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1 Spectral types

The classification of spectra — just by looking at them — is sometimes dismissed as “butterfly
collecting” , but performs useful functions:

1.1 Crude classification

An objective-prism on a Schmidt telescope can obtain hundreds, possibly thousands of low-
dispersion spectra at a time. As we have seen, this can be used to pick out very easily “unusual”
objects such as emission-line stars, quasars and the like for further, detailed study. Similar
functions can be performed photometrically (the Sloan Digital Sky Survey is an excellent example
of this) — though what these are doing is effectively very low dispersion spectroscopy.
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Figure 1: Emission-line quasar spectra obtained with the Anglo-Australian Schmidt telescope plus objective prism.
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Figure 2: Unwidened spectra of “standard” stars with the AAO Schmidst.

lllustration 16
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Figure 3: Widened spectra of “standard” stars with the AAO Schmidt. Note the much more obvious spectral
features in th widened spectra.
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1.2 Finer classification

We have looked at spectral typing — actually spectrum/luminosity typing — and seen that we can
classify stars relatively easily into a simple sequence:

OBAFGKM

to which we should add the L and T stars — and which has been “decimalised” to give finer
resolution.

Dwarf Stars (Luminosity Class V)
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Figure 5: Sample spectral types in digital form, displayed in flux units.

We have also seen that two effects allow us to assign luminosity types to stars (LII,...etc) based
on:

e pressure broadening or Stark effect which is particularly strong for Hydrogen and Helium
lines and which results in the denser atmospheres (caused by greater pressure, caused by
higher surface gravity) producing broader lines and

e for elements which are partially ionised, the gas density can have a significant effect on the
overall degree of ionisation. Comparison of the strengths of lines from ionised and neutral (or
doubly-ionised and singly-ionised, etc) atoms of the same element can be luminosity criteria.
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Figure 6: Objective-prism type spectra: luminosity effects at F5. Useful luminosity criteria are the lines Srll
(4077A) and Fell/Till (4172-78A), for example.
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Figure 7: Digital spectra: luminosity effects at F5.

We have then, that:
Spectral Type = f(temperature)

Luminosity Type = f(surface gravity)




The important thing is that MK types can be calibrated against temperature and luminosity
(absolute magnitude) giving us a way of determining stellar distances. Stellar radii can also be
inferred from the MK types. Note that, in the Table below, which gives a calibration for MK
type in terms of temperature (7.ss) and luminosity (absolute magnitude, My ), temperature and
luminosity are not entirely independent. One can see that the temperature at a particular spectral
type might be somewhat dependent on luminosity, for example.

Table 1: An MK-type/absolute magnitude calibration (taken from “Allen’s Astrophysical Quantities” Fourth
Edition.

V 11 I
Sp type MV Teff BC MV Teff BC MV Teff BC
05 -5.7 42000 4.4

09 4.5 34000 -3.33 -6.5 32000 -3.18
BO -4.0 30000 -3.16

B2 -2.45 20900 -2.35 -6.4 17600 -1.58
B5 -1.2 15200 —1.46 -6.2 13600 -0.95
B8 -0.25 11400 -0.80 -6.2 11100 -0.66
A0 +0.65 9790 -0.30 -6.3 9980 -0.41
A2 +1.3 9000 -0.20 -6.5 9380 -0.28
A5 +1.95 8180 -0.15 -6.6 8610 -0.13
FO +2.7 7300 -0.09 -6.6 7460 -0.01
F2 +3.6 7000 -0.11 -6.6 7030 -0.00
F5 +3.5 6650 -0.14 -6.6 6370 -0.03
F8 +4.0 6250 -0.16 -6.5 5750 -0.09
GO +4.4 5940 -0.18 -6.4 5370 -0.15
G2 +4.7 5790 -0.20 -6.3 5190 -0.21

G5 +5.1 5560 -0.21 | +0.9 5050 -0.34|-6.2 4930 -0.33
G8 +5.5 5310 -040 | +0.8 4800 -042|-6.1 4700 -0.42
KO +5.9 5150 -0.31 | +0.7 4660 -0.50 | -6.0 4550 -0.50
K2 +6.4 4830 -042 | +0.5 4390 -0.61|-59 4310 -0.61
K5 +7.35 4410 -0.72|-0.2 4050 -1.02|-5.8 3990 -1.01
MO +8.8 3840 -1.38|-04 3690 -1.25|-5.6 3620 -1.29
M2 +9.9 3520 -1.89|-06 3540 -1.62|-56 3370 -1.62
Mb +12.3 3170 273 |03 3390 -248|-5.6 2880 -3.47
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Figure 8: HR diagram with sample stars and luminosity/temperature/radius calibrations. And even though it’s

written in Czech, you should be able to understand it !

There follow some series of spectra from the EC survey. These are at 100 A /mm - so comparable
to “classification” dispersions (the HD Catalogue was done at a variety of dispersions down to

about 160 A/mm and the Michigan Spectral Catalogue at 108 A/mm at Hr).

Although one can clearly classify stars (and other things) from such spectra, they are good enough
to make quantitative velocity measurements and possibly even low grade line profile measures.
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Figure 9. Spectrograms of four early-type stars. (a) Subdwarf B type, (b) blue horizontal branch star, (c) carly B type, (d) F/G type.

Figure 9: EC spectrograms of “early-type” stars (a) B subdwarf, (b) blue horizontal-branch star, (¢) normal mid-B
star, (d) G star.
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Figure 10: EC spectrograms of hot sudwarf stars (extended horizontal-branch) (a) Helium-rich O subdwarf, (b)
sdOB, (c) sdO, (d) sdB.
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Figure 1L Spectrograms of four white dwarfs. (a) DA, (b) DA with strong hydrogen and weak helium, (¢} DB, (d) DA with weak hydrogen.

Figure 11: EC spectrograms of white dwarf stars (a) DA, (b) DA with weak He I, (¢) DB, (d) DA with weak
Hydrogen.
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Figure 12: EC spectrograms of QSOs (Quasi-stellar objects) (a) Relatively high-redshift QSO (2=2.145), (b) Low
redshift QSO with broad and narrow emission, (¢) QSO with “continuous” spectrum (but strong Ha and Hf
redshifted beyond A = 550nm, (d) QSO with narrow absorption lines of Fe IT and Mg II, showing redshifts of
z = 0.865 and 0.314 — due to intergalactic material.
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2 Radial Velocities
We have seen previously that the radial (line-of-sight) velocity can be found by measuring the

Doppler shift of spectral features. We have:
AN o )\obs - )\rest Ur

)\rest )\rest c

Line of Sight

Figure 13: Radial velocity.

which has many applications, from galaxy redshifts, galactic and cluster dynamics to binary
systems and pulsating stars.

One could measure the mid point of a spectral absorption or emission line (or many lines) and
use the the Doppler formula (above) to obtain a mean radial velocity. In practice, it is usual to
use some kind of cross correlation software. What this does is to compare the spectrogram
with a “template”, effectively multiplying them together, then shifting the spectrum by a small
A\ and doing it again, and so on. A cross-correlation function is created which has a peak when
the lines in the spectrogram match the lines in the template.

Cross-correlation has the advantage that it uses all the lines in the spectral region observed —
and many of these might be too weak to see or lost in the “noise”. It also gives an objective
measurement.
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2.1 Binary stars

We have looked at binary stars and the importance of double-lined systems for the determination
of stellar masses. The figures below are from work by Rucinski & Lu, and show the results of
cross-correlation (CCF = cross-correlation function; BF = “broadening function”) in determining
accurate radial velocities.
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Figure 14: Cross correlation function.
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Figure 15: Velocity curves for double-lined spectroscopic binaries.

13



2.2 Pulsating stars

In a previous lecture (Photometry - II), we looked briefly at the light curves of two pulsating
hydrogen—deficient stars and we can now re-examine these in the light of the velocity data.

The light curves are repeated below and show for both stars a light maximum at zero phase (in
fact, this was how zero phase was defined).

B
12.59

12.62

12.65 |

10.37

10.40

1043 =

0.6 0.8 0.0 0.2 0.4 0.6
Phase

Figure 16: Phased light curves for two hydrogen-deficient stars, LSS 3184 (BX Cir) and V652 Her. (Pulsation
periods for both stars ~ 0.1 day).

If we now look at the velocity curve for V652 Her (or LSS 3184), we see that the maximum
positive velocity (stellar surface moving away from the observer) is just after phase zero and then
undergoes a very rapid change from maximum positive velocity to maximum negative velocity
— the star has reached minimum radius and “bounced”, starting to expand again. The outward
velocity slowly decreases to zero near phase 0.6 at which point the star is at maximum radius.
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Figure 17: Radial velocity curves for the same stars, phased on the photometric period.

Recall that:
Luminosity oc R? T*

The star is at minimum radius when near maximum brightness and therefore near maximum tem-
perature. There are two factors which generate the variation in the light curve — the temperature
(T*) and the radius (R?) and maximum radius and maximum temperature are separated in phase
by about 0.5. This explains the secondary maximum on the light curve.

Note that:

e From these data, we can infer that the stars are radial pulsators (and, in fact, they appear
to be fundamental mode pulsators).

e We can therefore use the Baade-Wesselink method (or something similar) to determine the
radii and luminosities of the stars.

e The velocity curve of LSS 3184 is a little gentler than that of V652 Her, but the general
principles are the same.

e The mean velocity of V652 Her is near zero — it’s not moving towards or away from the Sun,
whereas LSS 3184 has an approach velocity near -85 km/s.
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2.3 Redshifts

We can also measure the radial velocities of galaxies external to our own.

Ralation Betwaon Red-Shitl and Distanco
lor Dristant Salexies

Cluster Custance in
Galaxy In Light-¥ears Fipd-Shifls
n ?E-MD-MU
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- 11"'m.nnn‘.mu
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2,500, 000,000
38,000 krnisoc
ﬂ e
Hydra 61,000 km'sec

Figure 18: Old panel (used as a “laboratory exercise” when I was a kid) showing direct photgraphs and spectra
for some relatively nearby galaxies. The “redshift” of the Ca II lines at (rest wavelengths of) 39334 and 39684
can be clearly seen. With redshifts this big, you can just about measure them with a ruler (as we did in the lab
exercise) and get decent results

Measurements of galaxy velocities started with Slipher around 1914 and resulted in Hubble for-
mulating Hubble’s Law in 1929, which states that (for distant galaxies):

Velocity = Hy x Distance

where H, is Hubble’s constant (at the present) and is currently determined to be about 70
km /sec/Megaparsec. That is, on average galaxies at a distance of 10 Mpc will be receding at
700 km/sec, galaxies at 100 Mpc will be receding at 7000 km/sec, and so on.
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Figure 19: Hubble’s original “redshift” diagram (1929).

In dealing with galaxies/cosmology, z is usually used as the velocity indicator where:

)\observed - )\rest o A)\
)\rest )\rest

z

Note that we cannot now write AN/\ = v/c because relativistic effects become important as v
gets nearer to ¢ and:

AN (1 + v/e)

TTNT e

where v is the velocity of the source. Now z can take any positive value (for a “redshift”) and we
have seen that the SDSS has found quasars with z > 6 (and note that, using the above equation,
a quasar with a redshift z = 6 is motoring along at 96% of the speed of light ....

Of course, it is easy to see how the velocity /redshift of a distant object can be measured from
spectral line shifts (though at high z, identifying the lines in not always trivial). But how does
one determine the distance 77

We have seen in previous lectures how a systematic distance “ladder” can be built up. Briefly:
e For the nearest stars, we can use the parallax to get distance and thus luminosity.

e By establishing luminosities for nearby stars of known MK type, we can determine the
distances of nearby clusters containing more luminous stars.

¢ And by main-sequence fitting of cluster colour-magnitude diagrams we can calibrate
more distant clusters, obtaining luminosities for Cepheid (and other) variables.

e With a zero-point for Cepheids, we can use the Cepheid Period-Luminosity relation to
determine the distances of at least nearby galaxies.

It’s not as simple as that, of course; interstellar reddening effects (for example) can introduce
uncertainties. But say we can do it, what about really distant objects 77

It was initially assumed that we could use the (supposedly linear) Hubble Law — once calibrated
— to get the distances of really distant objects. Now, the exact shape of the Velocity—Distance
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relation is critical to determining the nature of the Universe, and so determining this requires
independent distance measurement.
A number of “indirect” methods have been found to determine distances of more distant galaxies:

2.3.1 The Tully-Fisher relation

Very briefly, this works because the more massive a galaxy is, the faster it will rotate. And because
there is a relationship between the mass of a galaxy and the light it emits (the mass-to-light
ratio) it is possible to derive a relation betweeen the rotation speed and luminosity:

| TullyFisher relation |

e

spiral galaxies rotaie, and the rotation
speed is proportional to the mass of
the galaxy

!

measurements of neutral hydrogen (HI)
HI display a *‘double~horned’” profile,

e W where the width of the line indicates the
mass
velocity
[ ] . .
a plot of line width versus absoluie
- ° *® luminosity of a galaxy is called the
luamjnoustiiy ® Tully—=Fisher relation. When calibrated
e? using galaxies with Cepheid distances,
P the TF relation is used to determine
b Hubble's constant.
L X ]
line width

Figure 20: Schematic of the Tully-Fisher relation.

That the Tully-Fisher relation works at all is somewhat surprising. It depends on three funda-
mental ideas:

e That galaxies must be circularly symmetric (so you can correct for inclination (sin i) effects).
This is not such a bad assumption for spiral galaxies.

e That all galaxies (of some type) have the same mass/luminosity relation. This is not true.

e That all galaxies have the same surface brightness. This is even more untrue — there even
exists a class “Low Surface Brightness” (LSB) galaxies — with the inevitable three letter
acronym (TLA).

In spite of the above, and with some precautions, a relation can be established, and is used for
distance-determination:
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Figure 21: Tully-Fisher relation for two clusters of galaxies. The vertical difference gives the relative dis-
tance/luminosity.

Figure 22: The Tully-Fisher relation between rotational velocity and I-band luminosity for a large sample of spiral
galaxies (Dell’ Antonio et al. 1996). Of course, before you can make a plot such as the above, you have to know the
luminosities of the galaxies — you have to be able to calibrate the system. This can be done, for example, if you
have Cepheids in a galaxy — if that galaxy is in a cluster, you have then a much bigger sample for the calibration.
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2.3.2 Type Ia supernovae

Type II supernovae are massive, evolved stars which run out of nuclear fuel and collapse, followed
by a massive explosion. Such explosions might have quite different luminosities.

Figure 23: Before (right) and after (left) photographs of SN1987a. The right hand plate is a good example of
“archive” material; probably one of the only times the precursor to a supernova has been identified.

Supernova 1987A Rings

Hubbkle Space Telescope
~Wide Field Planetary Camera 2

Figure 24: SN1987a in 1994.
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Type Ia supernovae, by contrast, are explosions of degenerate white dwarf stars which are pre-
sumably pushed over the Chandrasekhar limit by accreting material from a companion star — or
they might be a result of white dwarf mergers — which is much the same thing.

GOODS ref -

aes-176 L]

Figure 25: Very distant supernova from the Supernova Cosmology Project. The web page for the SCP is well
worth a look at panisse.lbl.gov

It is known that type Ia supernova do not have the same luminosity, but it turns out that
corrections for this can be made using the shape of the decline in light after the explosion.
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Figure 26: Hubble diagram produced using type Ia supernovae

Corrections based on multi-colour light curves appear to work well — see figure below — but there
are also reasons to treat this method with care.

e The supernova must be detected quickly to determine “peak” brightness, as the rise time is
short (it’s an explosion, after all).

e Interstellar (intergalactic) reddening estimates can be tricky. There’s not much material,
but the path length is long. “Local” material (near the supernova) can confuse things.
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e It is by no means clear that we understand what is happening well enough to believe these
objects are real “standard candles”.

Pednmtter, of al. (1998)
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Figure 27: Type la supernova results; testing the Universe.
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2.4 Exoplanets

The search for planets orbiting other stars (“exoplanets”) has required extraordinary care in
various ways:

e Ensuring that the spectrograph is extremely accurate and stable.
e Using novel data acquisition and reduction techniques.
e Paying particular care to correcting data for solar system effects.

In the case of the last item, this means (for example) taking great care in correcting to the
barycentre of the solar system. Jupiter has an effect on the Sun with an amplitude of 12.4 m/sec;
Saturn affects the Sun with an amplitude of 2.7 m/sec - for much stellar and galactic work, these
effects can usually be ignored, but not when searching for the tiny effects that planets orbiting
other stars would cause.

One exoplanet group led by Marcy & Butler (see the excellent web page ezoplanets.org) use an
echelle spectrograph which acquires the entire visible and near infrared spectrum at a resolution,

R = 62000.

Figure 28: Schematic for the high resolution spectrograph on the Keck telescope.

Unconventionally, but of vital importance, rather than acquire the comparison arcs before and
after the stellar spectrum, a comparison iodine spectrum is actually superimposed on the stellar
spectrum. This requires that each spectrum (star + iodine) be modelled — one of the parameters
that results from the modelling is the stellar radial velocity, and it has proved possible to attain
accuracies of 3 m/sec given a S/N ~ 200. This generally means using fairly big telescopes on
relatively bright stars — and, of course, a lot of telescope time is needed so that stars can be
followed for long and relatively continuous periods.
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Figure 29: Top — template iodine spectrum; Second — Template spectrum for 7 Ceti; Third — points are an
observation of 7 Ceti (+ iodine) and the line is the model; Bottom — 10 times the difference between model and
observations.
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Figure 30: Recently discovered variation in radial velocity of the KOV star, HD3651. The period, P = 62.23day;
eccentricity, e = 0.63; velocity amplitude, K = 15.9m/s; semi-major axis, a = 0.284 AU; and the derived M sin i =
0.2 M  — about the size of Saturn.
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Figure 31: Recently discovered variation in radial velocity of the G8/KO star, HD73256. P = 2.54858day;
e =0.029; K =269m/s; a = 0.037TAU; M sin i =187 M;.
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Figure 32: Two planets orbiting the G5IV star, HD168443. P; = 58.10day; e; = 0.53; Ky = 472.7m/s; a1 =
0.295AU; M, sin iy = 7.73 Mj. Py = 4.85yr; ea = 0.20; Ko = 289m/s; as = 2.8TAU; My sin is = 17.2 M
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Figure 33: Representation of the HD168443 system.
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Figure 34: Representation of the three planet system v And.
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Upsilon Andromedae: Outer Two Planets
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Figure 35: Actual data for v And.

A recent very interesting result (see figure below) shows that metal-rich stars are more likely
to have planets. This is not entirely surprising — if a star has no metals, you could not have
Earth-like planets. But is it suggesting that to have gas giants (like Jupiter), rocky or metallic
cores must first form ? A problem for you to research.
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Figure 36: Recent results on atmospheric analyses of stars with planets.
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Figure 37: PLanets (outside the solar system) detected to June 2005.
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