
Mathematical Modelling for 
Infectious Diseases



What is a mathematical model?

Mathematical models are tools that create synthetic
populations in silico that have features similar to real
populations where options for disease control and
elimination interventions are being considered.



• Infectious diseases 
• caused by pathogenic microorganisms, such as bacteria, 

viruses, parasites or fungi; 
• diseases can be spread, directly or indirectly, from one 

person to another.
• Zoonotic diseases are infectious diseases of animals 

that can cause disease when transmitted to humans. 

- World Health Organisation

What is an Infectious Disease?



Why Infectious Diseases?

“By the end of the Second World War, it was possible to 
say that almost all of the major practical problems of 
dealing with infectious disease had been solved.”

- Sir McFarland Burnett, 1962



Why Infectious Diseases?





Why now?

• Factors to explain re/emergent diseases
• Human demographics and behaviour
• Technology and industry
• Economic development and land use
• International travel and commerce
• Microbial adaptation and change
• Breakdown of public health measures



How can modelling help?

• Modelling has become an important ally
• Project future occurrence of infectious disease
• Distribution of resources for control/prevention
• Help determine the plausibility of epidemiological 

explanations 
• Predict unexpected interrelationships among empirical 

observations (improve understanding) 
• Help predict the impact of changes in the system 



What is a mathematical model?

• an explicit mathematical description of the 
simplified dynamics of a system.

• ALWAYS wrong

• BUT may be a useful approximation (≅ rather than 
=), permitting conceptual experiments which would 
otherwise be difficult or impossible to do. 





Types of mathematical models          

• Static model 
• Transmission dynamic model 
• Compartment models
• Deterministic models
• Stochastic models
• Network models
• Metapopulation models
• Individual/Agent based models
• More!!



Types of mathematical models          

• Static model 
• A model that assumes the incidence of infection is 

independent of the prevalence of infection and, therefore, 
time.

• E.g. Markov (decision tree) models used in medical 
decision- making and health economics



Types of mathematical models          

• Transmission dynamic model 
• A model that describes the force of infection as a function 

of the prevalence of infection and therefore time. 
• Force of infection? – instantaneous probability of infection 

of a susceptible host

• Dynamic populations fluctuate as a result of 
• birth, death and migration
• How incidence changes with time E.g. prevalence, 

immunity, or differential mortality of high-risk individuals.



Types of mathematical models          
• Compartment Models
• categorises hosts into key stages (ie, compartments or 

states) of infection (E.g. susceptible, infected
• movements between these states 

occur through flows. 

• Assume that a population is homogenous (all people 
are the same) and the only distinction is in their 
disease state. 



Types of mathematical models          
• Deterministic Models
• compartmental models: every host follows the same 

average clinical life course
• course of infection is
always the same for all 
simulations under the 
predefined model

• reflect the ‘average’
behaviour of the 
system. 



Types of mathematical models          

• Stochastic Models
• probabilistic models that represent stochastic (random) 

processes
• Each transition denotes an event that can occur to each 

individual in a time interval according to a probability that 
is proportional to the corresponding rate in the 
deterministic framework. 
• Used where random fluctuations are likely to be important: 

localised outbreaks, small population sizes, rare diseases



Types of mathematical models          



Types of mathematical models          
• Network Models
• full contact structure of individuals over a given period of 

time is explicitly represented and studied

• Solved analytically using 
network theory

• Advancement is limited 
due to complexity 

factors determining the conclusions drawn by two of the studies6,7

are the assumed infectiousness during prodrome relative to that
during symptomatic disease, and the relatively low effectiveness of
isolation of symptomatic cases assumed. New best estimates from a
well-observed historical epidemic in Africa indicate prodromal
transmission alone contributes 0.16 to R0 (ref. 21), 2.4% of the
total R0 value of 6.9. Both of the studies assumed that prodromal R0

is 2.5–3 out of a total R0 of around 3 (refs 6, 7). Analyses using the
new estimates show that isolation and ring vaccination—if logisti-
cally feasible—is nearly always optimal, and never markedly worse
than mass vaccination at minimizing mortality24.

The remaining two studies make simplifying assumptions that
limit their usefulness. Reference 5 assumes purely exponential
epidemic growth, meaning that little can be inferred about out-
breaks of large size or duration. References 5 and 8 assume (rather
than model) the impact of different control measures on trans-
mission, meaning that their conclusions regarding control policy
effectiveness are largely predetermined.

Data and uncertainty
The need to increase model sophistication and accuracy gives rise to
an intrinsic tension: as model realism is increased the transparency
associated with simple frameworks is often lost and the validation of
model conclusions becomes harder. For models to be useful tools in
policy planning, it is essential that they can be parameterized from

availabledata, and testedagainstpast andcurrent epidemicoutbreaks,
with proper consideration of changes in human populations with
respect to immunity, mobility and patterns of social interaction.
Simple models have fewer parameters, which tends to make

parameter estimation easier. Conversely, more complex models
may have dozens of parameters describing the details of disease
biology, host movement patterns and population structure. Unless
all these parameters are robustly estimated or the effect of uncer-
tainty in their values explored, there is a danger that incorrect
assumptions will be made (and obscured by the complexity); this
can make more detailed models no more reliable (and sometimes
less so) than simpler frameworks. Achieving the correct balance
between model complexity and validation is therefore key to
informative modelling (Box 2 and Table 2). Validation in this
context is how well the model matches observed epidemic beha-
viour at the level of detail relevant to the model’s purposes. Ideally,
such data should be independent of any epidemiological data used
to estimate model parameters. When this ideal is not achievable (for
example, when analysing an emerging epidemic of a novel dis-
ease25,26), the use of rigorous statistical methods for assessing model
goodness of fit is imperative.
The most useful data for parameterization and validation of

models are detailed (individual case) reports from historical out-
breaks2,3. Such data provide the only reliable estimates of the
reproduction number of smallpox (4–10, depending on the out-

Box 2
Modelling complexities

Greater disease realism
Extend the SIR model to incorporate the known within-host disease
behaviour:

Relative infectiousness in the prodromal and symptomatic periods is
crucial in determining the optimal control strategy, with greater
prodromal spread favouring mass vaccination.

Capturing social/spatial structure
Homogeneousmixing.Standard assumption of simplemodels—an
individual has an equal chance of contacting anyone in the
population. Contacts are independent (individuals who have
previously made contact have no more or less chance of contacting
again).
Age/social structure. Individuals have different probabilities of
contact within specified population subgroups and between them.
Subgroups might be defined by age, occupation (for example,
hospital, school), socio-economic or health factors.

Network structure. Individuals form stable contact networks (for
example, household, work colleagues, friends), the structure of
which determines transmission dynamics. There can be rapid
localized spread, followed by slow down as depletion of local
susceptibles occurs due to correlations and clustering.
Patch structure. Populations are clumped, so towns/cities are
natural units to study. Thus ‘patch’ (metapopulation) models are a
valuable tool. There is more mixing within a patch than between
patches, and patches can be out of sync in terms of epidemic
progression.
Individually based models. Stochastic simulation of contact
patterns and disease progression at the level of individuals allows
models to capture arbitrary levels of heterogeneity (including
network and geographic) structure. However, such models are both
computationally and data intensive if rigorous validation and
parameter estimation is to be performed.

Stochastic or deterministic models?
Deterministic (clockwork) models are rapid to simulate, relatively easy
to parameterize, and hopefully capture the average epidemic
behaviour. Stochastic models recognize the random nature of
transmission events. As such they allow an assessment of the variability
of the epidemic behaviour and are essential to deal with the low levels of
infection near the start and end of an epidemic30.

review article

NATURE |VOL 425 | 16 OCTOBER 2003 | www.nature.com/nature 683© 2003        Nature  Publishing Group



Types of mathematical models          
• Metapopulation Models
• incorporate the within and between interplay of 

subpopulations (disaggregated in space or social networks)
• movements between these states 

occur through flows. 

• By separating yet linking these two different groups 
of hosts, we may obtain better realisations of the 
transmission dynamics of infection over space and 
time 

factors determining the conclusions drawn by two of the studies6,7

are the assumed infectiousness during prodrome relative to that
during symptomatic disease, and the relatively low effectiveness of
isolation of symptomatic cases assumed. New best estimates from a
well-observed historical epidemic in Africa indicate prodromal
transmission alone contributes 0.16 to R0 (ref. 21), 2.4% of the
total R0 value of 6.9. Both of the studies assumed that prodromal R0

is 2.5–3 out of a total R0 of around 3 (refs 6, 7). Analyses using the
new estimates show that isolation and ring vaccination—if logisti-
cally feasible—is nearly always optimal, and never markedly worse
than mass vaccination at minimizing mortality24.

The remaining two studies make simplifying assumptions that
limit their usefulness. Reference 5 assumes purely exponential
epidemic growth, meaning that little can be inferred about out-
breaks of large size or duration. References 5 and 8 assume (rather
than model) the impact of different control measures on trans-
mission, meaning that their conclusions regarding control policy
effectiveness are largely predetermined.

Data and uncertainty
The need to increase model sophistication and accuracy gives rise to
an intrinsic tension: as model realism is increased the transparency
associated with simple frameworks is often lost and the validation of
model conclusions becomes harder. For models to be useful tools in
policy planning, it is essential that they can be parameterized from

availabledata, and testedagainstpast andcurrent epidemicoutbreaks,
with proper consideration of changes in human populations with
respect to immunity, mobility and patterns of social interaction.
Simple models have fewer parameters, which tends to make

parameter estimation easier. Conversely, more complex models
may have dozens of parameters describing the details of disease
biology, host movement patterns and population structure. Unless
all these parameters are robustly estimated or the effect of uncer-
tainty in their values explored, there is a danger that incorrect
assumptions will be made (and obscured by the complexity); this
can make more detailed models no more reliable (and sometimes
less so) than simpler frameworks. Achieving the correct balance
between model complexity and validation is therefore key to
informative modelling (Box 2 and Table 2). Validation in this
context is how well the model matches observed epidemic beha-
viour at the level of detail relevant to the model’s purposes. Ideally,
such data should be independent of any epidemiological data used
to estimate model parameters. When this ideal is not achievable (for
example, when analysing an emerging epidemic of a novel dis-
ease25,26), the use of rigorous statistical methods for assessing model
goodness of fit is imperative.
The most useful data for parameterization and validation of

models are detailed (individual case) reports from historical out-
breaks2,3. Such data provide the only reliable estimates of the
reproduction number of smallpox (4–10, depending on the out-

Box 2
Modelling complexities

Greater disease realism
Extend the SIR model to incorporate the known within-host disease
behaviour:

Relative infectiousness in the prodromal and symptomatic periods is
crucial in determining the optimal control strategy, with greater
prodromal spread favouring mass vaccination.

Capturing social/spatial structure
Homogeneousmixing.Standard assumption of simplemodels—an
individual has an equal chance of contacting anyone in the
population. Contacts are independent (individuals who have
previously made contact have no more or less chance of contacting
again).
Age/social structure. Individuals have different probabilities of
contact within specified population subgroups and between them.
Subgroups might be defined by age, occupation (for example,
hospital, school), socio-economic or health factors.

Network structure. Individuals form stable contact networks (for
example, household, work colleagues, friends), the structure of
which determines transmission dynamics. There can be rapid
localized spread, followed by slow down as depletion of local
susceptibles occurs due to correlations and clustering.
Patch structure. Populations are clumped, so towns/cities are
natural units to study. Thus ‘patch’ (metapopulation) models are a
valuable tool. There is more mixing within a patch than between
patches, and patches can be out of sync in terms of epidemic
progression.
Individually based models. Stochastic simulation of contact
patterns and disease progression at the level of individuals allows
models to capture arbitrary levels of heterogeneity (including
network and geographic) structure. However, such models are both
computationally and data intensive if rigorous validation and
parameter estimation is to be performed.

Stochastic or deterministic models?
Deterministic (clockwork) models are rapid to simulate, relatively easy
to parameterize, and hopefully capture the average epidemic
behaviour. Stochastic models recognize the random nature of
transmission events. As such they allow an assessment of the variability
of the epidemic behaviour and are essential to deal with the low levels of
infection near the start and end of an epidemic30.

review article
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Types of mathematical models          
• Individual based models
• each individual host is represented uniquely
• necessarily stochastic and are solved

using simulation techniques. 
• different sources of heterogeneity 
• (eg, biological, behavioural,

contact patterns, mobility) 



SIR model

Kermack and McKendrick (1927) 



SIR Model 

• S is the susceptible population 
• I is the infectious population
• R is the recovered population
• β is the number of contacts per 

unit time
• γ is the rate of recovery



SIR Models: Characteristics

• Fixed population N (S+I+R) 
• Members of the population mix homogeneously 
• No entry into or departure (Assume that dynamics of the disease 

are faster than the time scale of birth and death
• Any inherent age, demographic and spatial structure is ignored
• No initial immunity (‘members’ of the susceptible population are 

equally likely to get infected) 
• The model infers permanent immunity
• The incubation period of the infectious agent is instantaneous
• Duration of infectivity is the same as the duration of the disease 
• Discrete individuals do not exist in the model 
• Individuals in the compartments are identical and variation 

among individuals is unimportant – well mixed



R0: The basic reproductive No.

• Single most important measure

• Expected number of secondary cases produced by 
a single (typical) infection in a completely 
susceptible population

• Dimensionless (not a rate)



R0: The basic reproductive No.

• Specifically,
• τ is the transmissibility (i.e., probability of infection 

given contact between a susceptible and infected 
individual)
• c-bar is the average rate of contact between 

susceptible and infected individuals
• d is the duration of infectiousness

Notes On R0

James Holland Jones
⇤

Department of Anthropological Sciences
Stanford University

May 1, 2007

1 The Basic Reproduction Number in a Nutshell

The basic reproduction number, R0, is defined as the expected number of secondary cases
produced by a single (typical) infection in a completely susceptible population. It is important
to note that R0 is a dimensionless number and not a rate, which would have units of time�1.
Some authors incorrectly call R0 the “basic reproductive rate.”

We can use the fact that R0 is a dimensionless number to help us in calculating it.

R0 /
✓

infection
contact

◆
·
✓

contact
time

◆
·
✓

time
infection

◆

More specifically:

R0 = ⌧ · c̄ · d (1)

where ⌧ is the transmissibility (i.e., probability of infection given contact between a suscepti-
ble and infected individual), c̄ is the average rate of contact between susceptible and infected
individuals, and d is the duration of infectiousness.

2 The SIR Epidemic Model

It is pretty clear how we calculate R0 given information on transmissibility, contact rates, and
the expected duration of infection. But how do we know that this quantity defines the epidemic
threshold of a particular infection? To understand this, we need to formulate an epidemic model.
The model we use is called an SIR model, where SIR stands for “Susceptible-Infected-Removed.”

For simplicity, we will deploy several assumptions:

1. Constant (closed) population size, N

⇤Correspondence Address: Department of Anthropological Sciences, Building 360, Stanford, CA 94305-2117;
phone: 650-723-4824, fax: 650-725-9996; email: jhj1@stanford.edu
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R0: The basic reproductive No.

• How to compute R0?
• Determine the individual terms conceptually
• Use the threshold analysis approach (determine conditions congruent 

to increases in infection)
• Next generation method:

• Let F(i) be the rate of appearance of new infections in compartment i. 
• Let V(i) be the transfer of individuals out of compartment i by all other means.
• x0 be the disease free equilibrium
• Then R0 is the largest eigenvalue of 

• Note that R0 has a different formula for every different 
compartmental model structure. Therefore be careful when 
comparing R0.

Calculating the next generation R0

Let

• Fi be the rate of appearance of new infections 
in compartment i

• Vi be the transfer of individuals out of 
compartment i by all other means

• x0 be the disease-free equilibrium

• R0 is the largest eigenvalue of

�
�Fi(x0)

�xj

⇥
·
�
�Vi(x0)

�xj

⇥�1

.

Matrix of partial 
derivatives

Matrix of partial 
derivatives.



Herd Immunity

• A.k.a. herd effect, community immunity, population 
immunity, or social immunity
• form of indirect protection from infectious disease 

that occurs when a large percentage of a 
population has become immune to an infection, 
thereby providing a measure of protection for 
individuals who are not immune

https://en.wikipedia.org/wiki/Immunity_(medical)


By Tkarcher -
Own work, 
CC BY-SA 4.0, 
https://com
mons.wikime
dia.org/w/in
dex.php?curi
d=56760604



Herd Immunity

• The greater the proportion of individuals in a 
community who are immune, the smaller the 
probability that those who are not immune will 
come into contact with an infectious individual
• p* - Prop immune in population

General Epidemic Model Linear Stability Analysis Endemic Model Vaccination

Critical vaccination level

Rv = R0(1 ≠ pú) = 1 =∆ pú = 1 ≠ 1
R0

p > pú =∆ Rv < 1 No epidemic!



Herd Immunity

Unless noted, R0 values are from: History and Epidemiology of Global Smallpox Eradication From the training course titled "Smallpox: 
Disease, Prevention, and Intervention". The Centers for Disease Control and Prevention and the World Health Organization. Slide 17. 
Retrieved 13 March 2015.

https://emergency.cdc.gov/agent/smallpox/training/overview/pdf/eradicationhistory.pdf
https://en.wikipedia.org/wiki/Centers_for_Disease_Control_and_Prevention
https://en.wikipedia.org/wiki/World_Health_Organization



