surrounded some attempts to estimate historical Ne
based on existing levels of genetic diversity. For example,
Roman and Palumbi (2003) calculated that there must have
been many more whales in pre-whaling oceans than had
previously been thought, based on an estimate of mutation
rate in the cetacean mtDNA control region derived from the
phylogenetic method (e.g. Hoelzel et al., 1991) – about 2%
per million years. However, the relevant timeframe suggests
that the much higher rate estimates derived from intra-
specific genealogies might be more appropriate (e.g. Henn
et al., 2009, Millar et al., 2008). If those higher rates were
instead applied, the cetacean population size estimates would
fall in line with what had been previously interpreted from
historical catch data. The problem was illustrated in a recent
phylogeny based on whole mitochondrial DNA genomes for
delphinid species, focusing on the genus Tursiops (Moura et
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al., 2013a). Both bio-geographic and fossil calibrations were
incorporated into the tree, and it was clear that node dates
were biased upwards when only the fossil dates were used,
and downwards when only the bio-geographic calibration
was used.

In summary, current levels of genetic diversity and other
patterns in the DNA of contemporary populations contain
information about historic size and demographic processes.
However, deciphering this information is tricky and depends
heavily on obtaining a reliable estimate of mutation rate. It
is not enough to have an estimate of mutation rate for the
focal species; it is also important to have estimates for the
regions of the genome that produced the genetic data being
analysed, and to apply the correct mutation rate to the
relevant time frame – higher rates for more recent events (Ho
et al., 2005). 

(e) Sampling and experimental design
Experimental design involves shaping key features of an
experiment to maximise the likelihood of distinguishing
among competing hypotheses. A poor experimental design
can result in failure to reject an incorrect hypothesis or
rejection of the true hypothesis because of (i) insufficient
amounts of data or (ii) incorrect assumptions in the analysis.
Such pitfalls can be avoided by conducting a prospective
assessment, typically utilising computer simulations to
generate ‘virtual’ genetic data under each competing
hypotheses. The in silico data generated in this manner are
then subjected to the planned data analysis, thereby enabling
an assessment of the accuracy and statistical power in the
planned analyses. In other words: is the planned study
designed in a manner that will permit a reasonably rigorous
assessment of the competing hypotheses?

In the context of the IWC SC’s work, genetic methods are
primarily employed to define management units and to
estimate connectivity among populations, as well as
historical or present abundance. As this section is for
illustrative purposes, we will use the detection of
management units, or stocks, as an example, but the same
general principles apply to other aspects. Conducting a
prospective assessment has the additional advantage that it
forces the investigator to formulate the hypotheses that are
to be tested in an explicit and qualitative manner. Key
parameters, such as migration rates, population sizes, and
mutation rates, as well as temporal and spatial changes in
these parameters, need be specified in order to generate the
in silico genetic data. Such translation of management
objectives into demographic rates, and further their effects
upon the population genetic make-up, might not be
straightforward and can involve substantial amounts of work.

One main obstacle in conducting a reasonably exhaustive
prospective assessment is that the number of possible
combinations of parameter values increases rapidly, and it
quickly becomes infeasible to assess the entire range of
parameter values. For this reason, it is advisable to limit the
extent of a prospective assessment as much as possible.
Estimates of the relevant parameters from available data can
be used to select reasonable ranges of parameter values. In
addition, there are also relatively hard limits upon the
number of tissue samples that can be collected, as well as the

number of loci which can be analysed, although this latter
aspect has changed dramatically over the last few years. 

As an illustration, for stock identification a prospective
assessment could consist of estimating the statistical power
to reject the hypothesis of a single stock across a range of
different levels of genetic divergence, which in turn is a
function of the population history and dispersal as well as
mutation rates of the loci modeled. Alternatively, and
perhaps more productively, would be to identify those
dispersal rates for which management recommendations
would change. Once such ‘tipping points’ have been
identified, a prospective assessment can be used to guide
how many tissue samples and how many genetic markers are
necessary to determine whether the actual degree of genetic
divergence is above or below the critical dispersal rates. A
relatively simple example would be: how much data
(individuals, loci, samples) would be required to reject
homogeneity if the genetic divergence is at FST = 0.02? 

A large body of published assessments have evaluated the
statistical power (or precision) in more common population
genetic inference methods, which might serve as a guide to
a specific study (Bjorklund and Bergek, 2009; Cornuet et al.,
1999; Faubet et al., 2007; Gaggiotti et al., 1999; Larsson et
al., 2009; Morin et al., 2009; Paetkau et al., 2004; Ryman et
al., 2006; Waples and Gaggiotti, 2006). It might therefore be
that the results of these more general assessments are
sufficient to rule out some hypotheses without a need for
computer simulations. 

The simplest (and most common) approach used to
generate in silico population genetic data are based upon
coalescent theory (Kingman, 1982). The efficiency of
coalescent-based methods lies in the simple, underlying (but
standard) Wright-Fisher population genetic model (Wright,
1969) and the fact that only the coalescent of the sampled
gene copies are modeled (as opposed to all past and present
individuals as is the case in individual-based simulations).
The individuals within each population are assumed to mate
randomly with uniform reproductive success. Generations
are discrete and non-overlapping. Population sizes can be
modeled as constant or as changing, typically either
instantaneous or exponential population changes. Migration
(and population growth) rates are kept constant during each
time phase in a simulation. 

Although such ‘ideal virtual’ populations likely will differ
substantially from the in vivo populations under study, the
outcome of such simulations nevertheless provides valuable
insights into the data requirements and experimental set-up
necessary to discriminate among the targeted management
hypotheses. Coalescent simulations are an efficient means
by which to get a rough estimate of statistical power, which
more extensive simulations under realistic population models
might not greatly improve upon. Hence, coalescent-based
simulations might constitute a reasonable starting point
(Hudson, 2002; Laval and Excoffier, 2004), which, due to
their efficacy, facilitates the opportunity to test a range of
evolutionary models and parameters values within a realistic
time frame.

If the assumptions underlying the coalescent are
problematic, the population history is difficult to model, or
the statistical assessment planned is impossible using 
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the coalescent, then individual-based simulations, as
implemented in programs such as SPIP (Anderson and
Dunham, 2005), RMetaSim (Strand, 2002) and TOSSM
(Martien et al., 2009) constitute a useful alternative.
Individual-based approaches often permit greater flexibility
in terms of demographic parameters (whereas the mutation
models for the genetic markers often are simpler). The main
drawback of individual-based simulations is that they 
are considerably slower compared to coalescent-based
simulations and expectations might be unknown, making it
difficult to assess whether the model behaves correctly. 

In summary, coalescent simulation models are very
efficient and well suited to approximate a wide range of
population models (Hoban et al. 2012). If populations are
too complicated to model in a coalescent framework, then
individual-based models constitute a useful alternative. It can
be useful to combine the approaches: use a coalescent-based
simulation to ‘seed’ individual-based simulations with data
at migration-drift-mutation equilibrium (Martien et al., 2009;
Williamson-Natesan, 2005; Peery et al., 2012). 

Only rarely are assumptions underlying the inference
methods likely to match the reality, so a prospective power
assessment might be required to assess the effect and
magnitude of biologically realistic deviations from the
assumptions made. 

The central parameter in coalescent simulations is θ,
which denotes the expected number of mutational events
between two gene copies in a single constant-sized random
mating population (Hudson, 1998; Kingman, 1982). The size
of θ is a function of the generational mutation rate (μ) and
the effective population size (Ne). In other words, as Ne
increases so does the expected time to the most recent
common ancestor of a random pair of two gene copies, and
with that the number of mutational events separating the two
gene copies. Of course, an increase in μ also elevates the
average number of substitutions between the sampled gene
copies. Accordingly, the expected level of genetic variation
is a function of the product of the effective population size
and generational mutation rate. Migration is scaled as the
number of (effective) migrants per generation, or mNe.
Population size changes are typically modeled as
instantaneous or at a fixed growth rate. These parameters 
(θ, mNe and growth rate) can all be estimated from
preliminary data. Difficulties arise when trying to separate
m, Ne, or μ, which some simulation programs require. In such
cases, one needs to ensure that the product (i.e. θ or mNe) 
is similar to the observed estimates.

In contrast, individual-based simulation programs
typically require specification of a large number of non-
composite parameters, such as birth rates, survival rates,
population sizes, reproductive variance, etc., which allows
for greater flexibility in fitting more complex demographic
models, but also necessitates relatively precise estimates of
several demographic parameters.

In both cases, it is advisable to pick some observed
statistics (e.g. number of haplotypes or local genetic
diversity) by which to check that the simulations behave
similarly to the observed data, keeping in mind that such
checks do not constitute a validation per se and that a number
of different parameter value combinations can yield similar

observed values (but which could lead to substantially
different inferences).

(f) Different approaches to statistical inference 
Statistical inference is aimed at drawing conclusions from
datasets arising from systems subject to random variation.
There are two main schools of thought in statistical
inference, frequentist and Bayesian. 

Frequentist inference is best suited to experimental
settings where any given experiment can be considered as
one of an infinite sequence of independent repetitions of the
same experiment. Statistical significance testing is a typical
example of this type of approach. Here one focuses on a test
statistic and proposes a ‘null hypothesis’. It is then possible
to decide whether or not the null hypothesis (no difference
between the samples compared) is supported by calculating
the p-value, the probability of obtaining a test statistic as
extreme as the one actually observed, due to random choice
of which samples are analysed, even though there is no actual
difference. We reject the null hypothesis if the p-value is less
than the significance level α, typically set at 0.05 (a 5%
chance of concluding there is a difference when there is
none, or 0.01 (a 1% chance of making such a conclusion).
The ‘α level’ (or False Positive Rate) is usually set in this
range to balance it with the converse ‘β level’, the probability
of concluding there is no difference when in fact there is
(False Negative Rate). 

Bayesian inference is best suited to situations in which
experimental manipulations are not possible and we have to
rely on observational data that have arisen from the natural
dynamics of the system. Instead of being concerned with
rejecting the null hypothesis, Bayesian statistics focuses on
estimating the ‘posterior probability’ that the null hypothesis
is true after the relevant evidence is taken into account. It is
then possible to make an informed decision about the
plausibility of the hypothesis. An important difference
between frequentist and Baysian methods is that the former
relies only on the evidence as a whole, while the latter
combines new evidence (from the data) with prior beliefs
through the application of Bayes’ rule (a mathematical
approach for deciding how one should change existing
beliefs in the light of new evidence – see Gelman et al. 1995
for a full description). Below we describe two so-called
‘likelihood’ approaches that represent examples of the two
schools of thought as applied to genetic analysis: maximum
likelihood (ML) and Bayesian.

Likelihood-based methods proceed by assuming that the
observed data arose from some probabilistic model with
unknown parameters. Their objective is to use the data to
estimate the parameters of the model, and to assess the
degree of uncertainty associated with these estimates. The
core of the method consists in the calculation of the
probability P(G|Θ) of observing the genetic data G if the
parameters of the model take the value Θ = θ. This
probability is the so-called likelihood function, L(Θ|G),
which by definition is a function of Θ. For example, in the
context of a Genetic Stock Identification method, the data G
are the individual genotypes observed in the sample from the
genetic mixture and the allele frequency distributions
observed in the source populations. The model parameters
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that we want to estimate are proportions that each source
population contributes to the genetic mixture, which can be
denoted by the vector x = {xi}, where xi is the contribution
of source population i. 

(i) Maximum Likelihood inference
Maximum likelihood (ML) inference consists of finding the
value of Θ that maximises the likelihood function L(Θ|G).
One problem with this approach is that the uncertainty
associated with the estimate is expressed by a 95%
confidence region that has a rather obscure interpretation.
The precise interpretation is that the probability that the
confidence region contains the true value of Θ is 0.95. Note
that this is not equivalent to saying that the probability that
Θ lies in the confidence region is 0.95. An important
advantage of ML inference is that for large sample sizes, the
maximum likelihood estimate, Θ̑, will have an approximately
normal distribution centered on the true parameter value Θ.
Thus, an approximate 95% confidence interval can be
calculated as the range of Θ̑ values that are within two log-
likelihood units of the maximum log-likelihood.
Additionally, we can test whether the maximum likelihood
estimate is significantly different from another fixed value,
θ0, using the likelihood ratio test. This test uses the fact that
the log-likelihood ratio statistic,

has asymptotically a chi-squared distribution, if θ0 is the
‘true’ value of θ. Λ can then be assessed for statistical
significance using standard χ2 significance levels. 

ML estimates can be obtained analytically for simple
models, but application of this method in population genetics
typically leads to complex likelihood functions that need to
be explored using computer approaches such as the
Expectation Maximisation algorithm or MCMC. 

(ii) Bayesian inference
To make probability statements about the parameter Θ given
the data G, we must begin with a model providing a joint
probability distribution for Θ and G. The joint probability
mass, P(Θ,G), can be written as a product of two probability
distributions, the prior distribution P(Θ), and the sampling
distribution, given by the likelihood function L(G|Θ):
P(Θ,G) = P(Θ)L(G|Θ) (Gelman et al. 1995). Using Bayes’
theorem, we obtain the post-data or posterior distribution,

The posterior distribution represents our knowledge about
the parameters, taking into account both our prior
information (represented by the prior distribution) and the
observed data. The primary task of any specific application
is to develop the model P(Θ,G) and perform the necessary
computations to summarise P(Θ|G) in appropriate ways. 

Visual inspection of the posterior distribution provides
information that is not available when using ML estimation.
Additionally, this distribution can be described by point
estimates such as the mode, median or mean. The uncertainty
around the estimate is expressed by the 95% credible region

A = –2log
L( 0 )
L( ˆ)

,

P( |G) = L( |G)P( )
P(G)

.

for Θ. The intuitive interpretation of this region is that the
probability that Θ lies in it is 0.95. Another advantage of
Bayesian over ML estimation approaches is that the former
does not rely on asymptotic arguments, and therefore is valid
in situations where the standard likelihood theory fails. 

Simple problems in estimation lead to closed form
solutions for the posterior distribution, but typical
applications in population genetics require the use of
numerical integration methods such as MCMC (e.g. Brooks,
1998). 

The effect of the prior distribution: In the context of
population genetic analysis, the prior distribution can be
interpreted as a population of possible parameter values,
from which the parameter of interest has been drawn
(Gelman et al., 1995). Thus, it should include all plausible
values of the parameter but it need not be centered around
the true value (which in any case is unknown) because the
information contained in the data will (it is hoped) far
outweigh any reasonable prior probability specification.
Frequentists view prior distributions as subjective
judgements of opinion that cannot be rigorously justified
(Williamson, 2010). However, objective prior distributions
can be obtained from analyses of previously available data.
It is also possible to obtain objective priors using
independent data, as exemplified by methods that
incorporate environmental, ecological, and demographic data
to estimate population parameters from genetic data (e.g.
Gaggiotti et al., 2002; Foll and Gaggiotti, 2006). If no
reasonable basis exists for assigning priors to parameters,
non-informative priors (which assume a uniform
distribution) can be used.

Summary and relevance to cetaceans:
A large number of Maximum Likelihood (ML) and Bayesian
methods can help answer important questions concerning
cetacean populations (estimation of migration rates, stock
delimitation, estimation of effective population sizes, etc.).
Both approaches lead to similar results if the amount of data
is large. However, they could differ if this is not the case. In
particular, the asymptotic theory underlying ML methods can
become invalid if sample sizes are small. Both ML and
Bayesian approaches use the same computational statistics
methods to obtain the parameter estimates. These
sophisticated and complicated methods require users to get
acquainted with their underlying principles and for these
reasons, ML and Baysian approaches should not be used as
‘black boxes’. 

Finally, it is important to understand that both are model-
based methods that make several assumptions concerning
the population biology of species. Violations to these
assumptions can lead to biases that could invalidate the
results. It is, therefore, important to carefully read the articles
describing the methods to make sure that the species under
study fits those assumptions. 

(g) Monte Carlo issues
The Markov chain Monte Carlo (MCMC) method is a
generic term that refers to several algorithms that allow one
to sample from complex distributions (Gelman et al. 2003).
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MCMC is commonly used in both Bayesian and frequentist
settings. In the former case, the aim is to sample from 
the posterior distribution of parameters of a complex
probabilistic model; in the latter case, MCMC is used to
estimate the likelihood surface to obtain the maximum
likelihood estimate of model parameters. 

The idea of MCMC is very simple (see Brooks 1998).
Suppose that we want to estimate the parameter of a model
(e.g. migration rate) whose posterior distribution, π(x), is
known only up to some multiplicative constant. This is the
so-called ‘target’ distribution. In order to obtain samples
from such a distribution, we construct a Markov chain whose
stationary distribution is π(x). Then, if we run the chain for
a sufficiently long period of time, simulated values from the
chain can be treated as a dependent sample from the target
distribution and used for summarising the main features of
π(x). Thus, the main task when implementing an MCMC
approach is to construct a Markov chain that combines a
number of different transition kernels describing the
probability of moving between any two states of the chain.
These kernels are usually referred to as MCMC updates or
transitions. The most standard transition kernel is the Gibbs
sampler (Gelman et al., 1995), which can be considered as a
special case of the more general Metropolis-Hastings
transition. 

A number of important implementation issues are
associated with these techniques. As a consequence,
Bayesian and MLE methods based on MCMC cannot be
used as ‘black boxes’ and require a substantial period of 
tests before the final results can be generated. The first 
issue is that before reaching the steady state (i.e. the 
target distribution π(x)), the states reached by the Markov
chain are strongly influenced by the starting values 
given to the chain. For this reason, samples generated 
during this ‘burn-in’ are discarded. The main problem is 
then to determine the length of the burn-in. Several
diagnostic tests are available and many of them have been
implemented in CODA2. The most sensitive ones are those
that compare the output of two or more independent chains
(sometimes called replicate MCMC runs or simply
replicates). 

Another important issue is the number of additional
iterations that need to be run after the burn-in to obtain an
independent and identically distributed (IID) sample from
the target distribution. The problem here is that random
samples from a Markov chain are correlated. Although the
magnitude of this correlation depends on the problem at
hand, it is always the case that it decreases as the number of
MCMC iterations between sampled values increases. Thus,
it is almost always necessary to thin the observations by
saving only every kth observation. The value of k is usually
referred to as the ‘thinning interval’. The number of
additional iterations that a Markov chain needs to run after
the burn-in is obtained by multiplying the desired size of the
sample (e.g. 10,000) by the thinning interval. The total length
of the MCMC run is obtained as burn-in + thinning interval
* sample size. 

Developers of statistical methods based on MCMC also
need to consider several other important technical issues that

arise during the development of the methods, but typical
users do not need to be concerned about them. Nevertheless,
one particular issue that users do need to be aware of refers
to so-called ‘mixing’ problems. These problems plague
methods that focus on models with a very large number of
parameters, which is often the case in population genetics.
Highly dimensional problems lead to joint posterior
distributions that have multiple local modes. The Markov
chain can become stuck in these local modes for many
iterations, in which case it is impossible to obtain a
representative (IID) sample from the target distribution
unless the MCMC is run for an unrealistically large number
of iterations. To help minimise mixing problems, developers
implement simulated tempering or Metropolis-coupled
updating schemes (see Brooks, 1998). These schemes use
several transition kernels, say m, and then run m
simultaneous chains, each one using one of the transition
kernels. At each iteration, all chains are updated and then the
state of one pair is swapped with a probability that ensures
that the target distribution is preserved. Several statistical
genetics methods implement these techniques (e.g.
LAMARC, MIGRATE, IMa2), so users should acquire the
basic knowledge that will allow them to take full advantage
of these methods to overcome mixing problems when they
arise. Mixing problems can be identified by looking at the
acceptance rates (the proportion of proposed values that are
accepted by the algorithm) included in the output of the
computer programs implementing the statistical methods. As
a rule of thumb, acceptance rates should be between 20%
and 40%. Some programs calculate an effective sample size
that can be used to establish if there are mixing problems
(see below).

For all the above issues, users should carry out several test
runs before the production runs. The objectives of this testing
period are described below. 

• Determine the length of the burn-in period. This is
achieved by carrying out several independent runs and
using CODA3 to test for convergence. Another useful
and complementary approach is to visually compare
the posterior distributions from independent runs using
TRACER4.

• Determine the additional number of iterations needed
after the burn-in period. This can be determined by
looking at the effective sample size (ESS) obtained for
the different parameters. Some programs (e.g. IMa,
MIGRATE) output the ESS. When this is not the case,
it is possible to use TRACER to calculate it. Runs for
which ESS <200 should not be used to produce the
final results of the analyses. To increase the ESS it is
necessary to increase the sample size. It might also be
necessary to increase the thinning interval to avoid
producing unnecessarily large output files. 

• Make use of the simulated ‘tempering’ or Metropolis-
coupled MCMC techniques implemented in the
computer programs to solve mixing problems. In the
case of Metropolis-coupled MCMC, this requires
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choosing the number of searches to run and their
temperatures (e.g. see LAMARC user manual5). 

(h) Integrating genetic and non-genetic data
For the purpose of this section we define ‘non-genetic’ data
as demographic (e.g. population census size, carrying
capacity, growth rate, etc.), environmental (e.g. temperature,
salinity, rainfall, strength of oceanic currents and their
direction, etc.), or ecological (e.g. diet, prey distribution,
predator distribution, etc.). There are three main reasons why
one might want to combine genetic and non-genetic data: (i)
to make inferences about demographic, evolutionary, and
ecological processes; (ii) to help overcome the problems
generated by the lack of sufficient information in the genetic
data (e.g. weak genetic differentiation among populations);
and (iii) to distinguish among possible factors that can be
influencing the evolution of stock structure.

In all cases the incorporation of these data should decrease
the variance of the estimates without biasing the results of
the analysis. Bayesian methods provide the framework
needed for achieving these goals. Below we briefly present
three of these methods.

The first one, COLONISE (Gaggiotti et al., 2004; Foll and
Gaggiotti, 2005), implements a Genetic Stock Identification
approach originally aimed at making inferences about the
demographic and environmental factors that control
migration processes (Gaggiotti et al., 2002). This works by
quantifying the contribution of the different source
populations to a genetic mixture (mixed fishery or newly
colonised population) and simultaneously explaining those
contributions in terms of demographic, ecological, or
environmental factors. The method uses a hierarchical
Bayesian model to combine genetic data (incorporated in the
likelihood function) with non-genetic data (incorporated in
the priors used for the parameters). Genetic data comprise
multilocus genotypes from the genetic mixture and allele
counts from the source populations. Gaggiotti et al. (2004)
evaluated the performance of the method under different
conditions. They focused on the effect of model parameters
such as the number of source populations and the degree of
genetic differentiation among sources, and fixed the number
of loci to 9 and the sample size per population to 150. Under
these conditions, results are very accurate even when genetic
differentiation is as low as FST = 0.01, as long as the number
of source populations is seven or more. Foll and Gaggiotti
(2005) further evaluated the effect of sample size and
number of loci with only three source populations but strong
genetic differentiation (FST = 0.25). The results are accurate
even with 10 loci and small sample sizes (10 individuals per
population), but the uncertainty increases as data quality
deteriorates. 

GESTE (Foll and Gaggiotti, 2006) is a hierarchical
Bayesian method of wide applicability aimed at making
inferences about the demographic, ecological, and
environmental factors that influence the spatial structuring
of genetic differentiation. This method quantifies the degree
of genetic isolation of each local population as measured by
population-specific FST values and evaluates the influence of
non-genetic factors on them. As in COLONISE, genetic data

(allele counts in each of the local populations) are
incorporated in the likelihood function and non-genetic data
are incorporated in the prior distributions. Foll and Gaggiotti
(2006) provide a fairly extensive evaluation of the
performance that includes scenarios that deviate from the
population genetic model on which the method relies. The
performance is very good even for the lowest sample sizes
(10 individuals per population) and number of loci (10) and
for local-FST values ranging between 0.029 and 0.18). This
is true for scenarios including at least five populations.
Overall, the results indicate that the method can accurately
estimate the parameters and identify the relevant
environmental/demographic factors if the samples are at least
of average quality. 

BIMr (Faubet and Gaggiotti, 2008) is a hierarchical
Bayesian method that uses multilocus genotype data to
estimate contemporary migration rates between local
populations and infers the environmental, ecological, and
demographic factors that influence them. It allows for
asymmetric migration and deviations from Hardy-Weinberg
equilibrium in the local populations. Faubet and Gaggiotti
(2008) provide an evaluation of the method, mainly aimed
at identifying the region of parameter space where the
method is and is not able to provide accurate estimates.
Overall, the results indicate that reliable results can be
obtained when the global level of genetic differentiation (FST)
is 1%, the number of loci is at least 10, and sample sizes are
of the order of 50 individuals per population. However,
convergence problems are observed when the number of
local populations is above 15. 

Balkenhol et al. (2009) investigated the suitability of
GESTE, BIMr and several other statistical approaches used
in landscape genetics. They evaluated their statistical power,
type-1 error rates, and their overall ability to lead researchers
to accurate conclusions about landscape-genetic
relationships. Although both GESTE and BIMr exhibit above
average performance, the latter performed better, being
ranked at the top with two other non-parametric methods.
These three best methods provide a good balance between
type-1 error and power, leading to correct conclusions for a
high percentage of analysed datasets. GESTE was one of
only two methods that had a corrected type-1 error rate of
zero across all scenarios.

(i) Possible influence of selection
The use of population genetic data in a management context
generally relies on the assumption that the genetic markers
used are ‘neutral’; that is, they are not influenced by natural
selection. Neutral loci across the genome are similarly
affected by demography and the evolutionary history of
populations (e.g. Luikart et al., 2003). Thus, they contain
signatures of past demographic events and can be used to
estimate parameters such as effective population size,
migration and growth rates, etc. However, when the chosen
set of molecular markers includes selected loci, the estimates
obtained can be highly biased (see Landry et al., 2002)
because natural selection can be strong in wild populations
(Luikart et al., 2003). Thus, when undertaking analyses that
assume neutrality, it is important to verify that data sets do
not contain so-called ‘outlier loci’, which are subject to
potentially strong selection. 
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Outlier loci can have a wide range of aberrant behaviours,
including exceptionally high or low FST between populations,
an excess or deficit of low frequency alleles, or an excess or
deficit of heterozygous genotypes. Several population
genetics methods focus on one or other of these quantitative
measures to identify outlier loci. For example, several
genome scan methods focus on FST (e.g. Beaumont and
Nichols, 1996; Beaumont and Balding, 2004; Foll and
Gaggiotti, 2008), while others focus on heterozygosity (e.g.
Schlötterer, 2002). To apply these methods to identify outlier
loci it is necessary to genotype individuals at many loci
(ideally 100 or more). The larger the number of loci used,
the more accurately the neutral baseline distribution of FST
or heterozygosity will be. This in turn will provide more
power to detect outlier loci. Screening large numbers of loci
has become relatively easy with the development of next
generation sequencing methodologies, where for example
restriction associated DNA (RAD) sequencing methods can
generate thousands of loci for population-level analyses at a
reasonable cost (see Peterson et al., 2012 and citations
therein).

It could be argued that studies based on a moderate
number of markers are unlikely to include selected loci.
However, it is in precisely this scenario (small to moderate
number of loci) that the effect of an outlier locus will be
strongest (see White et al., 2010). Thus, it is always
important to test for their presence. 

So far, the focus has been on the negative effects generated
by outlier loci. One problem for which the use of outlier loci
can be of great help is the identification of distinct
demographic units (Allendorf et al., 2010; Lowe and
Allendorf, 2010). Indeed, outlier loci can represent an
informative subset of loci for population assignment of
individuals to source populations. This is typically the case
when the outlier is due to divergent selection, which
increases genetic differentiation among local populations.
For example, Moura et al. (2014b) using the RAD method
show that the pattern of differentiation among killer whale
(Orcinus orca) populations differs for neutral and outlier loci
(putatively under positive selection). They further show that
outlier loci and those with fixed differences among ecotypes
(populations with distinct foraging behaviours) are
associated with genes reflecting functional characteristics
consistent with ecotype differences (e.g. associated with
digestion).

Finally, the identification of loci under selection is
important for prioritising populations for protection. Loci
under selection are likely to be responsible for adaptation to
local environmental conditions and can greatly contribute to
the among-population component of genetic diversity. Thus,
the preservation of populations with rare adaptive variants
could be a priority (Bonin et al., 2007). Current sequencing
technologies allow the examination of thousands of genetic
markers with relative ease and, therefore, provide a means
to fully characterise both neutral and selected genetic
diversity. This in turn will allow more effective ranking of
the conservation status and priority of management units. 

It is also possible to derive useful inference about local
adaptation from more traditional genetic methods. One
example involved evidence for both balancing (retention of

diversity through selection for heterozygotes or by frequency
dependence) and directional selection at an immune system
gene in several odontocete cetacean species (Vassilakos et
al., 2009) based on conventional DNA sequencing. This
could suggest adaptation to local pathogen environments.
However, genomic methods will increasingly be applied to
resolve questions associated with local adaptation (see
reviews in Nielsen, 2005; Jensen et al., 2016), and while
genome sampling comparing phenotypes (e.g. Moura et al.
2014b) can identify some relevant loci, a more inclusive
assessment will be based on screening whole genomes,
which is now beginning to include population-level
comparisons using draft genomes sequenced to sufficient
depth to ensure genotype accuracy (see de Manuel et al.,
2016). 

Summary and relevance to cetaceans:
There are three important applications in the context of
cetacean management. First, detecting outlier loci helps
ensure that analyses requiring neutral assumptions are
accurate. Second, outlier loci can be useful as population
markers. And finally, evidence for selection in regional
populations will likely increase with the increased
application of new technologies, and this factor should be
included in the design of management strategies for cetacean
populations, especially when the pattern of differentiation
differs for neutral compared to selected loci.

(j) Interpreting negative results
Interpretation of negative results (failure to find a significant
result or to reject a null hypothesis) for genetic data should
be guided by the same basic principle that applies more
broadly to other types of analysis: absence of proof is not
proof of absence. That is, just because differences are not
found does not prove that no differences exist. Nevertheless,
negative results still can be informative about a plausible
upper limit to the hypothesised differences, provided a power
analysis is conducted. Such an analysis would address the
question, ‘How large could a difference be and still escape
detection, given the amount of data available?’ For example,
suppose a researcher has two samples of 50 and 75
individuals that have been analysed for 15 microsatellite loci.
A test of heterogeneity of allele frequencies (as described in
Section (4)(a)(i)) produces a P value >0.05, thus failing to
reject the hypothesis that both samples could have been taken
from the same population. However, this same result might
also occur if the samples come from two populations that are
not very different genetically. A power analysis can predict
the probability of obtaining a non-significant result for
populations that actually differ by a specified amount (the
effect size), given a certain level of sampling. One program
that will conduct power analyses for tests of heterogeneity
using genetic data is POWSIM (Ryman and Palm, 20066).
With 15 loci having 5 alleles each and samples of 50 and 
75 individuals, a run of POWSIM indicates that close to
100% of combined (across all loci) tests of heterogeneity
should be significant if true average FST is 0.01. In this 
case it can be concluded that, if the samples actually do
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represent different populations, they must differ by less than
FST = 0.01. Additional runs with smaller true FST values could
be run to determine the largest FST that is consistent with the
negative results. POWSIM only models allele frequency data,
but an analogous procedure could be used to evaluate power
associated with analyses based on DNA sequence data.

A related issue is whether differences that are statistically
significant are biologically meaningful. This issue is relevant
because it is becoming increasingly possible to amass large
quantities of genetic data, and as a result it is possible to
demonstrate that very small genetic differences are
statistically significant. To illustrate the effect, the human
sex ratio at birth is close to 1:1 but slightly skewed toward
males. Because this topic has been studied extensively for a
long time, enormous sample sizes are available and there is
no question that the small difference is highly significant
statistically. But is it biologically meaningful? Skewed sex
ratio reduces Ne by the fraction (1–4mf), where m and f are
the proportions of males and females. Using empirical data
for humans that indicate m = 0.515 and f = 0.485 at birth
(Grech et al. 2002), and assuming for the moment that these
ratios remained the same until sexual maturity, the reduction
in Ne from unequal sex ratio would be 1–4(0.515)(0.485) =
<0.001 = <0.1%. This change to effective population size
would be trivial for most applications. However, this small
difference (and subsequent changes in the ratio with age)
would be of great interest to actuaries for life insurance
companies and perhaps marketers of gender-specific
products, and it might be enough to affect key behaviours
involving mate choice, reproduction, etc.

Summary and relevance to cetaceans:
The common theme of these two contrasting examples is that
it is not sufficient merely to know the P value associated with
a statistical test; it is also important to consider the
underlying effect size and its biological relevance. The latter
could vary depending on the question of interest. 
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