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Abstract
Testing for Hardy–Weinberg proportions (HWP) is routine in almost all genetic studies of  natural populations, but many 
researchers do not demonstrate a full understanding of  the purposes of  these tests or how to interpret the results. Common 
problems include a lack of  understanding of  statistical power and the difference between statistical significance and biological 
significance, how to interpret results of  multiple tests, and how to distinguish between various factors that can cause statisti-
cally significant departures. In this perspective, which focuses on analysis of  genetic data for nonmodel species, I 1) review 
factors that can cause departures from HWP at individual loci and linkage disequilibrium (LD) at pairs of  loci; 2) discuss com-
monly used tests for HWP and LD, with an emphasis on multiple-testing issues; 3) show how to distinguish among possible 
causes of  departures from HWP; and 4) outline some simple steps to follow when significant test results are found. Finally, 
I 5) identify some issues that merit particular attention as we move into an era in which analysis of  genomics-scale datasets 
for nonmodel species is commonplace.
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Every biologist with even the most cursory understanding 
of  genetics knows about the Hardy–Weinberg (HW) prin-
ciple (also known as the HW law), which was elucidated at 
the very beginning of  the field of  population genetics, soon 
after Mendel’s work was rediscovered (Crow 1988). The 
HW principle makes 2 postulates of  fundamental impor-
tance: 1) after a single episode of  random mating, geno-
typic frequencies can be expressed as a simple function of  
allele frequencies, and 2) in the absence of  perturbing forces 
(such as selection, genetic drift, mutation, migration), geno-
typic and allele frequencies remain constant over time. The 
first point is particularly important because it means that 
genetic characteristics of  populations can be described in 
terms of  frequencies of  a relatively few alleles rather than 
the much larger arrays of  all possible genotypes (Hedrick 
2000; Allendorf  et al. 2013). May (2004) noted that the HW 
principle is the evolutionary analogue to Newton’s First Law 
of  Motion (bodies at rest remain at rest unless perturbed), 
although he emphasized the constancy of  allele frequencies 
rather than the genotypic frequencies that are the core of  
the HW principle.

If  we let p and 1 − p be frequencies of  alleles A and a at 
a gene locus, then Hardy–Weinberg equilibrium (HWE) is said 
to occur when frequencies of  the genotypes AA, Aa, and 
aa are p2, 2p(1 − p), and (1 − p)2, respectively. Extension to 

multiple alleles is straightforward. Although the HWE termi-
nology is widely used, it is not a true equilibrium, particularly 
when real populations are considered that experience ran-
dom genetic drift. In the following, therefore, I will discuss 
how to evaluate agreement of  observed genotypic frequen-
cies with the Hardy–Weinberg proportions (HWP) expected 
to occur if  the assumptions of  the Hardy–Weinberg princi-
ple are met.

The original papers by Hardy (1908) and Weinberg (1908) 
considered only single genes, but Weinberg (1909) soon 
showed that a similar principle applies to pairs of  loci: If  
the loci assort independently and other HW assumptions are 
met, the frequencies of  2-locus gametes are simple functions 
of  allele frequencies at the 2 loci. Curiously, whereas single-
locus analyses are generally cast in terms of  HW equilibrium, 
results of  2-locus analyses typically are expressed in terms of  
linkage disequilibrium (LD). Although gametic disequilibrium 
might be a more exact general term, the LD terminology is 
in such widespread use that I adopt it here to include all non-
random associations of  alleles at different loci, whether or 
not the loci are physically linked on the same chromosome. 
With 2 loci, a single generation of  random mating does not 
remove all LD; instead, the approach is asymptotic at a rate 
that depends on the probability of  recombination between 
the loci.
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Statistical tests of  HWP (see next section for details) 
attempt to answer the question, “After accounting for sam-
pling error, are genotypic frequencies observed in a sample 
compatible with those expected under HWP?” Agreement 
between observed and expected genotypic frequencies can 
be conveniently expressed using Wright’s coefficient of  
inbreeding, FIS:
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where Ho is the observed fraction of  heterozygotes and He 
is that expected under HWP. A positive FIS indicates a defi-
ciency of  heterozygotes compared with the HWP expecta-
tion, while a negative FIS indicates an excess.

Prior to the 1960s, genotypic data were available for only 
a relatively few well-studied markers whose genetic basis 
was understood. Under those conditions, tests of  agreement 
of  observed and expected genotypic frequencies generally 
focused on whether departures from HWP could be attributed 
to nonrandom mating or to other factors such as selection or 
population mixture. With the advent of  protein electrophore-
sis, however, for the first time it became possible to generate 
data for dozens of  new markers for a wide range of  species 
(Lewontin and Hubby 1966; Utter et al. 1974; Powell 1975). 
Because pedigree studies to validate the genetic basis of  all this 
variation are difficult to conduct, researchers routinely found 
a new use for HW tests: to help screen out data that reflected 
scoring errors, posttranslational modification of  phenotypes, 
or other nongenetic artifacts. The early years of  protein elec-
trophoresis witnessed some dubious misuses of  HW tests for 
these purposes. For example, Koehn (1972) complained that 
many papers on North Atlantic eels (Anguilla spp.) blithely 
interpreted electrophoretic phenotypes in terms of  genetic 
variation in spite of  resounding refutation of  agreement with 
HWP. The most egregious offense noted by Koehn involved 
a sample in which all 43 individuals were reported to be het-
erozygotes for a locus with 2 alleles; this produced a huge χ2 
value which the author reported but then went on to use the 
data to draw inferences about population structure.

Researchers (as well as reviewers and journal editors) 
gradually became more vigilant in restricting inferences to 
enzyme systems that produced results compatible with 
HWP. The tests themselves have been rigorously evaluated 
and incrementally improved over time (Vithayasai 1973; 
Emigh 1980; Guo and Thompson 1992; Wigginton et al. 
2005; Kulinskaya and Lewin 2009), and vast improvements 
in computational power and more efficient computer algo-
rithms now make it easy for researchers to rapidly assess the 
degree of  conformity to HWP of  large datasets (Excoffier 
and Heckel 2006). However, although these developments 
are encouraging, they do not in any sense indicate that issues 
related to testing HWP and LD have been “solved.” It is not 
enough to have an accurate assessment of  the degree of  con-
formity to HWP; it is also essential to be able to properly 
interpret results of  those assessments and take appropriate 
actions. An informal survey of  recent published literature 
identifies several general problems in this regard.

First, it is axiomatic in frequentist statistics that failure 
to reject a hypothesis does not prove that the hypothesis is 
true, but this important issue is often forgotten or ignored. 
Agreement with HWP is not a guarantee that observed 
variation has a genetic basis, nor does it guarantee that 
other factors such as selection, drift, and nonrandom mat-
ing are not influencing genotypic frequencies. This has 
huge importance for testing of  HWP, as the test generally 
has low power to detect actual departures unless sample 
sizes are large. For example, Fairbairn and Roff  (1980) 
showed that, if  presumed genotypes in a diallelic system 
are scored randomly rather than according to a validated 
genetic model, a sample of  50 individuals would fail to 
detect any departures from HWP over one-third of  the 
time using an α = 0.05 significance criterion. Furthermore, 
it is also possible to have large departures from HW 
assumptions that nevertheless do not create any depar-
tures from HWP (see Box 1). In these scenarios, strong 
evolutionary forces are acting but cannot be detected by a 
simple test of  HWP, regardless how large a sample size is 
obtained. Many modern researchers do not appear to be 
aware of  these key findings.

A second pervasive issue is that researchers typically want 
to evaluate HWP for many loci sampled in many populations, 
often with temporal replicates as well, which means that it 
is essential to consider issues related to multiple testing. 
Rigorous methods are available to account for multiple test-
ing, but researchers often misuse the resulting information 
in drawing conclusions. Multiple testing issues are particu-
larly complex for tests of  LD, as the number of  compari-
sons increases as a function of  the square of  the number of  
markers.

Another chronic problem is a failure to distinguish 
between statistical significance and biological significance 
(Waples 1998; Hedrick 1999). By itself, the level of  statisti-
cal significance, or P value, associated with a test of  HWP 
or LD tells one nothing about 1) the magnitude of  any 
evolutionary forces that might be acting on the popula-
tion, or 2) whether any departures are likely to have a sub-
stantial impact on subsequent analyses of  the genetic data. 
Statistical tests, therefore, should be only the first step in 
evaluating potential departures from equilibrium assump-
tions; however, many researchers never get beyond this 
first step.

Finally, many researchers appear to have lost the plot 
regarding tests of  HWP—that is, lost track of  why they are 
being done in the first place. Admittedly, the reasons for 
performing HWP and LD tests can be varied; for example, 
some researchers have a specific alternative hypothesis to 
evaluate for a specific gene locus or set of  loci. However, 
for population genetic studies of  nonmodel species, the 
most common reason for performing HWP tests (and the 
focus of  this Perspective) is that the researcher knows that 
doing so is a required first step before moving on to the 
interesting stuff: using a variety of  sophisticated and sexy 
software to analyze their data. The desire to dispense with 
HW testing as quickly as possible is understandable, but 
moving on to the next step should be contingent not only 
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on having performed the required tests, but also on hav-
ing shown that results are compatible with fundamental 
assumptions made in subsequent analyses. All too often, 
“completion of  HWP tests” is treated merely as a box that 
has to be checked rather than a process that involves careful 
evaluation of  the results.

In this Perspective, I will 1) review factors that can cause 
departures from HWP at individual loci and LD at pairs of  
loci; 2) discuss commonly used tests for HWP and LD, with 
an emphasis on multiple-testing issues; 3) show how to dis-
tinguish among possible causes of  departures from HWP; 
and 4) outline some simple steps to follow when significant 
test results are found. Finally, I 5) identify some issues that 
merit particular attention as we move into an era in which 
analysis of  genomics-scale datasets for nonmodel species 
is commonplace. Fine treatments of  some of  these topics 
can be found elsewhere, in papers by Fairbairn and Roff  
(1980) and Lessios (1992) or textbooks by Hedrick (2000), 
Allendorf  et al. (2013), and others. However, this informa-
tion is routinely ignored or misused in the implementation of  
testing for HWP and LD, so a new, comprehensive treatment 
seems warranted.

Factors That Can Cause Deviations 
from HWP
The Hardy–Weinberg principle depends on a number of  
assumptions, including simple Mendelian inheritance in a diploid 
organism with discrete generations, random mating, an infinite 
population, and no mutation, migration, or selection. In testing 
for agreement with HWP, there is also an implicit assumption of  
random sampling from the population as a whole.

Mutation

Mutations in gametes can be passed on to the next genera-
tion, while somatic mutations accumulate over time and can 
change allele frequencies within a cohort. In theory, either 
of  these processes could disrupt the relationship between 
allele frequencies in parents and genotypic frequencies in 
their offspring. In reality, however, mutations are rare enough 
that these single-generation effects generally can be ignored 
in evaluating HWP and LD. However, cumulative effects of  
mutation are important for understanding patterns of  LD 
because loci that are tightly linked to new advantageous 

Box 1. Strong selection but Hardy–Weinberg agreement in American eels
An example using American eels (Anguilla rostrata) shows how strong selection can be compatible with HWP. Williams et al. (1973) and Koehn and 
Williams (1978) found allele frequency differences on the order of  10% among nearby North American rivers, in spite of  the generally-accepted 
assumption that all North American eels breed randomly in the Sargasso Sea. The authors postulated that this reflected locally-adapted alleles in each 
stream. If  true, this would require strong selection to substantially change allele frequencies within a single cohort of  panmictic offspring. Williams and 
Koehn also reported that samples at each locality agreed with HWP. But does not the Hardy–Weinberg principle assume no selection? It turns out that 
these 2 apparently contradictory results can be reconciled using the principle described by Lewontin and Cockerham (1959), who showed that selection 
does not cause any HW deviations provided that W1W3 = W2

2, where W1 and W3 are fitnesses of  the alternative homozygotes and W2 is fitness of  
the heterozygote. To illustrate, assume a cohort of  10 000 eels starts out with frequency 0.8 for the A allele and 0.2 for the a allele, and further assume 
the genotypes are in HWP, so the numbers of  eels having each of  the genotypes are AA = 10 000*0.82 = 6400, Aa = 10 000*2*0.8*0.2 = 3200 and 
aa = 10 000*0.22 = 400 (Table 1.1). Now assume that the eels undergo selection, with probabilities of  survival for the 3 genotypes given by [W1, W2, 
W3] = [0.36, 0.6, 1]. Note that W1W3 = W2

2 = 0.36. After selection, the numbers with genotypes [AA, Aa, aa] are reduced to [2304, 1920, 400], and 
frequency of  the A allele has dropped to 0.706. But postselection genotypes are in perfect agreement with HWP, given the postselection allele frequen-
cies, even though relative fitness of  the genotypes differed by a factor of  almost 3 and the cohort underwent strong directional selection that resulted 
in genetic deaths of  over half  of  the population.

Felsenstein (1965) described an analogous situation involving epistatic interactions between 2 gene loci: even with strong selection, certain fitness 
relationships would produce no linkage disequilibrium (LD). Conversely, interaction of  the introduced virus myxomatosis with European rabbits illus-
trates how epistatic selection can create strong (albeit transitory) LD for genes that are not physically linked. Functional antibodies require polypeptides 
encoded by 2 different genes. van der Loo et al. (1987) found consistent LD among European rabbit antibody genes located on different chromosomes, 
suggesting strong epistatic selection. Within the lifetime of  a cohort, selection favors associations of  alleles that produce effective antibodies, but 
recombination erodes those associations every generation, creating a large genetic load. The myxomatosis/European rabbit association is very recent on 
evolutionary time scales (~one century), which could explain why chromosomal rearrangements have not yet brought the favorable gene combinations 
into tight linkage, as theory would predict (Kimura 1956).

Table 1.1 Effects on genotypic frequencies of  an episode of  strong selection within a hypothetical cohort starting with N = 10 000 individuals

AA Aa aa N p

Before 6400 3200 400 10 000 0.800
 [W1, W2, W3] 0.36 0.6 1
After
 Observed 2304 1920 400 4624 0.706
 Expected 2304 1920 400

[W1, W2, W3] are relative fitnesses of  the 3 genotypes [AA, Aa, aa], and p is allele frequency.
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mutations can rapidly increase in frequency through genetic 
hitchhiking (Barton 2000).

Finite Population Size

The assumption of  infinite population size is of  course 
never satisfied in nature. The practical relevance is that 
finite populations have a tendency to produce heterozy-
gotes at higher frequencies than predicted from HWP; this 
is the basis for the heterozygote-excess method for estimat-
ing effective population size, Ne (Pudovkin et al. 1996). The 
traditional explanation for this phenomenon has been that 
an excess of  heterozygotes occurs when allele frequencies 
differ between the sexes, and this is more pronounced in 
small populations (Robertson 1965). Balloux (2004) showed 
that hermaphrodites that cannot self-fertilize also produce 
an excess of  heterozygotes of  the same magnitude:
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where E(Ho/He) is the expected value of  the ratio 
(Ho/He). A simple rearrangement of  Equation 1 produces 
Ho/He = 1 − FIS, which means Equation 2 can be rewritten as
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With a finite number of  parents, therefore, we expect that 
FIS will be negative by the approximate magnitude 1/(2Ne). 
Unless Ne is very small (no more than a few dozen or so), 
this will be a small effect, but it potentially can be detected in 
species with high fecundity, in which case it might be possible 
to obtain large samples of  offspring produced by just a few 
individuals (Hedgecock et al. 2007).

A comparable effect occurs at pairs of  gene loci: A finite 
number of  parents produce offspring with random LD due 
to drift that can be measured by the statistic r2, which is the 
squared correlation of  alleles at different gene loci. If  the loci 
are unlinked, the expected magnitude of  LD is approximately
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where S is the number of  individuals in the sample (Hill 1981). 
Because the number of  pairwise comparisons increases rap-
idly with the number of  alleles and loci, power to detect over-
all drift effects across the genome can be high, and the LD 
method is widely used to estimate effective population size 
(Waples and Do 2008; Palstra and Fraser 2012).

Selection

Natural selection operates through differential survival and/
or reproduction of  individuals with different genotypes, so it 

is easy to see how selection can distort genotypic frequencies 
from HWP. This is most likely to occur if  selection favors 
either heterozygotes (overdominance) or homozygotes 
(underdominance), in contrast to directional selection for 
or against a particular allele. In addition, selective pressures 
that differ between males and females (or other factors) can 
cause allele-frequency differences between the sexes, and 
this produces an excess of  heterozygotes in their offspring 
(see Hedrick 2000 for details). For diploid autosomal genes, 
these sex-based allele frequency differences disappear in the 
offspring, and if  those offspring randomly mate, HWP are 
restored in their progeny.

Two issues are important regarding selection. First, 
because HWP are generated following a single episode 
of  random mating, selection in previous generations has 
no effect on current genotypic frequencies; selection that 
affects HWP must occur over the lifetime of  a cohort. [An 
exception would be selection at a sex-linked locus; see “Sex 
Linkage” below.] Second, even very strong selection within 
a cohort can produce an array of  genotypes that does not 
deviate from HWP (Wallace 1958; Lewontin and Cockerham 
1959; see Box 1).

When fitness effects of  a gene depend on the genetic 
background, selection for or against certain combinations of  
genes can create LD. Because recombination breaks down 
gene–gene combinations unless they are close together on the 
same chromosome, many have concluded that these effects 
are ephemeral, and as a consequence epistasis plays a rela-
tively small overall role in selection and adaptation. However, 
that view has been challenged (Hansen 2013), and Box 1 
shows how strong epistatic selection can create recurrent LD 
among markers on different chromosomes (and large genetic 
load) in a population facing novel selective pressures.

Population Structure

A key assumption of  the HW principle is that the sample in 
question is drawn from a single, randomly mating population. 
This assumption might be violated for a variety of  reasons: 
individuals might be sampled on feeding grounds or during 
migrations at a time and place where multiple populations 
overlap; population boundaries might be fuzzy or hard to 
detect; or the species might be continuously distributed with 
localized breeding structure. If  the sample includes a mix-
ture of  individuals from more than one breeding unit, then 
(on average) Ho will be less than He, leading to a deficiency 
of  observed heterozygotes (Wahlund 1928) and a positive 
FIS. The magnitude of  this “Wahlund effect” increases with 
the degree of  population differentiation and evenness of  
the mixture proportions. In the notation below, we assume 
a mixture that includes populations 1 and 2 in proportions 
m and (1 − m). Let the frequencies of  a given allele be p1 
in population 1 and p2 in population 2, so pw  = mp1 + 
(1 − m)p2 = the weighted mean of  p1 and p2. A simple deri-
vation combining results from Wahlund (1928) and Wright 
(1951) (see Appendix) leads to the following result:

 E F F m m C( ) [4 (1 )/ ],IS ST = −  (5)
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where C is a function of  allele frequencies and mixture frac-
tions. This produces the elegantly simple result that the mag-
nitude of  the Wahlund effect in a mixed sample (measured 
by FIS) should be an increasing function of  the standardized 
variance of  allele frequency between the populations in the 
mixture (FST). That is, FIS should be larger at loci with large 
FST. Under 2 special cases (equal mixture fractions or fixed 
allele differences), 4m(1 − m)/C = 1, in which case theory pre-
dicts a linear relationship between FIS and FST with a slope of  
1. More generally, we expect a positive correlation with a slope 
that decreases as the mixture fractions become more unequal.

A 2-locus analogue to the Wahlund effect, whereby LD is 
generated in a sample that includes more than one gene pool, 
was described by Nei and Li (1973) and Sinnock (1975). The 
magnitude of  this effect is a function of  the product of  FST 
values for the 2 loci (Waples and England 2011):

 E r C F Fmix 2 ST ST
2

1 2( ) ≈ ( ) ( ) ,  (6)

where rmix
2  is the component of  overall r2 due to popula-

tion mixture and C2 is a constant that depends on the num-
ber of  populations involved and their relative proportions 
in the mixed sample (and, probably, allele frequencies at the 
loci involved). That is, pairs of  loci for which the product 
of  single-locus FST values are largest should be the loci for 
which r2 values are largest in a population mixture.

Whereas the single-locus Wahlund effect disappears with a 
single generation of  random mating, LD created by population 
admixture (in which matings occur between individuals from 
different populations) decays gradually over time at a rate deter-
mined by the probability of  recombination. Assuming no new 
interbreeding events, half  the residual LD decays each generation 
for unlinked loci, but if  the recombination rate is low the effects 
of  population admixture can persist for many generations.

Age Structure

The Hardy–Weinberg principle implicitly assumes generations 
are discrete. Age structure can create Wahlund-like effects 
within single populations that are otherwise mating randomly. 
In species with overlapping generations, individuals in a single 
cohort are produced by adults that participate in 1 reproductive 
cycle, not by random mating of  all adults across a generation. 
Parents in different reproductive cycles will differ somewhat 
in allele frequencies, so their offspring will as well. Therefore, 
a sample of  mixed-age individuals is in essence composed of  
a number of  subpopulations, with the expected result being a 
deficiency of  heterozygotes compared with HW expectations 
at individual loci and a component of  mixture LD at pairs of  
loci. These effects will generally be small but can be important 
in some cases, at least for mixture LD (Waples et al. 2014). 
When mixed-age parents randomly mate to produce a single 
cohort of  offspring, this mini-Wahlund effect disappears at 
individual loci but only decays by half  at pairs of  unlinked loci.

Assortative Mating

In assortative mating, mate choice depends on the phenotype. 
By itself, this does not change allele frequencies but can affect 

genotypic frequencies. To the extent that the phenotype predicts 
the genotype, positive assortative mating (among phenotypically 
similar individuals) will tend to reduce Ho, leading to positive 
FIS, while negative assortative mating will have the opposite 
effect. The most extreme form of  assortative mating is self-
fertilization, which occurs in many species. At equilibrium in a 
system involving partial self-fertilization with probability s, the 
frequency of  Aa heterozygotes will be (Hedrick 2000):

 
Freq( )

( )( )
.Aa

p p s

s
=

− −
−

4 1 1

2  
(7)

This differs from the HWP expectation [2p(1 − p)] by the fac-
tor 2(1 − s)/(2 − s), which reduces to 1 for s = 0. The equilib-
rium relationship in Equation 7 is only approached gradually 
over many generations, and HWP are restored after a single 
episode of  random mating.

As we found with selection, it is possible to identify pat-
terns of  assortative mating that do not create any departures 
from HWP at all; Li (1988) referred to these scenarios as 
pseudo-random mating.

It is important to realize that tests of  HWP provide no 
information about cumulative levels of  inbreeding in a popula-
tion; FIS only reflects the most recent generation of  mating. 
Doyle (2014) described a cautionary tale on this theme. In the 
tropical shrimp (Penaeus spp.) farming industry, commercial 
hatcheries that provide breeders to grow-out operations main-
tain large, genetically diverse broodstocks. However, the breed-
ers they provide to individual farmers typically consist of  2 
full-sib families, with careful instructions about how to conduct 
the matings (by hybridizing across, not within, families) to pro-
duce high-quality and uniform offspring with minimal inbreed-
ing. Under this “authorized” scenario, the hybrid offspring of  
these sanctioned matings are closely related, but are all sold for 
consumption, which requires the farmers to obtain new breed-
ers from the suppliers each generation. Problems arise when 
these genetically uniform offspring are used for subsequent 
generations of  breeding, either in the same farm or at “copy” 
farms they are shipped to. These unauthorized distribution 
channels, which according to sources Doyle cites might repre-
sent 50–90% of  total production in many areas of  the world, 
produce inbred offspring with reduced productivity. Although 
recent disease epidemics have severely reduced production by 
tropical shrimp aquaculture, responses primarily have focused 
on containment, with little or no attention to inbreeding (e.g., 
Jones 2012). Doyle (2014) argued that increased disease suscep-
tibility due to pervasive inbreeding throughout the unofficial 
propagation channels is a root cause of  the recent epidemics, 
and that genetic factors have been overlooked at least in part 
because a general lack of  significant departures from HWP in 
copy hatcheries was interpreted as evidence that the popula-
tions were not suffering from inbreeding.

Sex Linkage

In mammals and Drosophila, females have 2 X chromosomes 
and males 1 X and 1 Y, the latter being devoid of  many 
genes (Rice 1996). In birds and Lepidoptera, the situation 
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is reversed, with females having 2 different chromosomes 
(Z&W). In some species, individuals of  the heterogametic 
sex (e.g., XY or ZW) carry only one copy of  sex-linked genes, 
while members of  the homogametic sex carry 2. With ran-
dom mating and no other disturbing forces, XX females and 
ZZ males will have genotypic frequencies in HWP, provided 
that allele frequencies are the same in the 2 sexes; if  that is 
not the case, the homogametic sex will generally show an 
excess of  heterozygotes.

 In many species, both sex chromosomes have functional 
genes in what are known as pseudoautosomal regions (see 
Hedrick 2000 and Allendorf  et al. 2013 for details). Genes 
in these regions often behave like autosomes unless they 
are tightly linked to the sex-determining gene(s). With tight 
sex linkage, however, these pseudoautosomal genes can dif-
fer sharply in allele frequency between males and females 
(Clark 1988), and this produces an excess of  heterozygotes 
in the heterogametic sex and in the population as a whole, 
even though the genotypic frequencies in the homogametic 
sex will generally conform to HWP. Berlocher (1984) and 
Marshall et al. (2004) provide examples of  this phenomenon.

Nonrandom Sampling

Even if  genotypes in the population as a whole are in HWP, 
those in a sample might not be, either because of  random 
sampling error or because individuals with certain geno-
types have a higher or lower probability of  being sampled. 
Statistical tests address the first possibility, but the second is 
more insidious. In a truly random sample, every individual in 
the population has an equal opportunity of  being sampled, 
independent of  every other individual. This is nearly impos-
sible to achieve in any real-world situation, but with luck it 
can be approximated. For tests of  HWP, the key is whether 
individuals that are heterozygotes are more or less likely to 
appear in the sample than would occur purely by chance. 
This might happen, for example, if  susceptibility to sampling 
depends on the phenotype, which reflects at least in part the 
underlying genotype. Samples dominated by offspring from 
only a few families can also lead to deviations from HW pro-
portions and other problems (Hansen et al. 1997; Jankovic 
et al. 2010).

Genotyping Errors

Although modern technology has made mass genotyping 
fast, cheap, and efficient, it is virtually impossible to remove 
all sources of  error, particularly when one includes factors 
such as mis-labeling of  samples and recording, transcribing, 
and analyzing data. Mis-labeled samples, for example, can 
produce results that can be mistaken for migration. Random 
genotyping errors generally lead to only weak departures 
from HWP unless they are very extensive or sample sizes are 
very large (Fairbairn and Roff  1980; Cox and Kraft 2006). 
Errors that are more likely to affect HWP include “null” 
alleles (Pompanon et al. 2005), a term that has been widely 
used to describe several different phenomena: alleles having 
a mutation that prevents production of  a functional gene 
product; alleles that produce functional products that are not 

detected by the analytical method used; and DNA sequences 
that are not detected because of  a mutation in the primer-
binding region. Each of  these phenomena will cause true 
heterozygotes to be missed or scored as homozygotes, lead-
ing to a heterozygote deficiency and positive FIS.

Statistical Tests of HWP and LD
Individual Tests

All statistical tests involve tradeoffs between 2 types of  errors 
of  inference: falsely rejecting the null hypothesis when it is true 
(Type I error), and failing to reject the null hypothesis when it 
is false (Type II error). Researchers typically specify the proba-
bility of  a Type I error they are willing to tolerate (α), recogniz-
ing that this will lead to some unavoidable fraction (β) of  Type 
II errors. Statistical power (the probability of  rejecting a null 
hypothesis that is false) is 1 − β. Selecting a more stringent α 
causes β to increase and reduces power. From at least the time 
of  Levene (1949) and Haldane (1954), the standard method 
for evaluating HWP has been to use the sample allele frequen-
cies to generate expected genotypic frequencies according 
to the HW principle and then compare these with observed 
genotypic frequencies using a chi-square or related test. For a 
locus with 2 alleles, 3 genotypes are possible and the chi-square 
test has 1 degree of  freedom, so χ2 > 3.84 is required to reject 
HWP at the traditional α = 0.05 level. Low expected values 
in some genotypic classes make the chi-square test less reli-
able, and these problems increase dramatically as the number 
of  alleles becomes large (as with microsatellites). Most recent 
implementations therefore rely on variations of  “exact” tests, 
which calculate the fraction of  all possible genotypic arrays 
that produce HW deviations more extreme than the sample 
in question. If  the number of  alleles at a locus is no larger 
than 4 or 5, the method of  Louis and Dempster (1987) can 
be used to exhaustively sample all possible outcomes; for loci 
with more alleles it is necessary to use Monte Carlo methods 
to sample from the vast parameter space (Guo and Thompson 
1992). With 2 alleles, the test of  HWP is equivalent to a test 
of  whether observed and expected frequencies of  heterozy-
gotes are statistically different. This is not necessarily the case 
with multiple alleles, as an overall test can be significant even if  
there is no overall excess or deficiency of  heterozygotes.

Whereas tests of  HWP consider frequencies of  2 alleles 
at the same locus but on different gametes, tests of  LD con-
sider frequencies of  2 alleles at different loci but on the same 
gamete (Weir 1996). For nonmodel species, one generally can 
only compute frequencies of  genotypes, not gametes. Double 
heterozygotes (AaBb) create a problem because this geno-
type could be formed in 2 ways: gametes AB/ab, or gametes 
Ab/aB. Although a maximum-likelihood method (Hill 1974) 
that assumes random mating at the individual loci was used 
in a number of  early studies, most recent assessments of  
LD for genotypic data use the composite (Burrows) method 
(Weir 1979), which is simple to calculate and does not assume 
random mating. Zaykin et al. (2008) describe a multi-allele 
version of  a chi-square test of  composite LD at pairs of  dial-
lelic loci.
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Multiple Testing

If  a dataset has L loci, there are L tests of  HWP and  
L(L − 1)/2 pairwise tests for LD for each sample. Experi-
mental designs that include many loci scored in samples from 
many temporal and/or spatial strata can therefore involve a 
large number of  different tests. If  a statistical test is accurate 
and the nominal Type I error rate for each test is α = 0.05, 
then, on average, 5% of  the tests will be significant by chance, 
even if  all assumptions for HWP and linkage equilibrium are 
met. The probability that at least one test will be significant 
by chance is termed the experiment-wide error rate (EWR), 
which is 1−(1 − α)k for k independent tests. For example, 
with α = 0.05, EWR = 0.40 and 0.99 for tests of  HWP at 
10 and 100 loci, respectively. In testing LD, the numbers of  
2-locus comparisons are k = 45 and 4950 for L = 10 or 100, 
respectively, leading to EWRs of  0.90 and >0.999. As k gets 
large, therefore, it rapidly becomes a near certainty that at 
least some tests will be significant by chance alone unless a 
multiple-testing correction is implemented.

Several options are available to quantitatively account 
for simultaneous tests of  similar hypotheses. The simplest 
(Bonferroni) procedure is to require that an individual test 
has a P value < α/k to be considered significant. This proce-
dure ensures that the EWR is ≤α, but it has reduced power 
to detect multiple departures from the null hypothesis (Miller 
1981). For this reason, a sequential Bonferroni procedure 
(Holm 1979; Rice 1989), in which the P values are first ordered 
by magnitude, has been widely used. Although the sequential 
Bonferroni sacrifices less power, when k is large the test nev-
ertheless becomes very stringent, and many real deviations 
from the null hypothesis can go undetected (Sunnucks and 
Hansen 2013). A conceptually different approach is to con-
trol the fraction of  rejected hypotheses that are actually true, 
rather than trying to ensure that no hypotheses are falsely 
rejected at all. Rejected hypotheses can be considered “dis-
coveries” because they provide evidence of  an effect, so this 
alternative approach has been called the False Discovery Rate 
or FDR (Benjamini and Hochberg 1995). The FDR proce-
dure can greatly increase power to detect departures from 
the null hypothesis, especially when k is large. The original 
FDR assumed independence of  the tests; a modified version 
(Benjamini and Yekutieli 2001) accommodates dependencies 
at some cost in power, which is still much higher than for the 
sequential Bonferroni (Narum 2006).

Although the procedures themselves are relatively 
straightforward, proper application and interpretation of  
multiple tests of  HWP and LD is challenging. First, one must 
decide how to group the tests into “families” or “experi-
ments.” Should each of  J populations be considered a sepa-
rate “experiment,” in which case there are J different overall 
tests of  HWP and J tests of  LD, with each test integrating 
information across all loci? Or should the focus be on indi-
vidual loci or pairs of  loci, with each of  the L or L(L − 1)/2 
tests integrating information across all populations? Note 
that either of  these options has additional multiple-testing 
issues nested within. A final option is to consider all tests 
of  all loci/locus pairs in all populations to be part of  a 
single experiment, which would produce JL tests of  HWP 

and JL(L − 1)/2 tests of  LD. The most appropriate design 
depends on the type of  inferences one wants to draw (Miller 
1981). In general, as discussed below, it will be more useful 
to use smaller aggregations to evaluate patterns across loci or 
populations.

Problems also arise regarding interpretation of  results 
after adjusting for multiple testing. It is not uncommon to see 
researchers report some significant deviations after adjusting 
for multiple tests of  HWP or LD but then ignore this result, 
especially if  they are few in number. If  a Bonferroni adjust-
ment is used with α = 0.05 to adjust for many HW tests, it 
means that, if  the underlying assumptions of  HWP are true 
for every locus in every population tested, then 95% of  the 
time zero tests will be significant after adjusting the critical 
P value. This means that even a single significant departure 
after Bonferroni correction is unlikely to occur by chance 
and requires some other explanation. The False Discovery 
Rate approaches were developed to address a slightly differ-
ent goal: to control the fraction of  “discoveries” that are false 
and hence red herrings. For example, gene expression arrays 
can simultaneously assay many thousands of  gene products 
(Schwanhäusser et al. 2011), and it is important to try to dis-
tinguish those that reflect meaningful up or down regulation 
from those that have a high or low signal just by chance. If  
a researcher uses a FDR of  0.05, therefore, it means they 
are willing to accept that 5% of  the rejected null hypotheses 
will actually be true. On the other hand, this means that 95% 
of  FDR-corrected discoveries would accurately reflect viola-
tions of  the null hypothesis, so simply ignoring them is risky.

Discussion and Recommendations
For many decades, tests of  HWP have played an important 
role as gatekeepers, helping to screen out genotypic arrays that 
cannot plausibly be explained by random mating and simple 
Mendelian inheritance. Accordingly, I begin the discussion by 
considering appropriate use of  the tests for that role.

Drawing Inferences about Mendelian Variation

Because protein electrophoresis documents variation in gene 
products rather than the genes themselves, tests of  HWP 
helped to identify patterns that reflected posttranslational 
modification of  gene products or other nongenetic artifacts. 
An important additional screening criterion for allozymes 
was that the phenotypic banding patterns of  heterozygotes 
had to be consistent with the known subunit structure of  
the enzyme: 2, 3, and 5 bands for monomers, dimers, and 
tetramers, respectively. Furthermore, different taxa have dif-
ferent and largely predictable patterns of  tissue expression 
that could be used for additional quality control (Utter et al. 
1987).

For markers such as microsatellites or single-nucleotide 
polymorphisms (SNPs) that (in theory at least) directly 
reflect DNA sequences, it is perhaps not as important to 
demonstrate that the observed variation “has a genetic 
basis.” However, it is no less important than it was for 
allozymes to ensure that the recorded genotypes accu-
rately reflect the true genotypes, and all current methods 
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for DNA sequencing are prone to errors of  this type. 
Furthermore, no additional criteria are available for micro-
satellites or SNPs that are comparable to the subunit and 
tissue-specificity tests routinely used as part of  quality con-
trol for allozymes. For many applications involving DNA 
data, tests of  HWP are the primary evidence used to sup-
port the hypothesis that observed patterns of  variation can 
be interpreted in terms of  simple genetic models. This is 
unfortunate, as even large samples generally provide low 
power to detect many nongenetic artifacts (Fairbairn and 
Roff  1980; Cox and Kraft 2006). HW tests should be con-
sidered a necessary but not sufficient step in establishing 
Mendelian inheritance. Researchers should not lose sight 
of  the fact that, by themselves, tests of  HWP and LD 
provide at most weak support for hypotheses regarding 
the genetic basis of  observed variation. If  at all possible, 
researchers should use breeding studies, parentage analy-
sis, or other approaches to more rigorously evaluate this 
hypothesis.

Multiple Testing

Although researchers are increasingly aware of  the impor-
tance of  multiple-testing issues, the most widely-used 
approaches are not ideally suited for common applications 
of  HW tests for nonmodel species. The FDR is most useful 
when one expects to find many “discoveries” (significant 
P values) and wants to ensure that not too much time and 
effort is spent following leads that turn out to be false. In 
contrast, the typical researcher evaluating genetic data for 
a nonmodel species does not want to find any departures 
from HWP; instead, one hopes the tests will allow the con-
clusion that, in the aggregate, the presumptive genotypes 
are consistent with what is expected for genetically-based 
variation within a random-mating population that meets the 
other criteria for HWP.

I recommend a 2-step approach to multiple testing that 
begins with a “big-picture” evaluation of  the extent of  agree-
ment with HWP using raw (unadjusted) test results, followed 
by a more targeted evaluation of  outlier loci and popula-
tions, which could involve use of  formal multiple-testing 
procedures or other approaches (see Boxes 3 and 4). The 
simplest way to begin is to perform separate, unadjusted tests 
for every locus in every population and record the fraction 
that is statistically significant. If  this fraction is no larger 
than the nominal Type I error rate (α), one can conclude that 
the tests as a whole provide no evidence to reject HWP or 
demonstrate LD (Table 3.1, Figure 3.1). If  the HW test is 
accurate and all null hypotheses are true, the observed frac-
tion of  significant tests might be exactly α, but is more likely 
to be slightly higher or lower. Box 3 shows how to evaluate 
whether the observed fraction of  significant tests is statisti-
cally different from α, using the cumulative binomial distri-
bution. If  the fraction of  rejected hypotheses is significantly 
less than α, it suggests that the test might be conservative; 
if  the fraction is significantly higher than α, it suggests that 
the overall hypothesis of  generalized agreement with HWP 
is not true.

Another approach is use Fisher’s combined probabil-
ity test (or the weighted Z-method; Whitlock 2005), which 
jointly considers multiple tests of  the same hypothesis and 
assesses the probability (P) that all hypotheses are true. This 
can be informative for checking patterns across populations 
or loci to identify samples or genetic markers that consist-
ently deviate from HWP. One caveat for this approach is that 
the overall P will be reported as 0 if  any single P value is 
0. Most software that uses permutations to compute exact 
HW tests will report P = 0 if  none of  the n permutations 
considered produced a result as extreme as the data in ques-
tion. But P = 0 implies the observed data are impossible if  
the null hypothesis is true; in general, the most that can be 
said in that case is that P < 1/n.

A third approach is to compare the distribution of  P 
values with the expected null distribution, which should 
be flat across the interval 0–1 (e.g., 10% of  P values 
should fall between 0.1 and 0.2, between 0.2 and 0.3, 
etc.; see Box 3). One can visually examine the pattern 
of  test results to identify substantial departures from the 
null expectation, or evaluate them quantitatively with a 
goodness-of-fit test. Finally, one can partition the data 
to create 2 or more groups of  individuals or loci to see 
whether the pattern of  significant deviations is consistent 
across groups.

Whether or not initial evaluations indicate that the frac-
tion of  significant tests exceeds the nominal α level, it is 
important to conduct additional analyses for evidence of  
individual test results that are strongly divergent and there-
fore might substantially affect downstream analyses. One 
way to do this is to repeat the analyses illustrated in Box 
3 using more stringent rejection criteria (e.g., α = 0.01 or 
0.001). Formal multiple-testing corrections or some of  the 
approaches in Box 4 can be used to accomplish much the 
same thing.

Interpreting Results of Statistical Tests

If  test results are consistent with the global assumptions 
of  the HW principle and independent assortment, then the 
researcher can proceed to subsequent analyses of  the data, 
without losing sight of  the fact that this is no guarantee that 
all underlying assumptions have been met. Rigorous conclu-
sions about these assumptions based on negative results are 
not possible in the absence of  a power analysis to determine 
how large a departure from HWP or linkage equilibrium 
assumptions could occur and still go undetected, given the 
experimental design.

What should one do in the common situation where 
the assumption of  global HWP is rejected—that is, when 
one has performed comprehensive HWP and LD tests for 
a large dataset and found some departures that remain sig-
nificant after accounting for multiple testing? The following 
responses are NOT appropriate, even though it is easy to 
find recently-published papers where they are followed:

•  Report this result and then proceed to subsequent analy-
ses with no further discussion.

 at N
O

A
A

 Seattle R
egional L

ibrary on D
ecem

ber 23, 2014
http://jhered.oxfordjournals.org/

D
ow

nloaded from
 

MARAM/IWS/2019/Hake/BG5

8



Waples • Testing for Hardy–Weinberg Proportions

9

•  Acknowledge the departures but dismiss them because 
they are few in number after multiple-testing corrections.

Over 3 decades ago, Fairbairn and Roff  (1980) noted that 
“the effective power of  the [HWP] test is further reduced by 
the reluctance of  researchers to reject their genetic models 
even when a significant χ2 value is obtained,” and there is lit-
tle evidence to suggest the situation is different today. Lessios 

(1992) went so far as to suggest that perhaps tests of  HWP 
should be dispensed with entirely because results are so con-
sistently ignored.

I would not go that far, but it is clear that many research-
ers lack a systematic approach to testing HWP and deal-
ing with significant departures. Again I suggest a 2-step 
protocol: 1) Identify the most likely causes of  the depar-
tures; and 2) Evaluate whether departures of  the nature 

Box 2. Identifying 1- and 2-locus Wahlund effects
A significant deficit of  heterozygotes is a common outcome of  HW testing. A simple test can help distinguish population structure (Wahlund effect) 
from other causes of  positive FIS. If  the sample includes more than one gene pool, we expect a positive correlation between FIS and FST at individual 
gene loci (Equation 5), and we expect a positive correlation between r2 and the product of  FST(1) and FST(2) for pairs of  loci (Equation 6). In the simulated 
mixtures depicted in Figure 2.1, the expected patterns for both 1- and 2-locus Wahlund effects are evident. In Panel A, the slope of  the regression of  
FIS and FST (1.015) was close to the value of  1 expected for equal mixture fractions, and the correlation was strongly linear (r = 0.92). Theory does not 
predict a 1:1 slope for r2 versus FST(1)FST(2), but the pattern again was strongly linear (r = 0.94). When FST = 0, we do not expect any Wahlund effect on 
FIS, so in the absence of  any other factors causing deviations from HWP the intercept of  the regression should be close to 0, and that was the case in 
both simulations in Figure 2.1.

Figure 2.1. Relationship between FIS and FST at 25 diallelic gene loci (Panel A), and between r2 and the product of  FST(1) and FST(2) for 300 pairs 
of  the same loci (Panel B) in simulated mixtures. Two populations of  size Ne = 100 were simulated using Easypop (Balloux 2001) and allowed to 
diverge until mean FST reached 0.129. Fstat (Goudet 1995) was used to calculate FST for each locus. The populations were then combined into a 
single 200-individual sample; FIS was calculated at each locus using Fstat and r2 was calculated at each pair of  loci using LDNe (Waples and Do 
2008). The dotted lines are the linear regressions, whose formulas are shown.
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Figure 2.2 shows a comparable single-locus analysis for empirical data for the Leadbeater’s possum. Previous analyses indicated that 2 genetically distinct 
demes occur in the area sampled. The correlation between FIS and FST (r = 0.66; P = 0.001) is strong and positive, as expected for a Wahlund effect. 
The slope (0.62) is <<1, suggesting that mixture fractions might be uneven (confirmed to be about 3:1; P. Sunnucks, pers. Com). Note that FIS is smaller 
than FST for every locus, and the intercept on the FIS axis is negative (−0.1). This suggests that the heterozygote deficiency caused by the Wahlund effect 
is being partially offset, perhaps by the tendency toward heterozygote excess caused by small Ne—an explanation that seems plausible for this highly 
endangered Australian marsupial (Hansen et al. 2009).

Other factors that can cause heterozygote deficiencies and positive FIS values (such as self  fertilization, null alleles, or allelic dropout) are not 
expected to produce positive correlations like this. These patterns, however, are subject to stochastic variation. Research is needed to rigorously evaluate 
the effects of  sampling, mixture fraction, and various sources of  uncertainty on the strength of  these correlations.

Box 2. Continued

Figure 2.2. Relationship between FIS and FST at 20 microsatellite loci in a sample of  Leadbeater’s possum taken at Yellingbo Nature Conservation 
Reserve in Australia that includes individuals from 2 different demes (Sunnucks and Hansen 2013). The dotted line is the linear regression of  FIS on FST.

and magnitude found are likely to affect conclusions of  
downstream analyses. These steps are discussed in more 
detail below.

Identifying Causes of Departures from HWP

Locus- or Sample-Specific Effects

A key to this step is finding answers to 2 questions: Can 
most or all deviations from HWP be traced to one or a 
few problem loci, or to one or a few samples? And, do 
the departures represent heterozygote deficiencies or 
excesses? Information in Table 1 can help work through 
this process. To answer the first question, it is useful to 
construct vectors of  test results for each locus (across 
all populations) and each population (across all loci). For 
each vector, one can compute the fraction of  significant 
tests and the overall combined P value using Fisher’s 
method. The sequential Bonferroni method can also be 
useful here for identifying outliers. Factors that are most 
likely to produce locus-specific HWP deviations include 
assortative mating, null alleles or genotyping errors/arti-
facts, and sex linkage (Table 1). Nonrandom sampling 
could also produce locus-specific effects if  heterozygotes 
have phenotypic traits that affect the likelihood of  being 

sampled. If  one or a few problem loci can be identified 
having departures from HWP that can be attributed to dif-
ficulty in recording the true genotype, those loci could be 
removed from the dataset for subsequent analyses. When 
doubts remain, robustness of  the results can be evaluated 
by comparing results with and without the loci or samples 
in question. In doing this screening process, care should 
be taken to avoid eliminating parts of  the dataset that 
reflect a biological signal of  meaningful departures from 
HW assumptions.

Factors that can cause deviations from HWP only in cer-
tain samples include the Wahlund effect, small Ne, genotyp-
ing errors (which might depend on sample quality), different 
allele frequencies in males and females, and self-fertilization. 
The appropriate response to this type of  result will depend 
on the cause of  the departures (see next section). Poor-quality 
samples that cannot be reliably genotyped should not be used 
in any analyses. A generalized heterozygote excess attribut-
able to small Ne or a generalized heterozygote deficiency 
attributable to self-fertilization are natural biological phe-
nomena. Such samples can provide novel biological insights 
and therefore should not be simply dismissed, although care 
is needed in evaluating effects of  these phenomena on down-
stream analyses.
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Heterozygote Deficiency or Excess?

The next step is to determine whether the departures reflect 
a consistent excess or deficiency of  heterozygotes. Factors 
that commonly produce heterozygote deficiencies include 
null alleles, the Wahlund effect, self-fertilization, and positive 
assortative mating (Table 1). If  mixed samples are collected 
from populations with fuzzy boundaries, or are collected on 
migratory routes or feeding grounds, the Wahlund effect that 
produces HWP departures and positive FIS will create dif-
ficulties in many downstream analyses, so these samples need 
careful consideration. Most evaluations of  the effect of  pop-
ulation mixture on tests of  HWP and LD fail to take advan-
tage of  predictions from population genetics theory about 
the expected relationships between FIS and FST (Equation 
5) and r2 and FST(1)*FST(2) (Equation 6). Researchers find-
ing some loci with heterozygote deficiencies often consider 
a Wahlund effect but dismiss it because the pattern is not 
uniform across loci. The widely-used program Microchecker 
warns of  a possible Wahlund effect only if  “all loci show an 
excess of  homozygotes” (Oosterhout et al. 2004, p. 537). This 

is logically flawed. There is no expectation that the Wahlund 
effect will be equal across loci; instead, there is no effect at 
all for loci that do not differ in frequency among popula-
tions, and more generally theory predicts a positive relation-
ship between FIS and FST, with the slope being a function 
of  the mixture fraction and allele frequency (see Equation 
5 and Box 2). Clustering approaches (e.g., Pritchard et al. 
2000; Corander et al. 2008; Jombart et al. 2010) can be used 
to estimate FST values if  reference samples are not available 
for populations potentially contributing to the mixture. The 
approach in Box 2 appears to have considerable promise for 
identifying a Wahlund effect; however, the patterns shown in 
Figure 2.1 represent best-case scenarios, as they involve mix-
tures of  equal proportions and assume that pure samples are 
available to estimate FST. Much work is needed to rigorously 
evaluate effects of  random sampling error, unequal mixture 
fractions, and estimation of  FST before the robustness of  
these approaches can be determined.

Self-fertilization or positive assortative mating lead to 
inbreeding and also can produce heterozygote deficiencies 

Box 3. Simple approaches to multiple testing
A good way to begin evaluation of  multiple tests is to perform unadjusted tests, count the fraction that are significant at the nominal α level, and see 
whether that result is consistent with a global assumption of  HWP. The probability that exactly X tests will mistakenly be rejected is given by the bino-
mial distribution, and this can be calculated for a range of  values of  X using a spreadsheet or similar application. For example, if  200 2-tailed tests are 
performed with α = 0.05, the expected number of  Type I errors is 10. To find the 95% confidence interval around this expected value, one looks for 
values of  X for which the cumulative probability of  a higher value falls in the range 0.025 < Prob < 0.975. In this example (Table 3.1), finding more than 
15 significant tests is not consistent with an assumption of  global HWP; finding 3 or fewer significant tests would suggest the test might be conservative.

A second approach is to examine the distribution of  P values across all tests. If  the null hypothesis is true in every case and the test is accurate, 
the fraction of  P values falling in each equally-sized bin on the scale 0–1 should be the same, within the limits of  random sampling error. Figure 3.1 
illustrates this with simulated genetic data. The combined distribution of  P values for the 2 populations analyzed separately (2000 tests total; top panel) 
is generally consistent with the null expectation (5% = 100 P values should fall in each of  20 bins; solid line), although a slight excess of  high P values 
is apparent. The number of  significant or near-significant P values was slightly lower than the null expectation, so results are consistent with a global 
assumption of  HWP. The bottom panel shows results when the 2 populations were combined and treated as a single sample; almost 25% of  P values 
were less than 0.05, and the proportion in the range 0.05 < P < 0.15 was also elevated from the null expectation. Note, however, that this means that the 
test failed to detect departures from HWP at more than 75% of  the loci, in spite of  the equal mixture fractions, large FST, and large sample sizes. This 
illustrates the generally weak power of  the test for HWP.

Even when the fraction of  significant, unadjusted tests is no higher than can be attributed to chance (as in the top panel in Figure 3.1), it is prudent 
to conduct additional analyses, using standard multiple testing procedures or some of  the alternatives discussed in the text and in Box 4, to check for 
presence of  outliers that might have important consequences for downstream analyses.

Table 3.1  The probability that 200 tests of  a null hypothesis that is true will produce X or fewer false rejections (Type I errors)

X Probability X Probability

1 0.0004 11 0.6998
2 0.0023 12 0.7965
3 0.0090 13 0.8701
4 0.0264 14 0.9219
5 0.0623 15 0.9556
6 0.1237 16 0.9762
7 0.2133 17 0.9879
8 0.3270 18 0.9942
9 0.4547 19 0.9973
10 0.5831 20 0.9988

The target Type I error rate was set at α = 0.05. Bolded probabilities indicate values of  X that are too high to be plausibly explained by chance (X ≥ 
16) or too low to be consistent with the nominal α level (X ≤ 3).
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Box 3. Continued

that might be mistaken for a Wahlund effect. However, the 
effects of  inbreeding on FIS should affect all loci equally, so 
there is no expectation of  a positive correlation between FIS 
and FST. Null alleles and some types of  scoring errors also 
produce heterozygote deficiencies, but again under this sce-
nario there is no expectation of  a positive correlation between 
FIS and FST. If  the deviations are locus-specific, that result 
should emerge from analyses that consider each locus sepa-
rately and look for patterns across samples, using a sequential 
Bonferroni or one of  the approaches described in Box 2.

If  possible, loci showing significant heterozygote 
excesses should be tested for allele and genotypic frequency 
differences between the sexes, which can be caused by selec-
tion, population history, or sex linkage. Finite population 
size also is expected to produce an excess of  heterozygotes 
and a negative FIS, but in practice this excess will generally 
not be detectable unless Ne is tiny, because the inter-locus 
variance is high. Furthermore, sampling error and other 
factors can cause opposing effects that reduce or erase the 

signal from drift. It should be easier to detect finite popu-
lation size effects on tests of  LD because the index r2 is 
always positive and effects of  drift and other factors such 
as population mixture are largely additive (Waples and 
England 2011). Genetic drift should add approximately 1/
(3Ne) to mean r2 (Equation 4) and, all else being equal, that 
should increase the fraction of  significant tests above the 
nominal α level. Surprisingly, this factor is seldom consid-
ered in evaluating routine tests of  LD, even in papers where 
the data are later used to estimate effective size using the 
LD method (which explicitly assumes that LD in excess of  
the amount expected from sampling error is due to drift). 
More research is needed to determine exactly how large a 
problem this is likely to be for tests of  LD; however, based 
on previous work (Waples 1989; Waples and Teel 1990), the 
probability of  a significant test result due to drift increases 
with the ratio of  sample size to effective size.

Selection can produce almost any pattern of  agreement 
with or departure from HWP, so effects are difficult to 

Figure 3.1. Distribution of  P values for tests of  HWP in simulated datasets. Genetic data for 1000 diallelic “SNP” loci were simulated in 
EasyPop (Balloux 2001). Two populations of  Ne = 1000 were allowed to diverge until mean FST reached 0.235; the entire populations then 
were separately analyzed for departures from HWP using Genepop (Rousset 2008). The combined distribution of  P values for the 2 individual 
populations (2000 tests total) is shown in the top panel; the bottom panel shows results for 1000 loci in an equal mixture of  the 2 populations using 
all 2000 individuals.
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Box 4. An example involving hypothetical data
The following hypothetical example illustrates some of  the recommendations in this Perspective. Researcher X has genotyped 1000 SNP loci in sam-
ples of  100 individuals from each of  10 populations. Of  the 10 000 population-by-locus tests of  HWP, 630 (6.3%) show significant departures. This 
is slightly higher than the 5% expected by chance for the nominal Type I error rate (α = 0.05)—is that a cause for concern? A good place to start is by 
examining population-specific effects. That analysis (Table 4.1) shows that nothing is unusual for populations 1–3 and 5–10: the fraction of  significant 
tests ranges from 4.3% to 5.3%, and about half  (44–61%) of  the significant tests represent heterozygote deficiencies (positive FIS), the remainder being 
excesses. But in population 4, 153 of  the 1000 loci (over 15%) showed significant departures from HWP, and all but 2 of  those represent heterozygote 
deficiencies. A histogram of  FIS values for this population (Figure 4.1) shows that the distribution is shifted to the right (toward positive values) com-
pared with the null expectation. From Table 1, the most likely causes of  sample-specific heterozygote deficiencies are self-fertilization and population 
mixture. Information about the biology of  the species should provide insights into the plausibility of  the former; for the latter, clustering (e.g., Pritchard 
et al. 2000) or PCA-based methods (e.g., Jombart et al. 2010) could be used to try to partition the sample into component gene pools, after which the 
analyses describe in Box 2 could be used to evaluate evidence for 1- and 2-locus Wahlund effects.

Even if  the population-specific anomalies can be explained, it is still useful to conduct a locus-specific analysis to screen for unusual behavior. 
This can be done by calculating the number of  populations for which each locus had a significant departure and plotting the distribution (Figure 4.2). 
In this case, the vast majority of  loci conform to the null expectation, being found significant in 0–2 populations, but a cluster of  10 loci that deviate 
significantly from HWP in 5–7 populations are clear outliers. The number of  loci showing this behavior is small enough that it did not raise any red 
flags in considering the overall tests or the population-specific tests. However, the causes of  these consistent departures are important to isolate because 
they could affect downstream analyses. If  these locus-specific departures represented heterozygote deficiencies, the most likely explanation might be 
null alleles or other scoring problems, but in this example the departures from HWP reflect an excess of  heterozygotes. A tiny Ne could produce a 
generalized excess of  heterozygotes but would not be expected to produce such distinctive results for just a few loci. A result like this, however, could 
occur if  the loci in question are tightly linked to genes involved in sex determination, in which case allele frequencies could differ between males and 
females, leading to an excess of  heterozygotes in their offspring.

evaluate with any generality. In addition, even strong selec-
tion can produce genotypic frequencies that do not devi-
ate from HWP (Box 1). Lachance (2009) evaluated power 
to detect selection-induced departures from HWP; selection 
for or against heterozygotes is most likely to produce HW 
departures (Table 1). These patterns can be locus-specific, 
but heterosis (which favors genome-wide heterozygosity) can 
produce a general pattern of  heterozygote excess. Searching 
for “outlier” loci that have high FST values indicative of  
strong directional selection has become a popular pastime. It 
might seem incongruous to do this for loci that do not show 
any evidence of  HW departures, but the 2 tests evaluate dif-
ferent processes. HW genotypic frequencies are affected only 
by selection occurring within a generation within 1 popula-
tion, while outlier loci are produced by different selective 
regimes in different populations across multiple generations. 
Therefore, HW tests generally provide little information of  
relevance to tests for candidate genes for adaptations.

Substantial LD or deviations from HWP that cannot be 
explained by chance or by any of  the above factors should 
alert the researcher to potential quality-control problems 
in data collection or recording that merit careful scrutiny 
before proceeding further. The researcher should revisit all 
aspects of  the process of  generating the genetic data to see 
if  problems can be identified. Morin et al. (2009) showed that 
genotyping errors that create even a single apparent homozy-
gote for a rare allele can cause significant HWP departures, 
so identifying influential individuals can be a useful exercise. 
Box 4 uses hypothetical data to illustrate how some of  the above 
suggestions can be used to evaluate results of  tests of  HWP.

Evaluating the Biological Consequences of HW 
Departures

Armed with information about the likely causes of  HW 
departures, the researcher can tackle the second major step: 

Table 4.1 Hypothetical results for 2-tailed statistical tests of  agreement with HWP conducted for 1000 loci in each of  10 population samples

Population Significant tests

Heterozygote

Deficiency Excess % Deficiency

 1 53 31 22 58.5
 2 46 28 18 60.9
 3 43 22 21 51.2
 4 153 151 2 98.7
 5 51 24 27 47.1
 6 48 25 23 52.1
 7 51 30 21 58.8
 8 43 19 24 44.2
 9 53 27 26 50.9
10 49 29 20 59.2
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Figure 4.2. A simple way to evaluate locus-specific effects. In this hypothetical example, each of  1000 loci were tested for departures from 
HWP in each of  10 populations. The binomial distribution, assuming 10 independent trials for each locus, each having an α = 0.05 probability of  
rejection, was used to generate the null expectation for the numbers of  loci that would have 0 … 10 significant departures just by chance. In the 
observed data, a total of  10 loci had significant departures in 5 or more populations—a very unlikely result for any locus that actually conformed 
to Hardy–Weinberg principles. Note the log scale on the Y axis.

Box 4. Continued

Figure 4.1. Hypothetical observed distribution of  single-locus FIS values at 1000 loci scored in a single sample of  100 individuals, compared 
with the approximate null distribution assuming all Hardy–Weinberg assumptions are met (hence mean FIS = 0). Vertical dotted lines are 
approximate bounds for the 95% confidence interval for FIS under the null hypothesis.

evaluating the consequences of  using the offending loci/sam-
ples in downstream analyses. Although statistical tests play 
a key role in identifying the departures, when sample sizes 
are relatively large, significant departures from HWP could 
occur that have little biological importance (Waples 1998; 
Hedrick 1999). It is therefore important to consider not only 
the P value for each test, but the absolute magnitude of  the 
departure (the effect size). The key question then becomes, 
Are departures from HWP of  this magnitude likely to influ-
ence biological conclusions that emerge from downstream 

analyses? For example, after consideration of  this issue, a 
researcher might reasonably argue that the departures can 
be ignored because the downstream results are robust to the 
nature and magnitude of  the deviations.

How does one know when this is a “reasonable” argu-
ment? Unfortunately, it is not possible to provide much con-
crete guidance on this crucial issue. Pompanon et al. (2005) 
noted the nearly complete lack of  evaluations of  the conse-
quences of  scoring errors for population genetics studies. Some 
recent studies have begun to chip away at this huge block of  

 at N
O

A
A

 Seattle R
egional L

ibrary on D
ecem

ber 23, 2014
http://jhered.oxfordjournals.org/

D
ow

nloaded from
 

MARAM/IWS/2019/Hake/BG5

14



Waples • Testing for Hardy–Weinberg Proportions

15

uncertainty associated with the broader topic of  the biological 
consequences of  departures from HWP and linkage equilib-
rium: effects of  population mixture (Deng et al. 2001) and gen-
otyping errors (Terwilliger et al. 1990) on association mapping; 
effects of  genotyping errors on measures of  LD (Akey et al. 
2001); effects of  null alleles (Dakin and Avise 2004) and other 
errors (Wang 2010) on parentage analysis; effects of  microsat-
ellite null alleles on estimates of  inbreeding (Barker 2005) and 
genetic differentiation (Chapuis and Estoup 2007); impact of  
HW departures on gene-disease associations (Trikalinos et al. 
2006); biases associated with different fixed quality cutoffs for 
genotype calls (Johnson and Slatkin 2008); and effects of  RAD 
scoring errors on estimates of  genetic diversity (Gautier et al. 
2013; Arnold et al. 2013). Much work remains to expand this 
type of  quantitative evaluation and synthesize the results in a 
way that provides practical guidelines for researchers interested 
in using genetic methods to study nonmodel species. In the 
meantime, it seems reasonable to expect that researchers who 
find substantial LD or departures from HWP that cannot be 
attributed to chance, but nevertheless want to use the data in 
downstream analyses, should provide an explanation of  why 
they believe the deviations are not likely to affect subsequent 
conclusions or interpretations.

Emerging Issues for the Genomics Era

Some issues related to genomics data merit mention here. 
First, no simple, universal way exists to extract accurate 

genotypes from raw next-generation sequencing (NGS) 
data. A researcher who wants to obtain such data for a 
new nonmodel species must either make a variety of  deci-
sions about how to filter and package the raw data, or must 
delegate that job to someone else (Nielsen et al. 2011; 
Andrews and Luikart 2014). It is vital that researchers take 
an active interest in this process or they will not be able 
to vouch for or even understand key aspects of  their data. 
One sobering fact that perhaps few researchers know or 
have paid attention to is that some popular programs for 
analyzing NGS data use a HW prior to call genotypes (see 
Andrews and Luikart 2014). This might be reasonable in 
well-studied species where HW assumptions have been 
independently verified, but could create serious problems 
for many nonmodel species. If  HWP are assumed in call-
ing the genotypes in the first place, any subsequent tests of  
conformity to HWP are of  questionable value, and down-
stream analyses could be affected if  the population is not 
at HWP for a biological reason (as opposed to a scoring 
artifact). Researchers studying nonmodel species would 
do better to find methods that can reliably call genotypes 
using independent criteria.

A second issue arises from the fact that NGS datasets can 
easily include thousands of  genetic markers. As long as only 
a handful of  allozymes or microsatellite loci were involved, 
it was convenient to assume that all markers are unlinked. 
This assumption does not pass the red-face test with genom-
ics datasets: In real organisms, thousands of  gene loci have 

Table 1 The most common causes of  LD and departures from HWP

Observation/possible cause
Locusa  
specific?

Sample  
specific? Comments

Positive FIS
 Positive assortative mating Yes Perhaps Effect is expected only if  phenotype is correlated with genotype
 Self  fertilization No Yes
 Wahlund effect Yesb Yes FIS should be positively correlated with FST

b

 True null alleles Yes No
 Apparent null alleles Yes Perhapsc Could depend on sample qualityc

 Nonrandom sampling Perhaps Perhaps Expected if  heterozygotes are less likely to be sampled
 Underdominance Yes Perhaps Selection against heterozygotes
Negative FIS
 Negative assortative mating Yes Perhaps Effect is expected only if  phenotype is correlated with genotype
 Nonrandom sampling Perhaps Perhaps Expected if  heterozygotes are more likely to be sampled
 Overdominance Perhapsd Perhaps Selection favors heterozygotes
 Selection differs in M and F Yes Yes Allele frequency differences between sexes cause het excess
 Sex linkage Yes Perhapse Allele frequency differences between sexes cause het excess
 Small Ne No Yes
LD; r2 significantly > 0
 Small Ne No Yes
 Wahlund effect Yesf Yes r2 should be positively correlated with FST(1)*FST(2)

f

 Epistasis Yes Perhaps A wide range of  patterns is possible
 Hitchhiking Yes Perhaps

aRecognizing that random variation will occur among loci, even if  “No” is indicated in this column.
bSee “Comments” column.
cSee “Comments” column.
dIf  heterozygote advantage is due to general heterosis, locus-specific effects are not expected.
eSee Marshall et al. (2004) for an example of  sample-specific departures from HWP due to sex linkage.
fSee “Comments” column.  at N
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to be packaged into at most a few dozen chromosomes. As a 
consequence, we can expect that NGS datasets will contain 
pairs of  loci that span a wide range of  linkage relationships. 
Indices such as r2 that are sensitive to physical linkage will 
be affected, and analyses that depend on such indices will be 
biased unless they account for the linkage.

Finally, standard multiple-testing procedures become dif-
ficult with genomics datasets that can have 104 or more mark-
ers even for nonmodel species. Default settings for software 
that tests for HWP by permutation and applies a Bonferroni 
correction might not be adequate to distinguish datasets 
that do and do not have P values <α/104. Bonferroni-like 
corrections are hopeless for pairwise tests of  LD, of  which 
there are ~108/2 for a dataset with 104 loci. Furthermore, 
the physical linkage mentioned above produces redundancies 
in information content, which reduces precision. This latter 
issue is important to consider in the context of  tests of  HWP 
and LE, because the tests are not independent when linkage 
is present. Nyholt (2004) and Xu (2012) suggested proce-
dures to deal with some of  these issues for multiple tests of  
LD in human genomics data, but the empirical examples they 
used involved only small numbers of  markers within particu-
lar chromosomal regions. More work is needed to develop 
rigorous procedures for dealing with the huge numbers of  
simultaneous tests of  HWP and LD that will be common-
place in genome-wide studies of  nonmodel species. In the 
meantime, some of  the simple procedures discussed above 
and in Box 3 that look for broad patterns in the data across 
loci or pairs of  loci can provide useful insights.
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Appendix. The Wahlund effect, FIS, and FST

Wahlund (1928) first described the consequences for geno-
typic proportions of  having a sample that includes individuals 
from more than one random mating population: homozygotes 
occur more frequently, and heterozygotes less frequently, than 
would be expected under conditions of  HWP. The deficiency 
of  heterozygotes caused by this scenario is widely known as 
the Wahlund effect. To illustrate the effect, assume a 2-popula-
tion mixture that includes populations 1 and 2 in proportions 
m and (1 − m). Let the frequencies of  allele A at a diallelic locus 
be p1 in population 1 and p2 in population 2, so pw  = mp1 + 
(1 − m)p2 = the weighted mean of  p1 and p2. Wahlund (1928) 
used the following notation: mixture fractions = g and h, with 
g + h = 1; allele frequencies in the 2 populations are rg and rh. 
Translating these into the current notation produces g = m, 
h = 1 − m, rg = p1, and rh = p2. With these conversions, the 
result from Wahlund’s Table 3 for the expected frequency of  
heterozygotes in a mixed sample can be expressed as follows:

 Freq( ) 2 1 ) 2 (1 )( ) .1 2
2Aa p p m m p pw w= − −( − −  (A.1)

If  we note that ( ) ( )p p p1 2
2 4− = Var , where Var(p) is the vari-

ance of  p among populations, then Equation A.1 can be written as

 
Freq( ) = 2 (1 ) 4 (1 ) * 2Var( ).Aa p p m m pw w− − −

 
(A.2)

The term on the left in Equation A.2 [ 2 1p pw w( )− ] is the 
expected HW frequency of  heterozygotes in the mixed sam-
ple, and the term on the right is the amount by which the 
frequency of  heterozygotes is reduced by nonrandom mating 
(i.e., the Wahlund effect). Formulations similar to equation 
A.2 (but which typically assume equal mixture fractions, in 
which case 4m(1 − m) = 1) can be found in a number of  
contemporary references (e.g., Frankham et al. 2002, p. 322; 
Allendorf  et al. 2013, p. 159).

Dividing each side of  Equation A.2 by 2 1p pw w( )−  pro-
duces an interesting result:
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(A.3)

The term on the left of  Equation A.3 is the ratio of  observed 
to expected (HWP) heterozygosity, Ho/He = 1 − FIS, while 
the term on the far right is similar to FST but has weighted 
terms in the denominator. If  we let p p Cp pw w( ) ( )1 1− = − , 
where p  = (p1 + p2)/2 = the unweighted mean of  p1 and p2, 
the above equation can be written as
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(A.4)

This implies that

 E m m C( ) [4 (1 ) / ],IS STF F= −  (A.5)

where
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(A.6)

is the ratio of  a functions of  the weighted and unweighted 
mean allele frequencies. We can consider some special cases:

•  If  m = 0.5 (equal mixture fractions), then 4m(1 − m) = 1 
and C also is 1, so E(FIS) = FST; and

•  If  p1 = 0 and p2 = 1 or vice versa (populations are fixed 
for different alleles), then C = 4m(1 − m), so E(FIS) = FST.
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In these 2 cases, therefore, we expect a linear relationship 
between FIS and FST with a slope of  1. In other cases (m ≠ 0.5 
and alleles A and a both segregating in at least one popula-
tion), the ratio 4m(1 − m)/C will in general not equal 1. For 
any given mixture sample, 4m(1 − m) will be the same at all 
loci, but C will vary across loci with allele frequency. This 
means that the expected relationship between FIS and FST 
will not be perfectly linear, although we still expect a positive 
correlation between the 2 parameters.

The derivations above treat the means, variances, and 
F-statistics as population parameters rather than estimates 
based on finite samples. Although a rigorous evaluation of  
the effects of  sampling is needed to determine the strength 
of  these relationships in actual populations, some empirical 
examples are shown in Box 2 (main text).

In an evaluation of  the inter-locus variance in the inbreed-
ing coefficient, Robertson and Hill (1984) derived the follow-
ing relationship:

 E f F n n( ) [( ) / ],= −ST 1  (A.7)

where n is the number of  subpopulations used to compute 
FST and f is comparable to FIS computed over a combined 
sample. Although this is not explicitly stated in the text, equa-
tion A.7 assumes equal mixture fractions (Hill W, personal 
communication). If  we back out the n/(n − 1) adjustment to 
account for computing Var(p) across a finite number of  sub-
populations, equation A.7 produces the same result as equa-
tion A.5 for an equal mixture of  2 populations.
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