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Separating the Wheat From the Chaff:
Patterns of Genetic Differentiation in High
Gene Flow Species
R. S. Waples

In many marine species, high levels of gene flow ensure that the genetic signal
from population differentiation is weak. As a consequence, various errors associ-
ated with estimating population genetic parameters that might normally be safely
ignored assume a relatively greater importance. This fact has important implica-
tions for the use of genetic data to address two common questions in fishery con-
servation and management: (1) How many stocks of a given species are there? and
(2) How much gene flow occurs among stocks? This article discusses strategies
to maximize the signal:noise ratio in genetic studies of marine species and sug-
gests a quantitative method to correct for bias due to a common sampling problem.
For many marine species, however, genetic methods alone cannot fully resolve
these key management questions because the amount of migration necessary to
eliminate most genetic evidence of stock structure (only a handful of individuals
per generation) will generally be inconsequential as a force for rebuilding depleted
populations on a time scale of interest to humans. These limitations emphasize the
importance of understanding the biology and life history of the target species—
first, to guide design of the sampling program, and second, so that additional in-
formation can be used to supplement indirect estimates of migration rates based
on genetic data.

Conservation of marine organisms is a
challenging enterprise for several reasons.
The habitat is immense—salt water covers
over 70% of the world’s surface—and pre-
sents a number of difficulties for observ-
ing, studying, and collecting marine spe-
cies. Marine diversity and endemism are
high, particularly among higher taxa, and
associated conservation issues cover a
broad spectrum. A particular concern is
that aquatic organisms are the only re-
maining species on earth harvested in ap-
preciable numbers from the wild for hu-
man consumption (Ryman et al. 1995).
World catch of aquatic species is domi-
nated by catches of finfish, but substantial
harvest also occurs for many other
groups, including crustaceans, mollusks,
echinoderms, algae, mammals, and rep-
tiles. Managing these harvests in a sus-
tainable way has long been a concern of
human societies. In fact, conservation bi-
ology as a discipline can trace its roots to
efforts to conserve living natural re-
sources exploited by humans (Primack
1993).

One outcome of these management ef-
forts for aquatic species has been devel-
opment of the stock concept. Numerous

definitions of a stock can be found in the
literature (reviewed by Carvalho and Hau-
ser 1994), but in general the term refers to
a group of organisms whose demographic/
genetic trajectory is largely independent
from other such groups. The stock con-
cept is popular with fishery managers be-
cause efforts both for exploitation and
conservation can be most effective when
it is possible to identify and focus on in-
dividual stocks.

A challenge to application of the stock
concept in the marine realm is the capa-
bility of many marine species for long-dis-
tance dispersal. Although ocean current
patterns, sea floor topology, and other
geographic features provide opportunities
for isolation and differentiation of some
species, for the most part the oceans of
the world lack obvious barriers to migra-
tion and dispersal. Many marine species
have evolved extended pelagic larval
stages (Scheltema 1971; Waples 1987)
and/or impressive migratory capabilities
as adults (Harden Jones 1968; NRC 1994)
to take advantage of the opportunities for
dispersal in the marine realm.

Studies that directly evaluate dispersal
in marine organisms (e.g., egg and larval
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Table 1. The proportion of total gene diversity that occurs among populations (F̂ST) in 113 fish species

Number of species
Mean number of
populations

F̂ST

Mean Median

Marine 57 6.4 0.062 0.020
Anadromous 7 13.1 0.108 0.081
Freshwater 49 5.9 0.222 0.144

Based on data in Ward et al. (1994), who summarized published reports that met the following criteria: a minimum
of two subpopulations, a minimum of 15 randomly chosen loci, a minimum of 15 individuals per subpopulation,
and availability of allele frequency data.

Figure 1. Distribution of F̂ST values across 57 species
of marine fishes, based on data in Ward et al. 1994.
Although the mean F̂ST for marine fishes is 0.062, the
median value is only 0.02 (Table 1).

Figure 2. Flow diagram showing a typical approach
to a common fishery management question: Are there
one or two stocks?

surveys, mark/recapture; reviewed by
Pawson and Jennings 1996) can provide
valuable insights, but they often are lo-
gistically difficult and have been relatively
few in number. Furthermore, such studies
provide evidence for the movement of in-
dividuals but do not necessarily elucidate
the genetic consequences of dispersal. For
these reasons, there has been consider-
able interest in the use of genetic data to
provide indirect estimates of the impor-
tance of dispersal in marine organisms. In
general, these data support the proposi-
tion that levels of migration and gene flow
are relatively high in marine species
(Shaklee and Bentzen, in press). For ex-
ample, Ward et al. (1994) reviewed popu-
lation genetic data for fishes and found
that mean F̂ST (a measure of the propor-
tion of total gene diversity that is allocat-
ed among populations) was 0.062 for ma-
rine species, considerably lower than for
anadromous or freshwater species (Table
1). [Here and throughout this paper, the
‘‘hat’’ indicates an estimate (F̂ST), while ab-
sence of a ‘‘hat’’ (FST) indicates a parame-
ter.] Moreover, this mean value is inflated
by relatively high (F̂ST) values for a few
marine species (Figure 1). A more useful
indicator is the median F̂ST, which is much
smaller (0.020). Sixty percent of the ma-
rine fishes surveyed by Ward et al. (1994)
have F̂ST values less than 0.03, indicating
relatively low levels of genetic differentia-
tion and consistent with relatively high
levels of gene flow among populations or
stocks. Several articles in this volume also
show relatively weak genetic differentia-
tion in marine species (Gold and Richard-
son 1998; Graves 1998; Hoelzel 1998).

There are, however, some inherent lim-
itations to the usefulness of genetic data
for examining stock structure in high gene
flow species, and these limitations have
not been treated thoroughly in the litera-
ture. The difficulties arise because the ge-
netic ‘‘signal’’ indicating stock structure is
relatively weak for high gene flow species,
and consequently various sources of noise
in the analysis assume relatively greater
importance (and require more rigorous at-

tention) than would normally be the case.
The noise can affect both the accuracy
and precision of the estimates of popula-
tion genetic parameters. Estimators are in-
accurate (biased) if they exhibit system-
atic, directional departures from the true
value of a parameter. Even if the estimator
is unbiased, it still may be of limited use
if its precision is low.

In this article I evaluate these limita-
tions as they apply to two questions that
have occupied those interested in marine
conservation biology for many years: (1)
How many stocks of a given species are
there? and (2) How much gene flow occurs
among stocks? For high gene flow species,
each of these questions presents signifi-
cant technical and statistical challenges.
After first outlining some common prob-
lems, I will suggest strategies to maximize
the value of genetic data for marine spe-
cies and then give an example that dem-
onstrates a quantitative way to deal with
a common sampling problem.

The Stock Identification Problem

A common approach to the stock identifi-
cation problem is to sample two or more
putative stocks and examine each sample
for a set of traits (genetic, morphological,
meristic, phenotypic, etc.). Although this
article focuses on the analysis of genetic
markers, some of the same principles ap-
ply to other characteristics as well. Typi-
cally the next step in stock identification
is to perform a statistical test to deter-
mine whether differences among the sam-
ples are statistically significant. Depending
on the result of the test, a decision is
made whether to manage for one or more
stocks (Figure 2). If the test is significant,
the null hypothesis of no differences
among stocks is rejected and they are
managed separately; if no significant dif-
ferences are found, they are managed
jointly.

This approach is appealing in its sim-
plicity, but it is not without problems. The
most basic difficulty is that there is little
reason to expect a direct relationship be-

tween statistical significance and biologi-
cal significance (Waples 1991b). There can
be a disconnect between the two on either
branch of the flow diagram. For example,
the literature contains numerous exam-
ples of the failure of any particular class
of markers to distinguish populations (or
even species) that are known to be dis-
crete (Allendorf et al. 1987). Taylor and
Gerrodette (1993) and Dizon et al. (1995)
have argued persuasively about the dan-
gers of deciding (on the basis of a nonsig-
nificant test result) to manage for a single
stock, unless one has first evaluated the
power of the test to detect differences be-
tween stocks if they do exist. The situa-
tion in which biologically significant differ-
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Table 2. Four outcomes that can occur when the null hypothesis of no population differences is
rejected by a statistical test

Outcome H0 Population differences Sampling Error

A True None Random Type I
B Falsea None Nonrandom H0 rejected for wrong reason
C False Biologically insignificant Random May lead to management error
D False Biologically meaningful Random None

a Test is statistically significant not because of differences between populations, but because sampling assumptions
implicit in the null hypothesis were violated.

ences exist but are not detected statisti-
cally leads to a type II error, and a man-
ager following the right branch in Figure 2
risks making this error with respect to
stock identification.

What is not so widely appreciated is
that the converse can also be true: that is,
not all statistically significant test results
indicate biologically important differ-
ences. In fact, given enough data, statisti-
cally significant differences can be expect-
ed to occur routinely in comparisons of
geographic samples, since at least some
departures from complete panmixia will
generally occur. Smith (1969) pointed this
out long ago for human populations, and
Waples (1989) made a similar point for
temporally spaced samples. Basing natu-
ral resource decisions solely on the basis
of statistically significant differences
among stocks can lead to management as
separate stocks when there is no strong
biological basis for doing so, and manag-
ers following the left branch of Figure 2
risk making this type of error. Although it
can be argued that this type of error will
generally lead to a conservative approach
to resource management and therefore
should not be a serious concern to con-
servation biologists, such errors can have
profound economic, social, and political
consequences that represent a cost to so-
ciety in other ways (primarily through
foregone consumption of the resource and
lost economic, social, and cultural bene-
fits associated with the harvest and con-
sumption). Furthermore, any consistent
pattern of errors of this type, resulting in
biologically unnecessary restrictions on
human activities, will stiffen the resolve of
skeptics and make it more difficult to ac-
complish sound resource management in
the future. For these reasons, it is impor-
tant to ensure that both types of errors
with respect to stock identification—er-
rors of commission as well as omission—
receive careful scrutiny.

Errors that can occur in rejecting the
null hypothesis can best be understood
by a closer examination of the left branch
of Figure 2. The null hypothesis applicable
to the stock identification question is typ-
ically stated as follows: ‘‘H0: There are no
differences in measured traits among pop-
ulations.’’ This is equivalent to saying that
the samples being compared have been
drawn from the same population. Rejec-
tion of the null hypothesis can be associ-
ated with four different states of nature
(Table 2), only one of which (outcome D)
involves biologically important differences
between stocks. Only in this case does re-

jection of the null hypothesis not lead to
any statistical, biological, or management
errors. Outcome A is a type I error (rejec-
tion of the null hypothesis when it is true),
which occurs by chance with probability
set by selection of the alpha level (typi-
cally 0.05) for the statistical test.

The remaining two outcomes—rejecting
the null hypothesis when it is false but for
biologically uninteresting reasons—lead
to errors that do not appear to have been
formally treated in the statistical litera-
ture. In outcome C, differences exist be-
tween the populations but are too small
to be biologically meaningful for the ques-
tion at hand. In this case, an error can oc-
cur if the test result triggers an action
(e.g., management as separate stocks)
that is not supported based on the actual
biological differences. The probability of
making this type of error is related to the
power of the test (the probability of de-
tecting differences between populations
when they exist). Unfortunately, statistical
power is determined not only by the mag-
nitude of the differences between popula-
tions, but also the data richness (sample
size, number of samples, and number of
independent characteristics measured).
Only the former is biologically meaningful
for stock identification, but the latter can
have a profound influence on the power of
the statistical test. The probability of find-
ing that small differences are statistically
significant increases considerably if over-
all tests are used that combine informa-
tion across multiple traits. Because of
these factors, whether a statistical test
yields a significant result does not by itself
provide much biologically useful informa-
tion, nor does the particular P value as-
sociated with the test (Berger and Selke
1987 and associated comments; Hilborn
1997).

Whether statistically significant differ-
ences are biologically meaningful will de-
pend on the context. For example, the hu-
man sex ratio at birth is slightly skewed
toward males (1.04:1 to 1.06:1 for British
and American datasets; Cavalli-Sforza and
Bodmer 1971; Lewontin 1995). Sample

sizes are huge, and there is no question
that the difference in rates of male and fe-
male births, although small in absolute
terms, is real and statistically highly sig-
nificant. The difference may be important
to consider in some applications (e.g., in
compiling actuarial tables), and changes
in the sex ratio as the population ages can
also provide important biological and evo-
lutionary insights. However, for other pur-
poses the difference is inconsequential.
Although any departure from a 1:1 sex ra-
tio will reduce effective population size
(Ne), the reduction is trivial for a sex ratio
this close to unity (Ne 5 205.9 for a pop-
ulation of 106 males and 100 females ver-
sus Ne 5 206 for a population with 103 of
each sex).

Outcome B represents a more serious
source of error for genetic studies of ma-
rine species. As in outcome C, the null hy-
pothesis is false, but not because there are
differences between the populations; rath-
er, it is false because assumptions about
sampling implicit to the null hypothesis
have been violated. Statistical tests used
to evaluate this null hypothesis based on
discrete genetic data generally involve the
assumption that sampling is multinomi-
al—that is, that the samples have been
drawn randomly from a population of in-
finite size. Violation of this assumption
can lead to a significant test result even if
there are no differences between popula-
tions. An error occurs in this situation if
the scientist or manager falsely assumes
that the significant test result indicates
that multiple stocks exist. This type of er-
ror is important to consider because it is
almost always the case that the sampling
protocols violate the assumptions of the
null hypothesis. To see why, consider the
definition of a random sample: one in
which every individual in the population
has an equal chance of appearing. In arti-
ficial situations, this can be achieved by
blindly drawing numbers or colored balls
from a large container, or by using a ran-
dom number algorithm to select individu-
als from an imaginary population in a com-
puter model. However, sampling from bi-
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Figure 3. (A) The parametric relationship between
FST and mNe based on equation (1), assuming an island
model of migration at equilibrium. (B) FST as an increas-
ing function of time in an isolation model, based on
equation (2) for various values of Ne. (C) As in (A), but
including a comparison of the approximate [equation
(1)] and exact [equation (3)] expressions for the rela-
tionship between FST, m, and Ne.

ological populations is typically con-
strained in time and space, and often
there are individuals in the population
that have no chance of appearing in the
sample. In most cases, therefore, the ques-
tion is not whether the assumption about
random sampling is violated, but how bad-
ly, and what are the consequences.

The other assumption about sampling
inherent in most statistical tests—that the
samples are drawn without replacement
from an infinitely large population, or with
replacement from a finite population- –is
also routinely violated. In practice, most
biological samples are taken without re-
placement, but since all real populations
are finite, none of these are multinomial
samples. Fortunately, these departures
will tend to reduce sampling error com-
pared to the null expectation, so they will
not in general inflate the probability of a
category B result.

There is, however, a more serious way
in which biological sampling can be ‘‘ran-
dom’’ but still depart from the assump-
tions of the standard statistical tests and,
perhaps, lead to biologically invalid con-
clusions. This problem was first pointed
out by Allendorf and Phelps (1981), who
used as an example a single panmictic
population of fish in a lake that randomly
return to spawn in either of two tributary
streams. Allendorf and Phelps considered
two pairs of adults, one pair spawning in
stream A and the other in stream B. If
these four adults were sampled, it would
not be unusual to find substantial frequen-
cy differences between the pairs, but the
differences would generally not be statis-
tically significant because of the small
sample size involved. Often, however, it is
not reproductive adults that are sampled
but their juvenile progeny. If a researcher
were to return the next year and sample a
larger number (say 50) of juvenile fish re-
sulting from the pairwise matings in each
of the two streams, she would typically
find the allele frequency differences in the
two sets of parents were passed on (and
inflated through an episode of genetic
drift) to the offspring. However, in this
case, with a relatively large sample size
from each stream, the allele frequency dif-
ferences could easily be statistically high-
ly significant. As a result, the researcher
would conclude (wrongly) that the two
streams supported reproductively isolat-
ed populations (or stocks) of fish. This
scenario (which I will term the ‘‘Allendorf–
Phelps effect’’) will be discussed in more
detail in the next section.

In summary, it should not be surprising,

and is not necessarily biologically mean-
ingful, to find statistically significant ge-
netic differences among geographic sam-
ples. Rejecting the null hypothesis of no
differences does not in itself represent a
resolution of the stock identification prob-
lem: four different outcomes are possible
when the null hypothesis is rejected, only
one of which is associated with biologi-
cally meaningful differences among popu-
lations.

The Gene Flow Problem

For many marine species (especially those
harvested by humans), levels of gene flow
are a particularly important conservation
issue. A common management questions
is: If we deplete population (or stock) A
through overharvest, will it be replenished
by recruitment from elsewhere and, if so,
how quickly? This question has been
raised for a large number of marine spe-
cies across many diverse taxa [for exam-
ple, red drum (Sciaenops ocellatus; Gold
and Richardson 1998); bluefin tuna (Thun-
nus thynnus; NRC 1994); walleye pollock
(Theragra chalcogramma; Bailey et al., in
press); loggerhead turtles (Caretta caretta;
Bowen et al. 1992); cetaceans (Hoelzel
1991); green abalone (Haliotis fulgens; Teg-
ner and Butler 1985); and spiny lobsters
(Panulirus marginatus; Shaklee and Samol-
low 1984)].

A typical approach to answering this
question is to estimate the rate of ex-
change among populations based on ge-
netic data. The most common method is
to estimate the parameter FST and use this
result to estimate the migration parameter
mNe from the relationship (Wright 1943)

FST ø 1/(1 1 4mNe). (1)

The term mNe—the product of migration
rate (m) and effective population size—is
the number of genetically effective mi-
grants per generation received by each
population. A graph of the parametric re-
lationship between FST and mNe based on
equation (1) is shown in Figure 3A. In the-
ory, this method provides a promising
way of addressing the key question about
how quickly an overharvested population
will be replenished by migration from oth-
er populations. In practice, there are some
serious, and often underappreciated, limi-
tations to the usefulness of genetic data
for this purpose with high gene flow spe-
cies.

The first difficulty is that the numerous
assumptions of the model are often ig-
nored. The formula cited above applies to

the island model of migration (Wright
1943), which is based on the following as-
sumptions: (1) the number of subpopula-
tions is infinite; (2) Ne is the same (and
constant over time) in every subpopula-
tion; (3) breeding is random within sub-
populations; (4) generations are discrete;
(5) m is constant over time and the same
for every subpopulation; (6) m is ‘‘small;’’
(7) alleles are selectively neutral; and (8)
there is no mutation. Clearly these as-
sumptions will never be met in any appli-
cation involving biological populations.
Only some of these assumptions have
been examined by sensitivity analysis to
determine their effects on estimates of
mNe (see Waples 1986 for a review). Alter-
native formulas are available for several
different migration patterns (reviewed by
Felsenstein 1976; Slatkin 1985a), and one
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of these may be more suitable than the
island model for many applications involv-
ing marine species. In any case, it is im-
portant to recognize that the shape of the
curve describing the actual relationship
between FST and mNe often will differ from
that shown in Figure 3A.

Equation (1) also assumes that an equi-
librium has been attained between migra-
tion and genetic drift. Strictly speaking,
this will never occur, since a permanent
equilibrium is only attained with an infi-
nite global population size. With popula-
tions of finite number and size, FST in the
migration model will eventually collapse
to zero as all subpopulations become fixed
for the same allele. Nevertheless, the sys-
tem may attain a quasi-equilibrium for a
long period of time, during which the re-
lationship shown in equation (1) approxi-
mately holds (Nei et al. 1977). Alternative
scenarios that must be considered are
that the system has not yet reached equi-
librium, or that the subpopulations were
at one time connected by migration but
are now completely isolated. In the latter
case, FST increases asymptotically over
time to its maximum value (FST 5 1) ac-
cording to the following equation (Nei and
Chakravarti 1977):

tF 5 1 2 (1 2 1/(2N ))ST e

2t/(2N )eø 1 2 e . (2)

In equation (2), t is elapsed time in gen-
erations after the subpopulations diverged
from a common source. Figure 3B shows
three curves (corresponding to different
values of Ne) of the relationship between
FST and divergence time in an isolation
model. Researchers interested in evaluat-
ing the robustness of their genetic esti-
mates of migration should realize that any
empirical F̂ST value that can be used to es-
timate mNe using equation (1) is also con-
sistent with a complete isolation model as
described by equation (2). In fact, for any
F̂ST value there are an infinite number of
combinations of t and Ne that will satisfy
equation (2), as well as an infinite number
of nonequilibrium scenarios involving mi-
gration. One factor that is favorable for
the analysis of marine species is that the
rate of approach to equilibrium increases
with migration rate (Crow and Aoki 1984).
However, it still may take tens or hun-
dreds of generations to restore equilibri-
um after a perturbation.

Another difficulty is that rates of gene
flow under equilibrium conditions—even
when they can be estimated reliably—will
not necessarily provide an accurate pic-

ture of the rate of recolonization following
depletion of a local stock. With intraspe-
cific competition relaxed or nonexistent,
recolonization of an empty niche may oc-
cur much faster than would be predicted
based on migration rates at equilibrium.

Because the question of interest is
whether migration is sufficiently high to
reestablish a harvestable surplus in a
short period of time, it also seems prudent
to evaluate the assumption of the island
model that m is ‘‘small.’’ Equation (1) is
actually an approximation derived from
the following exact equation by assuming
that m is small enough that the m2 terms
can be ignored (Wright 1943):

2F 5 (1 2 m) /[2N 2 (2N 2 1)ST e e

2·(1 2 m) ]. (3)

Equation (3) is more complicated than
equation (1) because it does not lead to a
simple relationship between FST and the
number of migrants per generation (mNe).
Instead, to estimate mNe one must esti-
mate two parameters: FST and either m or
Ne. This inconvenient fact has no doubt
contributed to the popularity of the sim-
plified equation (1) and the relative obscu-
rity of the exact expression given by equa-
tion (3).

Figure 3C shows a plot of equation (1)
and three curves for equation (3) corre-
sponding to Ne values of 50, 100, and 500.
We can see that if FST is larger than about
0.03 and Ne is 50 or more, the approxima-
tion in equation (1) is very good. For
smaller FST values, however (and especial-
ly for FST , 0.01) there can be significant
bias in using equation (1) to estimate mNe

unless Ne is large. For example, with F̂ST 5
0.005, equation (1) yields an estimate of
mN̂e of 50, while use of the exact equation
with Ne 5 50 gives an estimate of m̂5 0.42
and mN̂e 5 21. FST values less than 0.01
may not be uncommon for marine species;
recall that the median F̂ST for marine fishes
reported by Ward et al. (1994) was only
0.02.

Finally, even if we ignore the many other
possible models of migration and drift and
assume that equation (1) is applicable,
there still is a significant problem with pre-
cision for high gene flow species. Because
of the inverse relationship between FST

and mNe (Figure 3), the same magnitude
of error in F̂ST translates into a much larger
error in estimating mNe for high gene flow
species than it does if gene flow is more
restricted. Although some sources of error
in estimating FST may be proportional to
the magnitude of FST (and hence be small-

er for low values of FST), other sources
(e.g., sampling error in estimating allele
frequencies) are fixed in magnitude and
assume a relatively greater importance for
high gene flow species.

The large uncertainties inherent in esti-
mating mNe for low F̂ST values create a se-
rious problem in addressing the key man-
agement question raised in this section.
With adequate amounts of data, it may be
possible to demonstrate that the lower
limit of the confidence interval for F̂ST

leads to an estimate of mNe that is too low
to lead to rapid recolonization of a popu-
lation that has been depleted by overhar-
vest or other factors. For example, assume
that the lower limit to a confidence inter-
val for F̂ST is calculated as 0.025, which
leads to an upper bound for mN̂e of 10 us-
ing equation (1). Although migration at
this rate has a profound effect on popu-
lation genetic structure and can affect
population dynamics and persistence
times over evolutionary time scales, it is
far too low to be an appreciable factor in
rapidly rebuilding a depleted population
except under very unusual circumstances
(e.g., recolonization by a few individuals
with very high fecundity and a short gen-
eration length). Generally the number of
migrants per generation must be in the
hundreds or thousands to have any signif-
icant effect on the rate of stock rebuilding.
Unfortunately, in most realistic situations
it will be virtually impossible to demon-
strate that migration rates are sufficiently
large to allow rapid rebuilding. For exam-
ple, to demonstrate that immigration is no
lower than, say, 1,000 migrants per gener-
ation would require estimating FST with
such precision that the upper bound on
the confidence interval is 0.00025. This is
not a realistic expectation. Asymmetry in
the power to resolve this key management
problem—genetic data may be able to
demonstrate differences but generally
cannot prove that migration is large
enough to warrant management as a sin-
gle stock—is inherently unsatisfying, both
in a scientific sense and from a manage-
ment perspective.

To summarize, the intrinsic disconnect
between the genetic and demographic
consequences of dispersal make the gene
flow problem a difficult one for marine
species. The nature of the relationship be-
tween FST and mNe is not favorable to pre-
cise estimation of migration rates for high
gene flow species. It is essentially impos-
sible to demonstrate using genetic data
alone that migration rates are high enough
to quickly rebuild stocks depleted by ov-
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Figure 4. The importance of intralocus sampling er-
ror in estimating FST. (A) Relative magnitude of signal
(parametric FST) and noise (intralocus sampling error)
for freshwater, anadromous, and marine fishes. For
each group, the signal is based on the median F̂ST value
from Table 1, and the noise is the expected magnitude
of sampling error from samples of S 5 25 individuals.
(B) For marine species (median F̂ST 5 0.02), relative
and absolute magnitude of sampling error decreases
asymptotically as S increases.

erharvest. In some cases it will be possible
to show that estimated rates of dispersal
are too low to be consistent with manage-
ment as a single stock. However, these es-
timates are prone to a number sources of
bias. Furthermore, estimates obtained
from equilibrium systems, even if they are
accurate, may not provide a reliable indi-
cation of the rate of recolonization or dis-
persal into an empty niche.

Strategies for Maximizing the Value
of Genetic Information

We have seen in the preceding sections
that the signal:noise ratio problem is in-
herent to the study of the population ge-
netics of high gene flow species, and this
creates problems for both of the key man-
agement questions considered above. The
genetic signal from stock differentiation is
the sum of the genetic differences among
the populations of interest. Little can be
done to enhance the signal, since it is de-
termined by factors beyond the control of
the experiment (effective population size,
migration rate, selection, mutation rate,
elapsed time). However, a number of strat-
egies can be used to enhance our ability
to detect the signal, minimize the noise
levels that tend to obscure the signal, or
adjust for the noise that cannot be avoid-
ed. In this section I discuss these strate-
gies as well as some other approaches
that can help to increase the value of ge-
netic information for marine species.

Random Sampling Error
The data at the core of most population
genetic analyses (including all of the anal-
yses discussed here) are genotypic or al-
lelic frequencies. Random sampling error
is a major source of the noise in estimat-
ing these frequencies. This sampling error
has two components: intralocus error is a
function of the number of individuals sam-
pled, while interlocus error is a function
of the number of loci examined.

Sampling individuals. The intralocus sig-
nal:noise ratio problem is illustrated in
Figure 4. Two components that contribute
to a raw F̂ST value are plotted: a signal re-
sulting from the parametric value for the
populations involved, and noise due to the
fact that the parameter is estimated from
a sample of individuals rather than mea-
sured exactly. The graphs depict the ex-
pected (mean) values of both the signal
and noise. The signal is based on the re-
lationship between FST and mNe shown in
equation (1), and the expected contribu-
tion to the raw F̂ST value from sampling S

individuals is approximately 1/(2S) (Chak-
raborty and Leimar 1987; Workman and
Niswander 1970; Wright 1978).

Figure 4A shows the expected contri-
butions of signal and noise to a typical
raw F̂ST value for freshwater, marine, and
anadromous species. In this example, the
signal is determined by the median F̂ST val-
ue for each group of species (Table 1), and
the noise is the sampling error expected
from sampling S 5 25 individuals from
each subpopulation—a typical sample
size for many DNA studies (and some allo-
zyme studies) of marine organisms. This
sampling error causes an upward bias in
the raw F̂ST value compared to its true
(parametric) value. For a given sample
size, this bias represents a larger fraction
of the raw F̂ST value for marine fishes than
it does for freshwater or anadromous spe-
cies. This indicates that lack of attention
to sampling considerations will affect pre-
cision and bias of F̂ST estimates more
strongly for marine species.

This problem can be alleviated to some
extent by taking larger samples. Figure 4B
shows that with the signal held constant,
the absolute (and relative) contribution of
sampling error to the raw F̂ST value de-
clines asymptotically as sample size in-
creases. For example, for a typical marine
species (parametric FST 5 0.02), intralocus

sampling error is over twice as large as
the signal with S 5 10 and of equal mag-
nitude to the signal with S 5 25, but the
relative magnitude of sampling error de-
creases to 50%, 25%, and 12.5% of the sig-
nal with successive doubling of S to 50,
100, and 200, respectively. Because the
marginal benefits from subsequent in-
creases in sample size continually dimin-
ish, there are limits to the benefits of in-
creased sample size. At some point, fur-
ther increases will become too costly (in
terms of increasing logistical difficulties or
higher demands on resources) to justify
the relatively small additional reduction in
bias. Where this critical point lies will vary
with attributes of the organism involved
and the tolerance for bias and lack of pre-
cision in the estimates of population ge-
netic parameters.

Sampling loci. As defined by Wright
(1943), FST is a parameter that has no vari-
ance, since it applies to a global popula-
tion with an infinite number of subpopu-
lations. In any real application, of course,
the number of subpopulations (and the
global population size) will be finite. In a
finite population, each gene locus can be
considered an independent realization of
an evolutionary process that involves a
balance between migration and genetic
drift. As a result of this stochastic process,
parametric FST will vary considerably
among loci (Nei et al. 1977) even when m
and Ne are fixed and other assumptions of
the island model hold. This means that es-
timates of FST calculated using data for a
single gene locus will have a wide confi-
dence interval for the associated estimate
of mNe.

Because the signal (parametric FST) is
not fixed but instead varies across loci,
our ability to reliably detect the signal is
enhanced by considering data for multi-
ple, independent gene loci. The impor-
tance of sampling multiple gene loci can-
not be overstated. In fact, Chakraborty
and Leimar (1987) argued that there is lit-
tle reason to make a bias adjustment for
sampling individuals unless a large num-
ber of loci are used to reduce the standard
error of the overall estimate F̂ST. Unfortu-
nately, because the interlocus variance of
F̂ST depends on a number of factors (num-
ber of subpopulations, number of subpo-
pulations sampled, population size, time
of divergence, and sample size of individ-
uals), there is not a simple expression for
the variance (Long 1986). The most that
can be said categorically is that the vari-
ance declines asymptotically as the num-
ber of loci increases. For an empirical
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study, the best way to evaluate the vari-
ance (or a confidence interval) for a mul-
tilocus F̂ST value appears to be by resam-
pling techniques (Weir and Cockerham
1984; Raymond and Rousset 1995a).

Adjusting for bias. We have seen that tak-
ing larger samples reduces the bias
caused by intralocus sampling error but
does not eliminate it entirely. Unavoidable
bias associated with sampling individuals
is generally dealt with in one of two ways.
The first (and surprisingly common) ap-
proach is to assume that the bias can be
safely ignored because it will be small
compared to the signal. In general, this ap-
proach will be reasonable for comparisons
of well-differentiated entities (e.g., differ-
ent species or subspecies), for which the
signal can be orders of magnitude larger
than intralocus sampling error (e.g., Gor-
man and Renzi 1979). Nei (1978) stated
that there is little difference between stan-
dard and unbiased estimates of genetic
distance if sample sizes are 50 or more,
and Chakraborty and Leimar (1987) ar-
gued that because intralocus sampling er-
ror from 50 individuals per subpopulation
upwardly biases F̂ST estimates by only the
magnitude 0.01, this effect can usually be
safely ignored.

For many marine species, however, ig-
noring this bias is risky. The relative im-
portance of the bias depends not only on
its magnitude but also on the strength of
the signal (the parametric FST), which typ-
ically will be weak for marine species. Fur-
thermore, because of the hyperbolic rela-
tionship between FST and mNe (Figure 3),
a small amount of bias in a low F̂ST value
can have a large effect on the estimate of
mNe. For example, an upward bias in F̂ST of
magnitude 0.01 (as would occur from sam-
ples of S 5 50) may have little effect on
estimates of mNe for most anadromous or
freshwater species (median F̂ST 5 0.08–
0.14), but for a species with parametric FST

5 0.005, ignoring intralocus sampling er-
ror will on average downwardly bias the
estimate of mNe from 50 to 16. This indi-
cates that for marine species, it is not only
important to reduce bias as much as pos-
sible (by taking large samples of individ-
uals), but also to correct for the bias.

A bias correction can be applied by
computing the average, or expected, con-
tribution to F̂ST from intralocus sampling
error [approximately 1/(2S)] and subtract-
ing that amount from the raw value of the
statistic [see, for example, Weir and Cock-
erham (1984), Workman and Niswander
(1970), and Wright (1978) for bias correc-
tions for F̂ST and Nei (1978) for a bias cor-

rection for genetic distance]. The goal is
to filter out the noise in the raw statistic
to yield a more accurate estimate of the
signal.

The major difficulty with this approach
is that intralocus sampling error arises
from a stochastic process, and its magni-
tude in any particular application can be
described only in a statistical sense. In an
empirical study, the actual error in esti-
mating allele frequencies at a gene locus
(and hence the error in estimating the
parametric FST value) could be much
greater or much less than the theoretical
expectation. Thus, although explicitly ad-
justing for sampling error can lead to an
estimate that is unbiased, it will not nec-
essarily yield an estimate that is sufficient-
ly precise. Another difficulty is that in
some cases, applying the bias correction
for sampling error can lead to a negative
F̂ST value. This can occur if genetic differ-
ences between populations are small and
the actual magnitude of sampling error is
smaller than the expected value. In this
case, the genetic data provide no evidence
that gene flow among populations is re-
stricted.

This lack of precision can be overcome
to some extent by sampling multiple gene
loci. Averaging across multiple gene loci
ensures that the mean value of sampling
error in the experiment will be closer to
the theoretical expectation than would be
the case for a single locus, which in turn
means that the bias correction will be
more reliable. Use of multiple loci in com-
putation of F̂ST can thus be a powerful way
to increase precision of the unbiased es-
timate. As is the case with increasing sam-
ple size, the benefits of adding additional
loci are nonlinear, with the greatest pro-
portional improvements in precision as-
sociated with increases from one or just a
few loci.

Another source of bias arises from the
inevitable violation of the assumption in
the island model of an infinite number of
subpopulations. Even in the unlikely situ-
ation in which all other assumptions of
the island model are met, the actual num-
ber of subpopulations will be finite, and
this will downwardly bias the parametric
FST compared to the relationship shown in
equation (1). If only a subset of the exist-
ing subpopulations are sampled, there will
be an additional source of downward bias
in F̂ST, as well as an additional source of
error in estimating the parametric FST for
the population as a whole. Some methods
for estimating F statistics and related
quantities (e.g., u in Weir and Cockerham

1984) include corrections for this effect,
while others (e.g., GST in Nei 1973) do not.
When estimating mNe using a method that
does not include an adjustment for num-
ber of subpopulations, equation (1) can be
modified and rearranged to yield the fol-
lowing:

F̂ ø 1/{1 1 4mN dd /[(d 2 1)(d 2 1)]};ST e s s

d 2 1 d 2 1 1 1sˆmN 5 2 , (4)e ˆ[ ]d d 4F 4s ST

where d and ds are the total number of
subpopulations and the number that are
sampled, respectively (Slatkin 1993). The
bias in mN̂e from ignoring this effect will
be relatively small unless d and/or ds are
small numbers.

DNA data. The increasing accessibility
of a large amount and variety of DNA data
in recent years has considerably en-
hanced our ability to detect population ge-
netic structure. Direct benefits of DNA
data for the key conservation issues con-
sidered here include the following: (1) In
some fish species of economic and con-
servation interest [e.g., striped bass (Mo-
rone saxatilis), Atlantic salmon (Salmo sa-
lar), American shad (Alosa sapidissima)],
allozymes provide little basis for informed
fishery management because they have
very low levels of variation. In contrast,
highly variable DNA markers have been
identified for each of these species (Epi-
fanio et al. 1995; McConnell et al. 1995;
Wirgin et al. 1991). (2) DNA methods pro-
vide an opportunity to survey genetic
variation at more gene loci than are avail-
able using allozymes alone. Combining
DNA and allozyme data can therefore be
important in reducing the interlocus sam-
pling variance of F̂ST values. Many DNA
markers (especially microsatellites) are
also highly variable, and this can increase
overall power of resolution, provided that
appropriate methods can be developed to
address statistical challenges posed by
large numbers of rare alleles (Chakraborty
1992; O’Connell and Wright 1997). (3) Be-
cause mitochondrial DNA (mtDNA) is hap-
loid and clonally inherited, the signal from
genetic drift is stronger than for nuclear
gene loci. However, the same sample size
provides only half as many mtDNA genes
for analysis as it does nuclear genes, and
there is no opportunity to sample multiple
independent gene loci with mtDNA. As a
result of these various factors, the net ef-
fect of using mtDNA versus nuclear DNA
on the signal:noise ratio problems dis-
cussed here is complex. (4) DNA methods
can provide access to samples that would
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be difficult or impossible to obtain for allo-
zyme studies—for example, because of re-
quirements of allozyme analyses for lethal
sampling and rapid freezing of samples in
the field at ultracold temperatures. (5)
DNA data are amenable to genealogical
analysis that may provide insight into the
importance of the historical biogeograph-
ical process to current population genetic
structure [see Grant and Bowen (1998) for
an example involving marine fishes]. (6)
DNA analyses based on the polymerase
chain reaction (PCR) can make use of ar-
chived material (e.g, scale collections) to
provide a historical dimension to popula-
tion genetic analyses (e.g., Miller and Ka-
puscinski 1997; Purcell et al. 1996).

There has also been a general expecta-
tion on the part of many that DNA meth-
ods will provide dramatically higher reso-
lution for situations in which sufficient
polymorphic allozyme markers are avail-
able but they fail to clearly resolve stock
structure. Unfortunately, this expectation
does not appear to be well founded. The
underlying biological processes (migra-
tion and genetic drift) should affect all
neutral, nuclear gene loci in a similar fash-
ion, so the intrinsic genetic ‘‘signal’’ from
all nuclear DNA markers should be the
same magnitude. Although microsatellites
have much higher mutation rates than al-
lozymes or most other DNA markers, in
theory this should not lead to higher F̂ST

values because the relationship shown in
equation (1) is independent of mutation
rate and the number of alleles (Crow and
Aoki 1984). In fact, Crow and Aoki (1984)
found through simulations that the equi-
librium value of GST in the finite island
model is slightly lower with a mutation
rate of 1023 (a typical rate for microsatel-
lites) than with a mutation rate more typ-
ical of allozyme loci (1027).

Empirical studies that have compared
levels of differentiation detected by allo-
zyme and different types of DNA markers
have found mixed results (Bentzen et al.
1996; Pogson et al. 1995; Scribner et al., in
press; Zhang et al. 1993). Explanations
that have been proposed to account for
the lack of concordance in some studies
include natural selection acting on some
classes of markers, different rates of ap-
proach to equilibrium determined by dif-
ferent mutation rates, and uncertainty
about which mutation model is best for
use with microsatellite data.

Summary. In summary, bias caused by
intralocus sampling error can be reduced
by taking larger samples, but it still may
remain a significant fraction of the raw F̂ST

value for high gene flow species. Interlo-
cus sampling error does not lead to bias,
but it can severely limit precision (and
therefore the usefulness) of estimates
based on just a few gene loci. Assaying a
large number of independent gene loci is
important in obtaining precise estimates
of FST and mNe for high gene flow species.
Use of a large number of loci also allows
the magnitude of intralocus sampling er-
ror to be estimated more precisely, which
means that the bias adjustment can be
more effective.

Nonrandom Sampling
In addition to collecting large samples of
individuals and loci, it is important to ob-
tain samples that satisfy as nearly as pos-
sible the assumptions of the model used—
typically, that sampling is random with re-
spect to the entire population. Our ability
to randomly sample a population is only
as good as our understanding of the spe-
cies’ behavior, ecology, and life history.
Sex-biased dispersal patterns, ontogenetic
movements of individuals, susceptibility
to capture, and demographic parameters
such as age structure and sex ratio can all
affect the ability to obtain a random sam-
ple.

Nonrandom sampling can lead to two
problems in interpreting genetic data.
First, nonrandom samples can be biased if
certain types of individuals appear pref-
erentially in the sample. For example,
many fishery sampling methods are size
selective, meaning that large or small in-
dividuals are more likely to be taken. This
can lead to bias if the attributes being
monitored are correlated with size. Any
number of behavioral attributes of individ-
uals might also affect their likelihood of
capture, and this could also lead to bias if
these behaviors are associated with the
genetic characteristics of interest.

Second, even if factors such as size or
behavior are not associated in any consis-
tent way with the genetic traits being mea-
sured, this type of nonrandom sampling
can increase the noise level because only
part of the population has been sampled.
For example, if size and age are strongly
correlated, as is typically the case in ma-
rine species, size-selective sampling meth-
ods will tend to overrepresent some co-
horts at the expense of others. In this
case, the genetic data will depend heavily
on only a subset of the parents in a gen-
eration as a whole, and genetic drift will
be a larger factor in determining the re-
sults than it would if the generation as a
whole were sampled randomly. This will

upwardly bias the estimate of FST unless
an adjustment is made.

The first step in addressing this prob-
lem is to understand the biology of the
species involved. If the generation as a
whole cannot easily be sampled randomly,
but cohorts can be sampled individually,
it may be possible to adjust for bias due
to the sampling methods. For example,
Waples (1990a,b) developed an explicit
correction factor that makes it possible to
use standard population genetic models
(based on discrete generations) with data
for individual cohorts of Pacific salmon.
Even if samples contain multiple cohorts,
adjustments may be possible if the indi-
viduals can be aged so that cohorts can
be reconstructed from one or more sam-
ples (Jorde and Ryman 1995; Waples
1991a). In special cases, other explicit ad-
justments may be possible (see example
below).

If there is reason to suspect that sam-
pling was not random, but explicit adjust-
ments are not possible, the most effective
strategy is to replicate sampling in space
and/or time. Adding additional spatial
samples can make the results more robust
to violations of the assumptions of the mi-
gration/drift model used. For example, it
will rarely be the case that the island mod-
el, which assumes completely symmetri-
cal migration, accurately describes the
population structure of any marine spe-
cies. More typically, nearby populations
will exchange migrants more frequently
than distant ones, and if this is the case
additional spatial samples will increase
the ability of the study to detect finer
scale population structure. Also, stratified
sampling may provide an adequate ap-
proximation to random sampling in situa-
tions where it is impossible to satisfy the
assumption exactly.

Temporally replicated samples provide
an extra dimension to the analyses that
can be extremely important in evaluating
possible sources of bias and sampling ar-
tifacts in the data. For example, if differ-
ences among geographic samples are rel-
atively modest but consistent over time,
then one can be much more confident that
they represent a bona fide genetic signal
rather than some artifact. On the other
hand, if relatively large differences are reg-
ularly found among geographic samples,
but the pattern of relationships is not con-
sistent over time, this suggests that the bi-
ology of the organism is imperfectly un-
derstood, that there are unrecognized
complexities in the processes involved, or
that the data are flawed.
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Figure 5. Departures from assumptions of the standard null hypothesis that lead to the Allendorf–Phelps effect.
A panmictic global population assorts randomly into different spawning areas. However, samples for genetic anal-
ysis (S1 and S2) are taken not of reproducing adults but rather their juvenile progeny. The episode of founder
effect/genetic drift upwardly biases F̂ST values and may lead to the (wrong) conclusion that the populations are
reproductively isolated. This effect can be adjusted for quantitatively; see text for discussion.

Allendorf–Phelps effect. The example of
the Allendorf–Phelps effect described ear-
lier involved a panmictic population of
fish in a lake that assorted randomly to
spawn in different tributaries. This model
is easily extended to apply to anadromous
Pacific salmonids. For example, a reason-
able null hypothesis regarding salmon
populations within a river basin might be
that adults return at random to a stream
to spawn, with no preference for their na-
tal stream. If spawning adults are sampled
from various streams, then a standard chi-
square (or similar) test comparing their
frequencies is an adequate test of the null
hypothesis. If, however, their juvenile
progeny are sampled rather than the
adults themselves, the chances of a statis-
tically significant test are inflated (the Al-
lendorf–Phelps effect) because the sam-
pling does not conform to assumptions
implicit in the null hypothesis (specifical-
ly, that the individuals sampled have been
drawn randomly from the global popula-
tion). This same phenomenon may be
more generally applicable to genetic stud-
ies of marine species. For example, many
marine fishes (e.g., cod, herring, pollock)
are characterized by spawning aggrega-
tions that regularly occur in the same geo-
graphic areas every year. The conserva-
tion question of interest is whether these
spawning aggregations represent discrete
stocks. In this case, as in the salmon ex-
ample, the null hypothesis of panmixia
cannot be directly addressed by sampling
juveniles derived from different spawning
aggregations.

Fortunately, it is possible to adjust the
null hypothesis to account for the addi-
tional complexities of sampling associated
with the Allendorf–Phelps effect. Figure 5
depicts the sampling scheme for the ad-
justed null hypothesis, which accounts for
an episode of founder effect/genetic drift
as well as intralocus sampling error in es-
timating allele frequencies. The chi-square
value obtained from a standard contingen-
cy test of allele frequencies in two samples
is mathematically equivalent to the follow-
ing quantity (Waples 1989):

2(X 2 X )1 22standard x 5 . (5)¯ ¯X(1 2 X)/S

In equation (5), X1 and X2 are allele fre-
quencies in the two samples and X̄ is the
weighted mean allele frequency across
both samples. To account for the depar-
tures from the standard null hypothesis
created by the Allendorf–Phelps effect, we
can adjust the denominator of equation
(5) to include a term that accounts for the

episode of founder effect/genetic drift
(Waples RS, unpublished data):

2(X 2 X )1 22adjusted x ø . (6)¯ ¯X(1 2 X)(1/S 1 1/N )b

In equation (6), the 1/Nb term represents
the effective number of breeders respon-
sible for the juveniles that were sampled.
If this number varies across spawning ag-
gregations, then the harmonic mean of the
individual Nb values should be used. Note
that Nb will in general not be the same as
Ne, which is the effective population size
per generation. The Allendorf–Phelps ef-
fect will generally be important only when
the parents involved represent just part of
a population (or part of a generation) for
the organism of interest.

Under the adjusted null hypothesis
(random distribution of breeders followed
by an episode of reproduction and genetic
drift before sampling), the quantity in
equation (6) should be distributed ap-
proximately as chi square and can form
the basis of a test to determine whether
factors other than drift and sampling error
must be invoked to explain the results.
This result can be generalized to multiple
loci and multiple alleles.

A similar adjustment can be made for
F̂ST values that are upwardly biased by the
Allendorf–Phelps effect. We have seen
that, under the standard null hypothesis

(parametric FST 5 0), the raw F̂ST value will
be inflated by intralocus sampling error,
which has an average magnitude of 1/(2S).
Accounting for the episode of founder ef-
fect/drift associated with the Allendorf–
Phelps effect leads to the following (Wa-
ples RS, unpublished data):

E(F̂ST)(adjusted null hypothesis) ø
1/(2S) 1 1/(2Nb). (7)

As noted for equation (6), the Nb of inter-
est may be much less than the effective
number of breeders in the entire spatial/
temporal spawning aggregation. Hedge-
cock (1994) argued that various factors in
the marine environment may greatly in-
crease the variance in reproductive suc-
cess among individuals of highly fecund
species, resulting in effective sizes that are
orders of magnitude lower than the num-
ber of spawning adults. An important com-
ponent of Hedgecock’s argument is that
this variance remains large throughout the
whole life cycle, because the effect of fam-
ily size variance on Ne is measured at the
reproductive stage of the offspring from
each family. In contrast, all that is required
for the Allendorf–Phelps effect to be im-
portant is that the juveniles sampled be
derived from a relatively few adults. This
might occur in any of a number of ways in
sampling eggs, larvae, or juveniles of a ma-
rine species with large spawning aggrega-
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tions, even if the ‘‘Hedgecock effect’’ is not
maintained over the full life cycle [see
Ruzzante et al. (1996) for an example and
some discussion].

As an example, consider a high gene
flow species with parametric FST 5 0.01,
and assume that samples of S 5 50 juve-
niles are taken from each of three large
spawning aggregations (N and Nb both .
106). Assume further that at two localities,
the samples were essentially random
draws from the (very) large total number
of offspring produced by the spawners,
while in the third locality the researchers
by chance obtained their sample from a
larval cloud produced by only Nb 5 10
spawners. The harmonic mean of Nb 5 106,
106, and 10 is only 30, so based on equa-
tion (7) we calculate the expected value
of F̂ST after accounting for sampling and
the Allendorf–Phelps effect as

ˆE(F ) ø F 1 1/(2S ) 1 1/(2N )ST ST b

5 0.01 1 0.01 1 0.0167

5 0.0367.

In this case, the raw F̂ST value is over three
times as large as the parametric (true) val-
ue, and the bias created by the Allendorf–
Phelps effect is significantly larger than ei-
ther the signal or the intralocus sampling
error.

A difficulty in applying the correction
suggested here for the Allendorf–Phelps
effect is obtaining a reliable estimate of Nb.
The genetic data gathered to evaluate
population genetic structure may provide
some insight in this regard. Analysis of ga-
metic disequilibrium (Hill 1981) provides
a way of estimating Nb from a single sam-
ple. Although a number of issues related
to bias and precision must be considered
in using gametic disequilibrium to esti-
mate Nb, it can be a powerful tool for iden-
tifying cases in which the sample has been
produced by a small number of breeders
(Waples 1991a). If multiple samples are
available, a combination of the temporal
and disequilibrium methods can be used
to increase the precision of estimates of
Nb (Waples 1991a). Herbinger et al. (1997)
used a slightly different approach—esti-
mating the incidence of full- and half-sib
relationships using microsatellite DNA
data— to evaluate Nb in samples of Atlan-
tic cod (Gadhus morhua) larvae.

Even if Nb cannot be estimated precise-
ly, equation (7) provides a way of evalu-
ating the likelihood that the Allendorf–
Phelps effect has been important. For ex-
ample, in the above example, after adjust-
ing the raw F̂ST value for intralocus sam-

pling bias, the researcher could consider
whether the resulting estimate (0.0367 2
0.01 5 0.0267) might be inflated by the Al-
lendorf–Phelps effect. After carefully con-
sidering the sampling protocols, the biol-
ogy of the species involved, and the local
oceanographic processes, the researcher
might be able to conclude with some con-
fidence that the juvenile samples were not
produced by fewer than (say) Nb 5 100 ef-
fective breeders at any locality. This
would put an upper limit to the bias re-
maining in the F̂ST value after adjusting for
sampling error. Alternatively, the research-
er could take the following approach: (1)
begin by calculating the value of mN̂e as-
sociated with the point estimate of FST (af-
ter adjusting for intralocus sampling error,
F̂ST 5 0.0267, which leads to mN̂e 5 9); (2)
identify a migration rate (say mNe 5 100)
that would lead to a different conservation
or management action than would occur
with mNe 5 9; (3) determine how large the
Allendorf–Phelps effect would have to be
to reduce the estimate of mNe from 100 to
9; and (4) evaluate the likelihood that Nb

could have been small enough to produce
an effect of this magnitude. For example,
migration at a rate of 100 individuals per
generation implies a parametric FST 5
0.0025. To have upwardly biased the F̂ST

value from 0.0025 to 0.0267 (and down-
wardly biased mN̂e from 100 to 9), the Al-
lendorf–Phelps effect would require 1/
(2Nb) 5 0.0267 2 0.0025 5 0.0242, or a har-
monic mean Nb of about 21. If the re-
searcher can conclude with confidence
that the samples were not drawn from this
small a number of breeders, she will have
evidence that the Allendorf–Phelps effect
has not biased the results so much that it
will lead to a faulty management decision.

Methods for Estimating Gene Flow
Several analytical methods can be used
with genetic data to provide an indirect es-
timate of the migration parameter mNe. It
is beyond the scope of this article to con-
sider this subject in detail, but I will briefly
summarize some results of other studies.
Slatkin and Barton (1989) compared F sta-
tistics and the rare allele method (Slatkin
1985b) as estimators of mNe. They found
that, in theory, the two methods are simi-
lar in their sensitivity to selection and
variation in population structure and also
have similar rates of approach to equilib-
rium. However, they concluded that prac-
tical difficulties involved in collecting data
on rare alleles make F statistics a better
general method for estimating gene flow in
natural populations.

Slatkin and Barton (1989) also used sim-
ulations to evaluate the relative perfor-
mance of two methods for estimating FST:
Nei’s (1973) GST and Weir and Cockerham’s
(1984) u. One of their findings was in-
creased bias and decreased precision of u
for high levels of gene flow. However,
Cockerham and Weir (1993) questioned
the theoretical basis for Slatkin and Bar-
ton’s simulation results and concluded
they were in error; their own simulations
showed little bias in u even for migration
rates as high as m 5 0.1. Simulations per-
formed by Chakraborty and Leimar (1987)
are consistent with Cockerham and Weir’s
results, and Chakraborty and Leimar con-
cluded that u was the method of choice
for estimating FST in high gene flow spe-
cies.

The mutation rate for electrophoretical-
ly detectable alleles is low enough that it
does not have a major effect on F̂ST esti-
mates based on allozyme data. This is not
true of all DNA markers, however. In par-
ticular, the mutation rate for microsatelli-
tes is high enough and back mutations are
common enough that ignoring mutations
can seriously bias estimates of gene flow.
Slatkin (1995) and Goldstein and Pollock
(1997) discussed this issue and suggested
methods to account for the bias, and Ben-
tzen et al. (1996) gave an example in
which this bias may be a factor in the ge-
netic analysis of a marine species.

Statistical Testing
Numerous statistical tests are available for
the analysis of population structure. Re-
searchers studying marine organisms
should continue to use these resources to
test hypotheses that will further our un-
derstanding of the biology of marine spe-
cies. However, exclusive focus on the re-
sults of statistical tests can be misleading.
The significance level of a statistical test
provides little information by itself; it is
also necessary to consider the data rich-
ness and the power of the test. Statistical
tests will be particularly sensitive to these
factors if researchers follow the sugges-
tions in this section for maximizing the
signal:noise ratio by intensive sampling ef-
forts. In addition, even relatively minor de-
partures from random sampling assump-
tions can cause a misleading rejection of
the null hypothesis if large amounts of
data are collected.

To minimize these potential difficulties,
researchers should first evaluate the pow-
er of the tests they use. If an evaluation
indicates that, because large amounts of
data are available, the test under consid-
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eration has a high probability of yielding
a statistically significant result even if the
biological differences among populations
are trivially small, then performing the
test will be of limited use by itself. A better
approach is to focus on estimating the
magnitude of the differences between pop-
ulations and evaluating the biological sig-
nificance of these differences. This would
place more emphasis on the second key
management question considered in this
article (estimating levels of gene flow
among populations or stocks) rather than
the first (testing for stock differences).
However, the estimation procedure should
avoid undue emphasis on the point esti-
mates of FST and mNe. Rather the approach
should be to describe various hypotheses
about migration among populations and,
using the empirical data, evaluate their
relative probabilities of being correct.
Having done this, the researcher or man-
ager will be in a position to evaluate the
likely consequences of different conser-
vation actions (e.g., management as one
or multiple stocks). The field of statistical
decision analysis (Hilborn 1997; Raiffa
1968) provides guidelines for use of this
general approach.

Recently there has been a good deal of
interest in improving methods for statis-
tical testing of hypotheses about popula-
tion differentiation (e.g., Hudson et al.
1992; Raymond and Rousset 1995a; Roff
and Bentzen 1989). This issue is increas-
ingly important for microsatellite and
mtDNA data, which often involve large
numbers of alleles (or haplotypes) per lo-
cus. Asymptotic tests such as the chi-
square test are not well suited to dealing
with large numbers of rare alleles, which
result in many cells that are empty or at
low frequency in the test. It is important
that these alternative tests continue to be
used and refined, because they allow sta-
tistical tests to be extended to a greater
range of applications than would other-
wise be the case. However, it should be
recognized that, although sometimes re-
ferred to as ‘‘exact’’ tests, these methods
do not deal any more effectively than the
chi- square test with factors such as sta-
tistical power and nonrandom sampling
that complicate the interpretation of test
statistics.

Other Approaches
In addition to statistical testing for popu-
lation differences and estimating levels of
gene flow, several other approaches can
be useful for studying the population ge-
netic structure of marine species. A gene

diversity analysis that partitions genetic
variation into various spatial and tempo-
ral components can provide insight into
population subdivision and temporal sta-
bility. Furthermore, collection of temporal
and/or spatial replicates allows a quanti-
tative evaluation of the importance of
sampling error and the signal:noise ratio.
Chakraborty and Leimar (1987) discussed
gene diversity analysis in a fishery con-
text.

As noted above, one key to using genet-
ic data to estimate gene flow is to deter-
mine whether an isolation model or a mi-
gration model is more appropriate and, if
the latter, what type of migration model to
use. Although an estimate of FST does not
by itself resolve this question, some in-
sight into this issue can be gained by ex-
amining the other F statistics. Whereas FST

represents the level of inbreeding in sub-
populations compared to the total (glob-
al) population (hence the subscript ST),
FIS and FIT represent the level of inbreeding
in individuals with respect to the subpo-
pulations and the total population, respec-
tively. Long (1986) described an example
in which these latter F statistics were used
to evaluate different hypotheses about
population structure in tribal groups in Pa-
pua New Guinea. Estimates of FIS and FIT

can also help in evaluating the effects on
F̂ST of failing to recognize population struc-
ture within sampled populations (Long
1986).

Slatkin (1993) examined several isola-
tion-by-distance models (in which sub-
populations receive migrants more fre-
quently from nearby subpopulations than
from more distant ones) and showed that
using a matrix of pairwise F̂ST values and
geographic distances between pairs of
populations can reveal information about
the importance of historical processes as
well as current levels of gene flow. He ar-
gued, for example, that failure to find evi-
dence of isolation by distance for species
with relatively low F̂ST values may indicate
that the species has recently colonized
the study area, whereas a lack of isolation
by distance in a species with high F̂ST may
indicate that there is no ongoing gene flow
and an equilibrium model is not appropri-
ate. Slatkin’s approach also provides a
way of estimating the genetically effective
neighborhood size. Shaklee and Bentzen
(in press) give some examples of the use
of the isolation-by- distance approach in
examining the population structure of ma-
rine species.

If data for multiple species are available,
it may be possible to evaluate from the

genetic data alone whether it is reason-
able to use an equilibrium model to esti-
mate gene flow. Waples (1987) sampled 10
shorefish species from several mainland
and island sites in southern California and
Mexico and found that estimates of mNe

based on F̂ST values were strongly corre-
lated (Spearman’s rank correlation coeffi-
cient 5 0.88) with estimated dispersal ca-
pabilities based on life-history information
and records of larval captures at sea. This
is the result that would be expected for
neutral genes at migration/drift equilibri-
um. In contrast, there is no a priori reason
to expect this result in an isolation model
or a nonequilibrium model involving mi-
gration.

Conclusions

Important points that emerge from this ar-
ticle include the following:

We should not rely solely on statistical
tests to guide decisions about identifica-
tion and management of stocks of marine
species. It is more important to identify
and implement experimental designs to
produce genetic information that is useful
in choosing among various conservation
strategies.

If statistical tests are used, possible de-
partures from the null hypothesis (and as-
sociated assumptions) should be carefully
evaluated and, if possible, adjusted for
quantitatively.

Various strategies (including use of DNA
markers) can increase precision and re-
duce bias in estimates of key genetic pa-
rameters, but these methods cannot elim-
inate all sources of noise. Furthermore, be-
cause the amount of migration necessary
to obscure most genetic evidence of stock
structure (only a handful of individuals
per generation) is generally inconsequen-
tial as a force for rebuilding depleted pop-
ulations on a time scale of interest to hu-
mans, there is no guarantee that genetic
methods alone will provide sufficient pre-
cision for key management decisions in-
volving marine species.

The single most effective strategy for
dealing with the signal:noise ratio problem
is to replicate samples over time. Patterns
of genetic relatedness or differentiation
that are consistent across a temporal di-
mension are unlikely to be caused by sam-
pling artifacts.

Given the points above, it is important
to make every effort to understand the
ecology and life history of the target spe-
cies. In the absence of such information,
not only will a researcher be unable to
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make quantitative adjustments for possi-
ble sources of bias, she will not even be
in a position to know whether bias has oc-
curred, nor will she be able to develop ef-
fective strategies to minimize sampling er-
ror.

Although they also have limitations,
studies designed to measure demographic
parameters directly (e.g., through tagging
studies, monitoring movement of cohorts
in space and time, measuring current pat-
terns, etc.) can be an important comple-
ment to indirect genetic studies of popu-
lation structure.
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