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1.3.4 The Erdős-Gallai Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Some classes of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Combining graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Isomorphic graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Distance 27
2.1 Walks, trails, paths, circuits, and cycles . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Distance in graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Walks, connectivity, and distance in digraphs . . . . . . . . . . . . . . . . . . . . 30
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 The structure of graphs 35
3.1 Bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Cut-vertices, bridges, and blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Trees 43
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3
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A note on sources:

The exercises in these notes, and many of the proofs, have largely been taken from existing
sources, including Michael Henning’s notes [Hen05] and books by Gary Chartrand [Cha85],
Gary Chartrand and Linda Lesniak [CL96], and Frank Harary [Har69].

A note on conventions:

• Most graph theorists don’t use the ‘real’ real numbers (like π,
√

3, and 121/55) very often.
We do frequently work with integers, however. Throughout these notes, we therefore use
the notation [a, b] to indicate an integer interval rather than a closed interval, e.g., by
[3, 7] we mean the set {3, 4, 5, 6, 7} rather than the set {x ∈ R : 3 ≤ x ≤ 7}. Similarly,
we shall use the notation (3, 7) for the set {4, 5, 6}.

• To indicate the end of the proof of a claim, which is usually only part of the proof of
a more substantial result, we use the symbol c©. For an example, see the proof of the
Havel-Hakimi Theorem (Theorem 3).
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Chapter 1

Introduction

1.1 Graphs

A graph G consists of:

1. A finite, nonempty set V (G) of vertices1, and,

2. A (possibly empty) set E(G) of unordered pairs of vertices called edges.

The set V (G) is the vertex set of G. The set E(G) is the edge set of G. Each edge is a 2-subset
of the vertex set and so should be denoted with set notation. For convenience, however, we
denote the edge joining the vertices a and b as ab rather than {a, b}. Since edges are unordered
pairs of vertices, the edge ab is the same as the edge ba.

Graphs are frequently represented by pictures.

Example 1.1 Let G be the graph with V (G) = {a, b, c, d} and E(G) = {ab, ac, ad, bc}. Here is
one way to draw G:

a b

c

d

Here is another picture of the same graph G:

a

b

c

d

Both of these pictures represent the same graph.
Some more notation: In the graph G, the edge ab joins the vertices a and b. Since a and

b are joined by an edge, they are adjacent vertices, and a is said to be a neighbour of b. The
neighbourhood of b is the set of all neighbours of b, i.e., the neighbourhood of b is the set {a, c}.

1The singular of vertices is vertex.
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8 CHAPTER 1. INTRODUCTION

The vertices c and d are nonadjacent. The edge ab is incident with the vertices a and b, while the
vertex a is incident with the edges ab, ac, and ad.

The order of a graph is the number of vertices, while the size of a graph is the number of edges.
Usually, we use n for order and m for size. A graph of order n and size m is an (n,m) graph. If
we want to make it clear that we mean the order and size of G (rather than some other graph),
then we write n(G) and m(G).

Example 1.2 The graph G from Example 1.1 has order n = 4 and size m = 4:

a b

c

d

This graph, by the way, is sometimes called the Martini Glass or the Alavi Graph.

The graph below, which is an example of a complete graph, has order 5 and size 10. It is
therefore a (5, 10) graph.

Notice that we didn’t give the vertices in this last graph names (like a, b, c). That’s because
the structure of the graph is clear from the picture, and the names that we give the vertices don’t
affect that structure. We’ll explore this in more detail in Section 1.6.

Below are eleven graphs of order 4. The graphs A−E are disconnected graphs, while the graphs
F −K are connected. A graph that has no edges is an empty graph, so graph A is an empty graph
(of order 4). Graph K is a complete graph of order 4.

A B C D E F

G H I J K

A graph of order 1 is called a trivial graph. A graph of order at least 2 is nontrivial.
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1.2 Subgraphs

Let G and H be graphs. If V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is a subgraph of G,
denoted H ⊆ G.

Example 1.3 Let G be the graph with

V (G) = {a, b, c, d, e, f, g, h}

and
E(G) = {ab, bc, cd, de, ef, fg, gh, ah, bg, cf}.

Let H be the graph with V (H) = {a, c, d, e, f} and E(H) = {cd, cf, ef}. Then H ⊆ G. The
figure below shows the graph G. The vertices of G that are also vertices of H are black, while the
edges of G that are edges of H are thicker.

a b c d

h g f e

Let G be a graph and S ⊆ V (G). The subgraph induced by S is the subgraph G[S] having
V (G[S]) = S and where uv ∈ E(G[S]) if and only if u, v ∈ S and uv ∈ E(G).

Example 1.4 Let G be the graph from Example 1.3 and let S = {a, c, d, f, g}. Then G[S] is the
graph with

V (G[S]) = {a, c, d, f, g}
and

E(G[S]) = {cd, cf, fg},
as indicated in the figure below:

a b c d

h g f e

If H ⊆ G and there is a set S ⊆ V (G) such that H = G[S], then H is called an induced
subgraph of G.

Example 1.5 The subgraph H from Example 1.3 is not an induced subgraph of G, because al-
though d and e are in V (H) and de ∈ E(G), there is no edge between d and e in H. The subgraph
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H ′ with V (H ′) = {a, c, d, f, g} and E(H ′) = {cd, cf, fg} is an induced subgraph of G, as was
demonstrated in Example 1.4.

We can define an analogous concept for edges. Let G be a graph and S ⊆ E(G). Then the
subgraph induced by S is the subgraph G[S] with E(G[S]) = S and where u ∈ V (G[S]) if and
only if u is incident with at least one edge in S. If H is a subgraph of G and there is a set
S ⊆ E(G) such that H = G[S], then H is called an edge-induced subgraph of G.

Example 1.6 Let G be the graph from Example 1.3 and let S = {ab, bc, bg, de}. Then the
subgraph induced by S has vertex set {a, b, c, d, e, g} and edge set {ab, bc, bg, de}, as shown below:

G[S] :

a b c d

g e

Lastly, if H ⊆ G and V (H) = V (G), then H is a spanning subgraph of G.

Example 1.7 Let G be the graph from Example 1.3. Then the graph H with V (H) = V (G) and
E(H) = {ab, bc, de, ef} is a spanning subgraph of G.

If G is a nontrivial graph and v ∈ V (G), then by G−v we mean the subgraph of G obtained
from G by deleting v and every edge incident with v. Similarly, if e ∈ E(G), then G− e is the
subgraph obtained from G by deleting the edge e.

Example 1.8

Consider once again the graph

G :

a b

c

d

The graphs G− b and G− ab are shown below:
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G− b :

a

c

d

G− ab :

a b

c

d

1.3 The degree of a vertex

1.3.1 Introduction

The degree of a vertex v is the number of edges incident with v. The degree of v is denoted
deg v or, if we wish to be clear which graph we’re referring to, degG v. A vertex of degree 0
is called an isolated vertex. A vertex of degree 1 is called an end-vertex, while an edge that is
incident with an end-vertex is called a pendant edge.

Example 1.9 Consider the graph shown below.

a b

c

d

In this graph, we have

deg a = 3

deg b = 2

deg c = 2

deg d = 1

We are now ready to give our first (very simple) result.

Theorem 1 (‘First Theorem of Graph Theory’). If G is a graph of size m, then∑
v∈V (G)

deg v = 2m.

Proof. When we add up the degrees of the vertices, each edge is counted exactly twice.

The ‘First Theorem of Graph Theory’ has the following Corollary. A vertex of even degree
is called an even vertex. A vertex of odd degree is an odd vertex.

Corollary 2. Every graph has an even number of odd vertices.
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Proof. Let G be a graph of size m. Let Ve be the set of even vertices of G and Vo the set of
odd vertices. Then V (G) = Ve ∪ Vo and Ve ∩ Vo = ∅, so by Theorem 1 we have

2m =
∑

v∈V (G)

deg v =
∑
v∈Ve

deg v +
∑
v∈Vo

deg v,

so ∑
v∈Vo

deg v = 2m−
∑
v∈Ve

deg v. (1.1)

For each v ∈ Ve, we know that deg v is an even number. The right hand side of Equation
(1.1) is therefore an even number. Hence

∑
v∈Vo

deg v is an even number and therefore, by an
exercise, |Vo| is an even number.

Let G be a graph. The minimum degree of G is

δ(G) = min{deg v : v ∈ V (G)}

and the maximum degree of G is

∆(G) = max{deg v : v ∈ V (G)}.

Example 1.10 The graph G shown below

G :

a b

c

d

has

δ(G) = 1

∆(G) = 3.

A graph is regular if every vertex has the same degree. If every vertex has degree r, then
the graph is r-regular or regular of degree r.

Example 1.11 Here are some examples of regular graphs of different degrees:
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1-regular 2-regular 3-regular 4-regular

Example 1.12 A graph that is 3-regular is also called cubic. Probably the most famous cubic
graph is the Petersen Graph:

1.3.2 The degree sequence of a graph

If G is a graph with vertex set V (G) = {v1, v2, . . . , vn}, where deg v1 ≥ deg v2 ≥ · · · ≥ deg vn,
then deg v1, deg v2, . . . , deg vn is the degree sequence of G.

Example 1.13 Consider once again the graph

G :

a b

c

d

Then 3, 2, 2, 1 is the degree sequence of G.

Clearly, every graph has a degree sequence. But is every finite sequence of nonnegative integers
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the degree sequence of a graph?

Example 1.14 Which of the following is the degree sequence of a graph?

1. s1 : 4, 4, 3, 3, 3, 2, 1, 1.

2. s2 : 6, 6, 3, 3, 3, 3.

3. s3 : 3, 3, 3, 1.

Solution:

1. The sequence s1 has five odd entries. Therefore, by Corollary 2, it is not the degree sequence
of a graph.

2. The sequence s2 has six entries, so if it’s the degree sequence of some graph G, then G has
order 6. However, the maximum possible degree in a graph of order 6 is 5, and s2 has two
6’s. The sequence s2 is therefore not the degree sequence of a graph.

3. Suppose that s3 is the degree sequence of a graph G. Then G has order 4. Each of the three
vertices of degree 3 is necessarily adjacent to the vertex of degree 1. However, the vertex of
degree 1 is only adjacent to one other vertex. This is a contradiction and hence no such graph
G exists. So s3 is not the degree sequence of a graph.

1.3.3 The Havel-Hakimi Theorem

The preceding example shows that not every finite sequence of nonnegative integers is the
degree sequence of a graph. The question of how to determine whether a given sequence of
nonnegative integers is the degree sequence of a graph was first solved by Václav Havel [Hav55]
in 1955. A few years later, S. Louis Hakimi [Hak62] independently discovered the same result,
which now bears the names of both of these authors.

Theorem 3 (Havel-Hakimi Theorem). A sequence s : d1, d2, . . . , dn of nonnegative integers
with d1 ≥ d2 ≥ · · · ≥ dn (n ≥ 2 and d1 ≥ 1) is the degree sequence of a graph if and only if the
sequence s1 : d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn is the degree sequence of a graph.

Proof. ( ⇐= ) Assume first that s1 is the degree sequence of a graph G. We must prove that
s is also the degree sequence of a graph. Suppose that the vertices of G are v2, v3, . . . , vn and
that for 2 ≤ i ≤ d1 + 1 we have deg vi = di − 1, while for d1 + 2 ≤ i ≤ n we have deg vi = di.
Let G′ be the graph formed from G by adding a new vertex v1 and joining it to the vertices
v2, v3, . . . , vd1+1. Then the new graph G′ has degree sequence s and hence s is the degree
sequence of a graph.

( =⇒ ) Suppose now that there is at least one graph with degree sequence s. Amongst all
such graphs, let G be one such that (i) V (G) = {v1, v2, . . . , vn}, (ii) for all i ∈ {1, 2, . . . , n}, we
have deg vi = di, and, (iii) the sum of the degrees of the vertices adjacent to v1 is as large as
possible. We claim that the neighbours of v1 have degrees d2, d3, . . . , dd1+1.
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Proof of claim: Suppose, by way of contradiction, that the claim is not true.
Then there are vertices vi and vj, where i < j, such that (i) di > dj, and, (ii)
v1 is adjacent to vj but not adjacent to vi. Since di > dj, there is a vertex
vi′ 6= vj that is adjacent to vi but not to vj. Let G′ be the graph obtained from
G by deleting the edges v1vj and vivi′ and adding the edges v1vi and vjvi′ . The
graph G′ has the same degree sequence, s, as the graph G, but in G′ the sum
of the degrees of the neighbours of v1 is higher than in G. This contradicts
our choice of G, so it must be the case that the neighbours of v1 have degrees
d2, d3, . . . , dd1+1, which proves the claim. c©

It follows that the graph G − v1 has degree sequence s1, which proves that s1 is the degree
sequence of a graph.

By repeated use of the Havel-Hakimi Theorem, we may now determine whether a finite
sequence of nonnegative integers is the degree sequence of a graph.

Example 1.15 Is s : 5, 3, 3, 3, 2, 2 the degree sequence of a graph?
Solution: Repeatedly using the Havel-Hakimi Theorem, we have

s : 5, 3, 3, 3, 2, 2 is the degree sequence of a graph

if and only if s1 : 2, 2, 2, 1, 1 is the degree sequence of a graph

if and only if s2 : 1, 1, 1, 1 is the degree sequence of a graph.

The sequence s2 : 1, 1, 1, 1 is clearly the degree sequence of the graph G2 shown here

G2 :

Hence s2 is the degree sequence of a graph, and therefore s is the degree sequence of a graph. To
construct a graph with degree sequence s, we work backwards from the graph with degree sequence
s2, using the ideas in the proof of the Havel-Hakimi Theorem. First, we construct a graph G1 with
degree sequence s1 by adding a new vertex to G2 and joining it to two vertices of degree 1 in G2:

G1 :

Now we construct G from G1 by adding another new vertex and joining it to all five vertices of
G1:

G :

The graph G has degree sequence s : 5, 3, 3, 3, 2, 2, as required.

1.3.4 The Erdős-Gallai Theorem

Another useful characterization of degree sequences of graphs was obtained by Paul Erdős and
Tibor Gallai [EG60] in 1960. We give a proof only of the necessity.
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Theorem 4 (Erdős-Gallai Theorem). A sequence d1, d2, . . . , dn of nonnegative integers with
d1 ≥ d2 ≥ · · · ≥ dn (n ≥ 2) is the degree sequence of a graph if and only if

∑n
i=1 di is even and

for each k ∈ [1, n− 1] we have

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}.

Proof. We prove only the necessity, i.e., we prove that the degree sequence of a graph must
satisfy the two conditions listed above. Let G be a nontrivial graph with vertex set V (G) =
{v1, v2, . . . , vn} and degree sequence d1, d2, . . . , dn, where d1 ≥ d2 ≥ · · · ≥ dn, and, for all
i ∈ [1, n], we have deg vi = di. We have already proved (Theorem 1) that

∑n
i=1 di is even.

Let k ∈ [1, n − 1] and let Vk = {v1, v2, . . . , vk}. Let E1 be the set of edges that are incident
with exactly one vertex in Vk and let E2 be the set of edges that are incident with exactly two
vertices in Vk. Then

∑k
i=1 di = |E1|+ 2|E2|. Certainly, |E2| ≤ k(k − 1)/2. Furthermore, every

edge in E1 is incident with exactly one vertex in V (G) − Vk, and no vertex vi ∈ V (G) − Vk is
incident with more than min{k, di} edges of E1. Hence |E1| ≤

∑n
i=k+1 min{k, di}, which proves

the result.

1.4 Some classes of graphs

The path of order n (n ≥ 1) is the graph Pn with V (Pn) = {v1, v2 . . . , vn} and E(Pn) = {vivi+1 :
1 ≤ i ≤ n− 1}. Some paths are shown in Figure 1.1.

P1 :

P2 :

P3 :

P4 :

Figure 1.1: Some paths

The cycle of order n (n ≥ 3) is the graph Cn with V (Cn) = {v1, v2 . . . , vn} and E(Cn) =
{vivi+1 : 1 ≤ i ≤ n− 1} ∪ {v1, vn}. Some cycles are shown in Figure 1.2.

C3 C4 C5 C6

Figure 1.2: Some cycles
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K1 K2 K3 K4 K5

Figure 1.3: Some complete graphs

A graph is complete if every vertex is adjacent to every other vertex. The complete graph
of order n (n ≥ 1) is denoted Kn. Some complete graphs are shown in Figure 1.3.

A graph in which every vertex is adjacent to every other vertex is complete. A graph in
which at least one pair of vertices is not adjacent is incomplete.

1.5 Combining graphs

There are many different ways of generating new graphs from old. In this section, we explore
some of these.

The complement of a graph G is the graph G with V (G) = V (G) and where two vertices
are adjacent in G if and only if they are not adjacent in G.

Example 1.16 A graph G and its complement G are shown below:
a

b

c

d

a

b

c

d
G: G :

The empty graph of order n is Kn, the complement of the complete graph of order n.

If G and H are graphs, then the union of G and H is the graph G ∪H with V (G ∪H) =
V (G)∪V (H) and E(G∪H) = E(G)∪E(H). If V (G)∩V (H) = ∅, then G and H are disjoint.

Example 1.17 Two disjoint graphs G and H are shown below, together with their union G ∪H.
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a b

c

d e

a b

c

d e

G:

H:

G ∪H:

If G is a graph and k a positive integer, then by kG we mean the graph consisting of k
disjoint ‘copies’ of G. To define this precisely, recall that the cartesian product of two sets A
and B is the set A × B = {(a, b) : a ∈ A and b ∈ B}. We may then define kG as the graph
with V (kG) = V (G)× [1, k] and E(kG) = {(u, i)(v, i) : uv ∈ E(G) and i ∈ [1, k]}.

Example 1.18
The graphs C3 and 3C3 are shown below:

C3: 3C3:

If G and H are disjoint graphs, then their join is the graph G + H having V (G + H) =
V (G) ∪ V (H) and E(G+H) = E(G) ∪ E(H) ∪ {gh : g ∈ V (G) and h ∈ V (H)}.

Example 1.19
The join C4 + P2 is shown below:

a b

cd

x y

x y

a b

cd
C4:

P2:

C4 + P2:

If G and H are graphs, then the cartesian product of G and H is the graph G×H in which

V (G×H) = V (G)× V (H), and,

E(G×H) = {(g1, h1)(g2, h2) : (i) g1g2 ∈ E(G) and h1 = h2, or, (ii) g1 = g2 and h1h2 ∈ E(H)}.
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Example 1.20 The cartesian product C4 × P2 is shown below:

a b

cd

x y

(a,x)

(b,x)

(c,x)

(d,x)

(a,y) (b,y)

(c,y)(d,y)

C4:

P2:

C4 × P2:

Example 1.21 In this example, we introduce an important class of graphs. We define the t-cube
recursively as the graph Qt with Q1 = K2 and, for t ≥ 2, Qt = Qt−1×K2. The first few cubes are
shown below:

(0,0) (0,1)

(1,1)(1,0)

0 1

(0,0,0)

(0,1,0)

(0,1,1)

(0,0,1)

(1,0,0) (1,1,0)

(1,1,1)(1,0,1)

Q1:

Q2:

Q3:

The t-cube is also known as a hypercube.
Another way to define the cubes is as follows: For a positive integer t, the vertex set of the

graph Qt consists of all ordered binary t-tuples, and two vertices in Qt are adjacent if the ordered
binary t-tuples they represent differ in exactly one position. This is illustrated in the preceding figure.

1.6 Isomorphic graphs

Two graphs G and H are equal if V (G) = V (H) and E(G) = E(H). Consider the three graphs
G1, G2, G3 shown in Figure 1.4.

Since V (G1) 6= V (G2), clearly G1 and G2 are not equal. And while V (G1) = V (G3), notice
that ac ∈ E(G1) but ac 6∈ E(G3), so E(G1) 6= E(G3), which means that G1 6= G3.

It should be obvious, though, that these three graphs are, at a structural level, the same.
The way we formalize this idea is as follows: If G and H are graphs, then an isomorphism from
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a b

c

d w x

y

z d b

c

a

G3:G1: G2:

Figure 1.4: Three pairwise unequal but isomorphic graphs.

G to H is a bijection f : V (G) → V (H) such that for all u, v ∈ V (G), we have uv ∈ E(G) if
and only if f(u)f(v) ∈ E(H). If there is an isomorphism between G and H, then we say that
G and H are isomorphic graphs, and we write G ∼= H.

Example 1.22 Consider once again the three graphs G1, G2, G3 discussed previously:
a b

c

d w x

y

z d b

c

a

G3:G1: G2:

Let f12 : V (G1)→ V (G2) be the function defined by

a 7→ w

b 7→ x

c 7→ y

d 7→ z

Clearly, f12 is a bijection. We can also check that for all u, v ∈ V (G1) we have uv ∈ E(G1) if and
only if f12(u)f12(v) ∈ E(G2) (e.g., ad ∈ E(G1), and f12(a)f12(d) = wz ∈ E(G2)). So f12 is an
isomorphism between G1 and G2, which means that G1

∼= G2, i.e., G1 and G2 are really the same
graph with different labels on the vertices.

Notice that f12 is not the only isomorphism between G1 and G2: The function f ′12 : V (G1) →
V (G2) with rule

a 7→ w

b 7→ y

c 7→ x

d 7→ z

is also an isomorphism.

Similarly, one may find isomorphisms between G1 and G3 and between G2 and G3, showing that
G1
∼= G2

∼= G3.
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Let G be a graph. An isomorphism from G to itself is called an automorphism of G. An
automorphism of G is a permutation of V (G) that preserves adjacency. We shall therefore use
cycle notation to describe an automorphism.

Example 1.23 Consider the graph G shown below:

a

b

c d e

f

g

G :

One automorphism of G is the permutation α1 with rule

a 7→ b

b 7→ a

c 7→ c

d 7→ d

e 7→ e

f 7→ f

g 7→ g

This may be written more succinctly using cycle notation as α1 = (ab)(c)(d)(e)(f)(g), or, if we
agree that any vertex that does not appear is fixed (e.g., α1(c) = c), we may simply write α1 = (ab).
With this convention, we find that there are eight automorphisms of G :

αe = (a) (the identity permutation)

α1 = (ab)

α2 = (fg)

α3 = (ab)(fg)

α4 = (af)(ce)(bg)

α5 = (afbg)(ce)

α6 = (ag)(ce)(bf)

α7 = (agbf)(ce)

Each automorphism represents a symmetry of the graph: A way in which the bits of the graph
may ‘rearrange’ themselves without changing the graph’s structure. We shall have more to say
about this later.

1.7 Digraphs

A directed graph or digraph D consists of a finite set V (D) of vertices and a set A(D) of ordered
pairs of distinct vertices called arcs. The number of vertices in a digraph is its order. The
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number of arcs is its size. When we draw a picture of a digraph, we put arrows on the arcs
to indicate order, e.g., the arc (a, b) is drawn with the arrow pointing from a to b. We shall

denote the arc (a, b) as
−→
ab.

Example 1.24 Let D be the digraph with vertex set V (D) = {a, b, c, d} and arc set A(D) =

{
−→
ab,−→ac,

−→
cb,
−→
da}. A diagram of D is shown below:

D:

The digraph D has order 4 and size 4. Since
−→
ab is an arc of D, we say that a is adjacent to b,

while b is adjacent from a.

Let D be a digraph and v ∈ V (D). The indegree of v is the number of vertices from which
v is adjacent, while the outdegree of v is the number of vertices to which v is adjacent. The
indegree of v is denoted id v, while the outdegree of v is od v.

Example 1.25 In the digraph D in Example 1.24, we have id a = 1 and od a = 2. A vertex with
outdegree 0, like the vertex b, is called a sink. A vertex of indegree 0, like the vertex d, is called a
source.

If D is a digraph, then the underlying graph of D is the graph G obtained from D by
replacing each (directed) arc with an (undirected) edge and then deleting any multiple edges
which result. In other words, the underlying graph G has V (G) = V (D) and E(G) = {uv :
−→uv ∈ A(D) or −→vu ∈ A(D)}.

Example 1.26 The underlying graph of the digraph in Example 1.24 is the frequently discussed
Martini Glass (Example 1.1).
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Exercises

1.1 Draw the graphG with vertex set V (G) = {a, b, c, d, e, f} and edge set E(G) = {ab, bc, be, cf, de, af}.

1.2 Determine the order and size of each of the following:

a. The path Pn.

b. The cycle Cn.

c. The complete graph Kn.

d. The cube Qt.

1.3 Let c1, c2, . . . , ck be odd integers. Prove that
∑k

i=1 ci is odd if and only if k is odd.

1.4 Find a cubic graph of order 7 or prove that no such graph exists.

1.5 A graph G is irregular if no two vertices of G have the same degree. Prove that if G is
an irregular graph, then G is trivial.

1.6 Suppose that you and your wife attend a party with three other married couples. Several
handshakes take place. No-one shakes hands with himself (or herself) or with his (or her)
spouse, and no-one shakes hands with the same person more than once. After all the
handshaking is complete, you ask each person, including your wife, how many hands he
or she shook. Each person gives a different answer.

a. How many hands did you shake?

b. How many hands did your wife shake?

1.7 Prove or disprove: For every graph G and every integer r ≥ ∆(G), there is an r-regular
graph H containing G as an induced subgraph.

1.8 Prove or disprove:

a. If two graphs are isomorphic, then they have the same degree sequence.

b. If two graphs have the same degree sequence, then they are isomorphic.

1.9 Determine whether each of the following sequences is the degree sequence of a graph.
If it isn’t, state why it isn’t. If it is, construct a graph with that degree sequence. It
is suggested, though not compulsory, that you apply both the Havel-Hakimi and Erdős
-Gallai Theorems to each sequence.

a. 5, 5, 5, 3, 3, 2, 2, 2, 2, 2.

b. 4, 4, 3, 2, 1, 0.

c. 3, 3, 2, 2, 2, 2, 1, 1.

d. 7, 4, 3, 3, 2, 2, 2, 1, 1, 1.
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1.10 Recall that an equivalence relation is a relation that is reflexive, symmetric, and transitive.
Prove that ∼= is an equivalence relation on the set of all graphs. Of what significance are
the equivalence classes in this relation?

1.11 We say that a word W1 can be transformed into a word W2 if W2 can be obtained from
W1 by performing exactly one of the following two steps:

• Interchanging two letters of W1;

• Replacing a letter in W1 by another letter.

a. Let Ω be a set of words and R the relation on Ω given by: W1RW2 if W1 can be
transformed into W2. Which properties does this relation have? Is it an equivalence
relation?

b. This situation can be modeled by a graph GΩ in which V is the set of words and
we join two vertices u and v with an edge if the word represented by u can be
transformed into the word represented by v. Draw the graph GΩ for the case when
Ω = {aim, arm, arc, art, car, oar, act, cat, rat, tar, oat}.

1.12 How many automorphisms does each of the following graphs have?

a. The path Pn.

b. The cycle Cn.

c. The complete graph Kn.

d. The empty graph Kn.

1.13 Recall that the ‘First Theorem of Graph Theory’ (Theorem 1) states that if G is a graph
of size m, then ∑

v∈V (G)

deg v = 2m.

State and prove a ‘First Theorem of Digraph Theory’.

1.14 Construct the digraph with vertex set {−3, 3, 6, 12} in which
−→
ij is an arc iff i 6= j and

i|j.

1.15 For the following pairs G,H of graphs, draw G+H and G×H:

a. G = K5 and H = K2.

b. G = K5 and H = K3.

c. G = C5 and H = K1.

1.16 Find spanning subgraphs G0, G1, G2, G3 of the Petersen graph, where Gr is r-regular for
0 ≤ r ≤ 3.

1.17 Prove that if G and G are both r-regular for some nonnegative integer r, then G has odd
order.

1.18 A graph is self-complementary if it is isomorphic to its complement.
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a. Determine all self-complementary graphs of order 5 or less.

b. If G is a self-complementary graph of order n, prove that n ≡ 0 (mod 4) or n ≡ 1
(mod 4).

1.19 Let n, k, r be positive integers with r ≤ k ≤ n and let S be a set of cardinality n. Then
J(n, k, r) is the graph whose vertices are the k-subsets of S, and where two vertices are
adjacent if the intersection of the two subsets to which they correspond has cardinality r.

a. Draw J(5, 2, 0).

b. Determine the order of J(n, k, r).

c. Prove that J(n, k, r) is regular and determine the degree of the vertices. Hence find
the size of J(n, k, r).

d. Prove that J(5, 2, 0) is (isomorphic to) the Petersen Graph.
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Chapter 2

Distance

2.1 Walks, trails, paths, circuits, and cycles

Let u and v be vertices in a graph G. A u-v walk is a finite, alternating sequence

u = v0, e1, v1, e2, v2, . . . , ek, vk = v

of vertices v0, v1, . . . , vk and edges e1, e2, . . . , ek such that, for all i ∈ [1, k], the edge ei joins the
vertices vi−1 and vi. The number of edges in a walk is its length, and a walk of length zero is
trivial.

Example 2.1 Consider the graph G shown below:

a b c d

efgh

G:

The sequence W1 : a, ab, b, bc, c, bc, b, bg, g, fg, f is an a− f walk of length 5.

For brevity, we shall usually write walks by listing the vertices but omitting the edges. For
example, the walk W1 in Example 2.1 could be rewritten as W1 : a, b, c, b, g, f .

A trail is a walk in which no edge is repeated. A path is a walk in which no vertex is
repeated. A walk that begins and ends at the same vertex is closed. A walk that is not closed
is open. A nontrivial closed trail is called a circuit. A circuit with no repeated vertex except
the first/last is a cycle.

Example 2.2
Consider again the graph G from Example 2.1. The walk W1 from that example is neither a

trail nor a path, since it contains repeated vertices and edges. The walk W2 : c, f, g, b, c, d is a trail,
since no edge is repeated, but not a path, since the vertex c is repeated. The walk W3 : h, g, b, c, f

27
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is a path (and a trail). The walks W1, W2, and W3 are all open, while the walk W4 : a, b, a, b, a, b, a
is closed. The walk W5 : b, a, h, b, f, c, b is a circuit and the walk W6 : e, d, c, b, f, e is a cycle.

Every u− v path is a u− v trail, and every u− v trail is (of course) a u− v walk. It is not
true, however, that every u− v walk is a u− v path. A walk W is said to contain a walk W ′ if
W ′ is a subsequence of W .

Theorem 5. Every u− v walk in a graph contains a u− v path.

Proof. Let W be a u− v walk in a graph G. If W is closed, then W ′ : u is a (trivial) u− v path
and we are done. Suppose then that u 6= v. If no vertex of W is repeated, then W is a u − v
path, so we may suppose that at least one vertex x of G occurs at least twice on W . Suppose
that W : v0, v1, . . . , vk and let i and j, with 0 ≤ i < j ≤ k, be the smallest and largest integers
respectively such that x = vi = vj. Then W ′ : v0, v1, . . . , vi, vj+1, vj+2, . . . , vk is a u− v walk in
which the vertex x is not repeated. If W ′ contains no repeated vertex, then W ′ is a u− v path
contained in W . If W ′ contains a repeated vertex, then, since W is finite, we may repeat the
above procedure as many times as necessary until we obtain a u− v path that is contained in
W .

2.2 Distance in graphs

Let u and v be vertices in a graph G. We say that u is connected to v if there is a u− v path
in G. A graph G is connected if every pair of vertices of G is connected. A graph that is not
connected is disconnected. A maximal connected subgraph1 of G is called a component of G.

Example 2.3

G1 : G2 :

The graph G1 is connected. The graph G2, which has four components, is disconnected.

Let G be a connected graph and u, v ∈ V (G). The distance from u to v, denoted d(u, v),
is the minimum length of a u − v path. A u − v path of minimum length is called a shortest
u− v path or a u− v geodesic.

1A subgraph is maximal with respect to some property if it is not properly contained in any other subgraph
with the same property. Hence, a maximal connected subgraph is a connected subgraph that is not properly
contained in any other connected subgraph.



2.2. DISTANCE IN GRAPHS 29

Example 2.4

v1 v2 v3

v4

G :

In the graph G above, we have d(v1, v1) = 0, while d(v1, v2) = 1 and d(v1, v3) = d(v1, v4) = 2.
The path v1, v2, v3 is a v1 − v3 geodesic. The path v1, v2, v4, v3 is a v1 − v3 path but not a v1 − v3

geodesic.

Recall that a metric space is an ordered pair (S, f) consisting of a set S and a function
f : S × S → R satisfying for all x, y, z ∈ S:

1. f(x, y) ≥ 0,

2. f(x, y) = 0 if and only if x = y,

3. f(x, y) = f(y, x), and,

4. f(x, y) ≤ f(x, z) + f(z, y) (the triangle inequality).

Theorem 6. If G is a connected graph and d : V (G) × V (G) → Z is the standard distance
function, then (V (G), d) is a metric space.

The proof of this is left as an exercise.
Let G be a connected graph and u a vertex of G. The eccentricity of the vertex u is

e(u) = max{d(u, v) : v ∈ V (G)}.

The radius and diameter of the graph G are then defined as

rad G = min{e(u) : u ∈ V (G)}
diam G = max{e(u) : u ∈ V (G)}.

If e(u) = rad G, then u is a central vertex of G, while if e(u) = diam G, then u is a peripheral
vertex of G. The subgraph of G induced by the central vertices of G is the center of G, while
the subgraph induced by the peripheral vertices is the periphery.

Example 2.5

v1

5

v2

4

v3

3

v4

4

v5

5

v6

5

v7

4

v8

3

v9

4

v10

5

G :
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In the graph G shown above, each vertex is labeled with its eccentricity. We have rad G = 3 and
diam G = 5. The central vertices of G are v3 and v8, and the center of G, the subgraph induced by
{v3, v8}, is isomorphic to K2. The peripheral vertices of G are v1, v5, v6, and v10, and the periphery
of G, the subgraph induced by {v1, v5, v6, v10}, is isomorphic to 2K2.

Theorem 7. For every connected graph G,

rad G ≤ diam G ≤ 2 rad G.

Proof. The first part of the chain of inequalities, that rad G ≤ diam G, follows directly from
their definition. To prove that diam G ≤ 2 rad G, let p1 and p2 be vertices of G for which
d(p1, p2) = diam G, and let c be a central vertex of G. Using the triangle inequality, we have
diam G = d(p1, p2) ≤ d(p1, c) + d(c, p2) ≤ e(c) + e(c) = 2 rad G.

For a vertex u in a connected graph G, the total distance of u is

d(u) =
∑

v∈V (G)

d(u, v).

If d(u) = min{d(v) : v ∈ V (G)}, then v is a median vertex of G. The subgraph of G induced
by the median vertices is the median of G.

Example 2.6

v1

5

v2

3

v3

4

v4

4

G :

Each vertex of the graph G shown above is labeled with its total distance. The only median vertex
is v2. The median of G consists of the graph induced by {v2}, which is isomorphic to K1.

2.3 Walks, connectivity, and distance in digraphs

When discussing digraphs, we must be careful to distinguish between those situations in which
we wish to take into account the directions of the edges, and those in which we do not.

Let D be a digraph and u, v vertices of D.

• A u− v directed walk is a finite alternating sequence u = v0, a1, v1, a2, v2, . . . , ak, vk = v of
vertices and arcs of D in which, for all i ∈ [1, k], we have ai = −−−→vi−1vi.

• A u − v semi-walk is a finite alternating sequence u = v0, a1, v1, a2, v2, . . . , ak, vk = v of
vertices and arcs of D in which, for all i ∈ [1, k], we have ai = −−−→vi−1vi or ai = −−−→vivi−1.
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To summarize: In a directed walk, we must respect the directions of the arcs, while in a
semi-walk, we need not.

Example 2.7

v1 v2 v3 v4

v5v6v7v8

D :

In the digraph D shown above, v1, v2, v6, v3, v2 is both a v1 − v2 directed walk and a v1 − v2 semi-
walk. On the other hand, v1, v8, v2 is a v1 − v2 semi-walk, but not a v1 − v2 directed walk.

Analogously with undirected graphs, a u− v directed path is a u− v directed walk in which
no vertex is repeated, while a u−v semi-path is a u−v semi-walk in which no vertex is repeated.

A digraph D is called connected or weakly connected if for every pair u, v of vertices of D
there is a u− v semi-path, i.e., if the underlying graph of D is connected. On the other hand,
D is strongly connected if for every pair u, v of vertices there is a u− v directed path.

Example 2.8 The digraph in Example 2.7 is weakly connected (since the underlying graph is con-
nected). It is not, however, strongly connected (there is no v1 − v4 directed path in D).

If D is a connected digraph and u, v ∈ V (D), then d(u, v), the distance between u and v, is
the smallest number of arcs on a u−v directed path. If D is not strongly connected, then there
will be pairs u, v of vertices for which d(u, v) is not well-defined; for convenience, we frequently
define the distance between such pairs to be ∞.

Example 2.9 Returning to the digraph in Example 2.7, we have d(v1, v8) = 3 while d(v1, v4) =∞.
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Exercises

2.1 Consider the following graph:

x
y

z

u
v

w

r
s

t

G :

Give an example of each of the following or explain why no such example exists:

a. An x− y walk of length 6.

b. A v − w trail that is not a v − w path.

c. An r − z path of length 2.

d. An x− z path of length 3.

e. An x− t path of length d(x, t).

f. A circuit of length 10.

g. A cycle of length 8.

h. A geodesic whose length is diam G.

2.2 Prove that a closed walk of odd length contains an odd cycle.

2.3 Recall that an equivalence relation is a relation that is reflexive, symmetric, and transitive.
If G is a graph, prove that is connected to is an equivalence relation on V (G). Of what
significance are the equivalence classes in this relation?

2.4 Prove Theorem 6.

2.5 If G is a graph of order n with δ(G) ≥ n−1
2

, prove that G is connected.

2.6 Prove or disprove: If G is a connected graph and v ∈ V (G), then v is a central vertex if
and only if v is a median vertex.

2.7 Prove that if G is a disconnected graph, then diam G ≤ 2.

2.8 Prove or disprove: Every graph is the center of some connected graph.

2.9 For a connected graph G, the average distance µ(G) of the graph is the average distance

between all pairs of vertices, i.e., µ(G) =
2

n(n− 1)

∑
u,v∈V (G)

d(u, v). Prove or disprove: If

G is a connected graph, then rad G ≤ µ(G) ≤ diam G.

2.10 Draw all connected graphs of order 5 in which the distance between every two distinct
vertices is odd. Explain why you know that you have drawn all such graphs.
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2.11 Let P : u = v0, v1, . . . , vk = v be a u − v geodesic in a connected graph G. Prove that
d(u, vi) = i for each integer i with 1 ≤ i ≤ k.

2.12 Let P and Q be two longest paths in a connected graph G. Prove that P and Q have at
least one vertex in common.

2.13 Prove or disprove: Let G be a connected graph of diameter k. If P and Q are two
geodesics of length k in G, then P and Q have at least one vertex in common.

2.14 Show that if G is a disconnected graph containing exactly two odd vertices, then these
odd vertices must be in the same component of G.

2.15 Show that if G is a connected graph that is not regular, then G contains adjacent vertices
u and v such that deg u 6= deg v.

2.16 A graph is self-complementary if it is isomorphic to its complement. Prove that every
nontrivial self-complementary graph has diameter 2 or 3.

2.17 If u and v are adjacent vertices in a connected graph G, prove that |e(u)− e(v)| ≤ 1.

2.18 Let D be a digraph. For a vertex v in D, the quantity e+(v) = max{d(v, x) : x ∈ V (D)}
is called the out-eccentricity of v.

a. Prove or disprove: Every vertex in D has finite out-eccentricity if and only if D is
strongly connected.

b. Let u and v be vertices in D. Prove or disprove: If D is strongly connected and
−→uv ∈ A(D), then |e+(u)− e+(v)| ≤ 1.
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Chapter 3

The structure of graphs

3.1 Bipartite graphs

Recall that a collection {S1, S2, . . . , Sk} of sets is called pairwise disjoint if for all i, j ∈ [1, k]
with i 6= j, we have Si ∩ Sj = ∅. A partition of a set S is a finite, pairwise disjoint collection

{S1, S2, . . . , Sk} of nonempty subsets of S such that
k⋃

i=1

Si = S.

A graph G is bipartite if there is a partition {V1, V2} of V (G) such that every edge of G joins
a vertex of V1 to a vertex of V2. In other words, G is bipartite if we can partition V (G) into
two sets V1 and V2 such that both G[V1] and G[V2] are empty. The sets V1 and V2 are called
partite sets and {V1, V2} is called a bipartition of G.

Example 3.1

v1 v2 v3 v4

v5v6v7v8

G :

In the graph G shown above, choose V1 = {v1, v3, v5, v7} (the white vertices) and V2 = {v2, v4, v6, v8}
(the black vertices). Then {V1, V2} is a partition of V (G). Furthermore, there is no pair of adjacent
white vertices, and there is no pair of adjacent black vertices. This shows that G is bipartite. To
make things clearer, we can redraw G:

v1 v3 v5 v7

v8v6v4v2

G :

V1

V2

Not all graphs are bipartite. Consider the graph C5, shown below:

35
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v1

v2

v3v4

v5

C5 :

Suppose that C5 is bipartite and let {V1, V2} be a bipartition of C5. Without loss of generality,
we may assume that v1 ∈ V1. Since v1v2 ∈ E(C5), we must then have v2 ∈ V2. Continuing
in this fashion, we argue that v3 ∈ V1 and v4 ∈ V2. What do we do with v5? We can’t have
v5 ∈ V1, because v1 ∈ V1 and v1v5 ∈ E(C5). Similarly, we can’t have v5 ∈ V2 since v4 ∈ V2 and
v4v5 ∈ E(C5). Hence C5 is not bipartite.

With a little thought, you should convince yourself that the problem we encountered when
trying to construct a bipartition of C5 will arise with any odd cycle. The following result shows
that this is an important observation. If P : v1, v2, . . . , vk is a path, then by P [vi, vj] (where
i, j ∈ [1, k] and i ≤ j) we mean the subpath of P induced by {vi, vi+1, . . . , vj}.

Theorem 8. A graph is bipartite if and only if it does not contain an odd cycle.

Proof. ( =⇒ ) Suppose, to the contrary, that G is a bipartite graph that contains an odd cycle
v1, v2, . . . , vk, v1. Let {V1, V2} be a bipartition of G and suppose, without loss of generality, that
v1 ∈ V1. Arguing as in Example 3.1, we find that vi ∈ V1 when i is odd, while vi ∈ V2 when i
is even. But then both the vertices v1 and vk are in V1. Since v1vk ∈ E(G), this is impossible.

(⇐= ) Let G be a graph that contains no odd cycle. Notice that G is bipartite if and only
if each of its components is bipartite, so we assume that G is connected. Let u ∈ V (G) and
define

V1 = {v ∈ V (G) : d(u, v) is odd},
V2 = {v ∈ V (G) : d(u, v) is even}.

We claim that {V1, V2} is a bipartition of G. Certainly, {V1, V2} is a partition of V (G). It
remains to prove that every edge of G joins a vertex of V1 to a vertex of V2. Suppose, by way of
contradiction, that there are two vertices x, y ∈ V1, say, such that xy ∈ E(G). Let Px be a u−x
geodesic and let Py be a u− y geodesic. Notice that u ∈ V (Px) ∩ V (Py) and, since d(u, x) and
d(u, y) have the same parity1, we cannot have x ∈ V (Py) or y ∈ V (Px). Let z be that vertex
in V (Px) ∩ V (Py) for which d(z, x) is a minimum. If z′ ∈ V (Px) ∩ V (Py) and d(z′, y) < d(z, y),
then because Px and Py are geodesics, we must have d(z′, x) < d(z, x). Hence, there is no vertex
in V (Px) ∩ V (Py) that is closer to y than z. Thus, z is the only vertex of Px[z, x] that belongs
to Py, and z is the only vertex of Py[z, y] that belongs to Px. Now, d(u, x) = d(u, z) + d(z, x)
and d(u, y) = d(u, z) + d(z, y), so we have d(u, x) − d(u, y) = d(z, x) − d(z, y). Since d(u, x)
and d(u, y) have the same parity, this implies that d(z, x) and d(z, y) have the same parity, and
hence that d(z, x) +d(z, y) is even. By following Px in reverse from x to z, then Py from z to y,
and then using the edge xy, we obtain a cycle of length d(z, x)+d(z, y)+1, a contradiction.

1Two integers have the same parity if they are both even or both odd.
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For positive integers r and s, we define the complete bipartite graph Kr,s to be the graph
Kr+Ks. In other words, Kr,s is a bipartite graph in which there is a partite set V1 of cardinality
r and a partite set V2 of cardinality s, and in which every vertex in V1 is adjacent to every
vertex in V2. The complete bipartite graph K2,4 is shown in Figure 3.1. A complete bipartite

Figure 3.1: The complete bipartite graph K2,4.

graph of the form K1,r is called a star. The star K1,3 is called a claw.
We can extend the idea of a bipartite graph. If there is a partition {V1, V2, . . . , Vk} of a

graph G such that for all i ∈ [1, k], the subgraph G[Vi] is empty, then G is called k-partite.

3.2 Cut-vertices, bridges, and blocks

Let G be a connected graph. If v is a vertex of G for which G − v is disconnected, then v is
called a cut-vertex. If e is an edge of G for which G−e is disconnected, then e is called a bridge.

Example 3.2

v

G : G− v :

The graph G shown above is connected while the graph G− v is disconnected, so v is a cut-vertex.
In fact, v is the only cut-vertex of G.

G :

e

G− e :

Since G is connected and G− e is disconnected, e is a bridge. The edge e is the only bridge of G.



38 CHAPTER 3. THE STRUCTURE OF GRAPHS

Theorem 9. A vertex v in a connected graph G is a cut-vertex if and only if there are vertices
u and w (u,w 6= v) such that v lies on every u− w path.

Proof. ( =⇒ ) Suppose first that v is a cut-vertex of G. Then G − v is disconnected, which
means that there are vertices u and w in G − v such that there is no u − w path in G − v.
Hence there is no u− w path in G that does not contain v.

(⇐= ) Suppose now that there are vertices u and w with u,w 6= v such that v lies on every
u−w path in G. Then there is no u−w path in G−v, which means that G−v is disconnected.
Hence v is a cut-vertex.

An analogous result holds for bridges.

Theorem 10. An edge e in a connected graph G is a bridge if and only if there are vertices u
and w such that e lies on every u− w path.

Another interesting result for bridges is the following.

Theorem 11. An edge e in a connected graph G is a bridge if and only if e does not lie on a
cycle of G.

Proof. ( =⇒ ) Suppose first that e = uv is a bridge of G. Then G − e is disconnected, the
vertices u and v lie in different components of G − e, and there is no u − v path in G − e.
Suppose now, to the contrary, that e lies on a cycle C : u, v, v1, v2, . . . , vk, u in G. But then
v, v1, v2, . . . , vk, u is a v − u path in G − e, a contradiction. Hence e does not lie on a cycle in
G.

(⇐= ) Suppose now that e does not lie on a cycle in G. Suppose, by way of contradiction,
that e is not a bridge. Then G− e is connected. Hence there is a u− v path P in G− e. But
then P together with the edge e is a cycle in G that contains the edge e, a contradiction.

Inspired by Theorem 11, we make the following definition: An edge e in a graph G is said
to be a cycle edge if e lies on a cycle of G. Theorem 11 states that every edge of a connected
graph is either a bridge or a cycle edge.

A connected graph that contains at least one cut-vertex is separable. A connected graph
that contains no cut-vertices is called non-separable. A maximal non-separable subgraph of a
connected graph is called a block, i.e., a block is a connected subgraph that has no cut-vertices
and that is not properly contained in a subgraph with no cut-vertices. If G is non-separable,
then G has no cut-vertices and hence G contains exactly one block. For this reason, a non-
separable graph is sometimes called a block.

Example 3.3

v

G :

v
v

v

The three blocks of G :
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The graph G from Example 3.2 has three blocks. The only cut-vertex of G, the vertex v, occurs
in all three blocks. It’s important to distinguish between the role the vertex v plays as a vertex of
G and the role it plays as a vertex in each of the three blocks. In the graph G, the vertex v is a
cut-vertex since G − v is disconnected. On the other hand, let G′ be any of the three blocks of
G. Then G′ − v is not disconnected, so v is not a cut-vertex of G′. Notice, however, that in any
connected subgraph of G that properly contains G′, the vertex v is a cut-vertex. Hence G′ is a
maximal connected subgraph that is non-separable, i.e., a block.

Two distinct blocks have at most one vertex in common. If two distinct blocks have a vertex in
common, then that vertex is a cut-vertex. We now present some interesting characterizations
of blocks. The proof of the first lemma is left as an exercise.

Lemma 12. If G is a graph of order at least 3 that contains a bridge, then G contains a
cut-vertex.

Theorem 13. A graph G of order at least 3 is a block if and only if for every pair u, v of
vertices of G, there is a cycle containing both u and v.

Proof. ( ⇐= ) Suppose that every pair of vertices of G lie on a common cycle and, to the
contrary, that G contains a cut-vertex x. Then by Theorem 9, there are vertices u and v
(u, v 6= x) such that x lies on every u − v path. By assumption, the vertices u and v lie on a
cycle C. However, since C − x is connected, there is a u − v path in G that does not contain
the vertex x, a contradiction. Hence G contains no cut-vertex.

( =⇒ ) Suppose now that G has no cut-vertices and, to the contrary, that there is at least
one pair of vertices that do not lie on a common cycle. Amongst all such pairs of vertices,
choose u and v such that d(u, v) is a minimum. By Lemma 12, no edge incident with u is a
bridge. Hence, by Theorem 11, every edge incident with u lies on a cycle, i.e., every neighbour
of u lies on a cycle containing u. Hence d(u, v) ≥ 2. Let P be a u−v geodesic and v′ the vertex
of P that is adjacent to v (since d(u, v) ≥ 2, we are certain that u 6= v′). Since d(u, v′) < d(u, v),
the vertex v′ lies on a cycle C containing u. Furthermore, since v′ is not a cut-vertex, there is
a v− u path P ′ that does not contain v′. Let t be the first vertex of P ′ that is on C. Let C ′ be
the t−v′ path in C that contains u. By following P ′ from v to t, then C ′ from t through u to v′,
then using the edge between v′ and v, we obtain a cycle containing v. This is a contradiction.
Hence no such pair u, v of vertices exists and the result is proved.

Let u and v be vertices in a connected graph G. Two u − v paths P1 and P2 are called
internally disjoint if V (P1) ∩ V (P2) = {u, v}. Theorem 13 implies the following.

Corollary 14. A graph G of order at least 3 is a block if and only if for every pair u, v of
distinct vertices of G, there are (at least) two internally disjoint u− v paths in G.

The following result was proved by Frank Harary and Robert Norman in 1953 [HN53].

Theorem 15. The center of a connected graph lies in a single block.

Proof. Suppose, to the contrary, that there is a connected graph G and central vertices c1, c2

of G such that c1 and c2 do not lie in the same block. Let P be a c1 − c2 path. Then P is
not contained in a single block. Consequently, P contains a vertex x which belongs to two
different blocks, and hence x is a cut-vertex. Let G1 and G2 be the components of G− x that
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contain, respectively, c1 and c2. Let x′ be an eccentric vertex2 of x. Since x is a cut-vertex,
there is at least one component, say G1, of G − x that contains no vertices from any x − x′
path. This implies that d(c1, x

′) = d(c1, x) + d(x, x′) > d(x, x′). This contradicts the fact that
c1 is a central vertex, and hence no such graph G exists.

2If d(x, x′) = e(x), then x′ is called an eccentric vertex of x.
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Exercises

3.1 Prove that if G is a regular bipartite graph with partite sets V1 and V2, then |V1| = |V2|.

3.2 Prove or disprove: For every positive integer t, the hypercube Qt is bipartite.

3.3 Let G be a graph of order at least 5. Prove that at most one of G and G is bipartite.

3.4 Prove that a graph G is connected if and only if for every partition {V1, V2} of V (G),
there is an edge of G joining a vertex of V1 to a vertex of V2.

3.5 Prove that every nontrivial connected graph contains at least two vertices that are not
cut-vertices.

3.6 Prove that if v is a cut-vertex of a connected graph G, then v is not a cut-vertex of G.

3.7 Let G be a connected graph. Prove that a vertex v of G is a cut-vertex if and only if
there are neighbours u and w of v such that v is on every u− w path.

3.8 Let G be a connected graph in which every vertex has even degree. Prove that G does
not contain a bridge.

3.9 Prove Lemma 12.

3.10 An end-block in a graph G is a block that contains exactly one cut-vertex of G. Prove
that if G is separable, then G has at least two end-blocks.

3.11 Let G be a graph of order n ≥ 3 in which, for every pair u, v of nonadjacent vertices, we
have deg u+ deg v ≥ n. Prove that G is a block.

3.12 a. Prove or disprove: A graph G of order 3 or more is connected if and only if G
contains two distinct vertices u and v such that G− u and G− v are connected.

b. Prove or disprove: Every connected graph of order 4 or more contains three distinct
vertices u, v, and w such that G− u, G− v, and G− w are connected.

3.13 What is the maximum number of cutvertices in a graph of order n?

3.14 Let G be a cubic graph. Prove that G has a cutvertex if and only if G has a bridge.

3.15 Prove that every cubic graph with a bridge has order at least 10, and prove that this
result is sharp, i.e., find a cubic graph of order 10 containing a bridge.

3.16 Prove that if G is a graph of order n ≥ 3 with δ(G) ≥ n/2, then G is a block.

3.17 Prove or disprove: If G is a connected graph with cutvertices and u and v are vertices of
G such that d(u, v) = diam G, then no block of G contains both u and v.

3.18 Let v be a vertex of a connected graph G. Prove that v is a cut-vertex of G if and only if
there exists a partition {V1, V2} of V (G) − {v} such that for every pair v1, v2 of vertices
with v1 ∈ V1 and v2 ∈ V2, every v1 − v2 path contains v.
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3.19 Let G be a connected graph of order at least 3. Prove that G is a block if and only if for
every vertex v ∈ V (G) and edge e ∈ E(G), there is a cycle containing both v and e.
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Trees

A graph that contains no cycles is acyclic. Graphs that are acyclic are also called forests. A
tree is a connected acyclic graph. Hence, a forest is a graph in which each component is a tree.
Figure 4 shows all of the trees of order at most 5.

n = 1 :

n = 2 :

n = 3 :

n = 4 :

n = 5 :

Figure 4.1: The trees of order n ≤ 5.

Recall that a vertex of degree 1 is called an end-vertex.

Theorem 16. Every nontrivial tree has at least two endvertices.

Proof. Let T be a nontrivial tree and P : v1, v2, . . . , vk a maximal path in T (i.e., a path that
is not properly contained in another path). If deg v1 ≥ 2, then there is a vertex x which is
adjacent to v1 but, since T is acyclic, not on P . By starting at x, using the edge xv1 to move to
v1, and then the path P , we obtain a path that properly contains P , which is a contradiction.
Hence, deg v1 = 1. Similarly, deg vk = 1.

Every block of order at least 3 contains a cycle. Since a tree is acyclic, every block in a
nontrivial tree is isomorphic to K2. The next result therefore follows in a straightforward way
from Theorem 15.

Theorem 17. The center of a tree is isomorphic to K1 or K2.

A tree whose center is (isomorphic to) K1 is sometimes called a central tree, while a tree
whose center is (isomorphic to) K2 is sometimes called a bicentral tree.

There are a number of well-known characterizations of trees.

43
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Theorem 18. Every tree of order n has size n− 1.

Proof. Our proof will be by induction on n. There is only one tree of order 1, and that tree
(K1) has size 0, so when n = 1 the statement is true. Suppose now that n > 1 and that
the statement is true for every tree of order less than n. Let T be a tree of order n and size
m. By Theorem 16, T has an end-vertex v. No end-vertex is a cut-vertex, so T − v is a
tree of order n(T − v) = n − 1 and size m(T − v) = m − 1. By the Inductive Hypothesis,
m(T − v) = n(T − v)− 1. Hence m− 1 = n− 1− 1, which implies that m = n− 1.

Corollary 19. A forest of order n with k components has size n− k.

If G is a connected graph, then a spanning tree of G is a spanning subgraph of G that is a
tree.

Example 4.1

In the connected graph shown above, the edges of a spanning tree are indicated as darker lines.

Theorem 20. Every connected graph has a spanning tree.

Theorem 21. Let G be a graph of order n and size m. If any two of the following three
statements are true, then G is a tree:

(i). G is connected.

(ii). G is acyclic.

(iii). m = n− 1.

Proof. ((i) and (ii)) If G is connected and acyclic, then by definition G is a tree.
((i) and (iii)) Suppose that G is connected and that m = n− 1. By Theorem 20, the graph

G has a spanning tree T . By Theorem 18, the tree T has size n− 1, the same as G. Since T is
a subgraph of G, we must therefore have G = T , i.e., G is a tree.

((ii) and (iii)) Since G is acyclic, G is a forest. Let k be the number of components of G.
Then, by Corollary 19, k = 1, i.e., G is connected. Hence, G is a tree.

Theorem 22. If T is a tree of order k and G is a graph with δ(G) ≥ k−1, then T is a subgraph
of G.

Proof. Our proof will be by induction on k. Certainly the result is true when k = 1. Suppose
now that k > 1 and that the result is true for trees of order less than k, i.e., if T is a tree
with n(T ) < k and G is a graph with δ(G) ≥ n(T ) − 1, then T is a subgraph of G. Let T be
a tree of order k and G a graph with δ(G) ≥ k − 1. Let v be an end-vertex of T and v′ the
neighbour of v. Then T − v is a tree of order less than k. Since δ(G) ≥ k − 1 > n(T − v)− 1,
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by the Inductive Hypothesis, the tree T − v is a subgraph of G. In the graph G, the vertex v′

has degree at least δ(G) ≥ k − 1. However, in the tree T − v, the vertex v′ has degree at most
k − 2. Hence there is a vertex x of G to which v′ is adjacent in G but not adjacent in T − v.
Then by adding the vertex x and the edge xv′ to T − v we obtain a tree that is isomorphic to
T and contained in G.
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Exercises
4.1 Draw all trees of order 6.

4.2 Prove that if every vertex of a graph G has degree at least 2, then G contains a cycle.

4.3 Prove or disprove: If G is a graph of order n and size m with three cycles, then m ≥ n+2.

4.4 Find a graph of order n and size n− 1 that is not a tree.

4.5 Prove that if G is a connected graph of order n and size m, then m ≥ n− 1.

4.6 Suppose that T is a tree of order n ≥ 4 that contains only vertices of degree 1 and 3.
Prove that T contains (n− 2)/2 vertices of degree 3.

4.7 Prove Corollary 19.

4.8 Prove Theorem 20.

4.9 Prove that the following statements are equivalent for an (n,m) graph G:

a. G is a tree.

b. Every two vertices of G are joined by a unique path.

c. G is connected and m = n− 1.

d. G is acyclic and m = n− 1.

e. G is acyclic and for every pair u, v of distinct nonadjacent vertices of G, the graph
G+ uv has exactly one cycle.

4.10 A graph that is connected and has exactly one cycle is called unicyclic. Prove that the
following four statements are equivalent:

a. G is unicyclic.

b. G is connected and m = n.

c. For some edge e of G, the graph G− e is a tree.

d. G is connected and the set of edges that are not bridges form a cycle.

4.11 Prove that a tree of order at least 3 has diameter 2 if and only if it is a star.

4.12 Prove or disprove:

a. If G has diameter 2, then it has a spanning star.

b. If G has a spanning star, then it has diameter 2.

4.13 Prove that G is a forest if and only if every induced subgraph of G contains a vertex of
degree at most 1.

4.14 Prove Theorem 17.
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edge, 7

cycle, 38
pendant, 11

empty, 8
end-block, 41
end-vertex, 11

forest, 43

geodesic, 28
graph, 7

acyclic, 43
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cubic, 13
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internally disjoint, 39
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semi-path, 31

semi-walk, 30
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sharp, 41
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spanning tree, 44
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adjacent, 7

walk
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trivial, 27


