
   

Blackbody radiation

● Note: I am not following the derivation directly 
from the webite  
http://www.cv.nrao.edu/course/astr534/PDFnew.shtml

● It needs QM treatment to understand where it 
comes from (classical treatment has no limit to 
power you would emit). I use one from Harwit

– Martin Harwit 'Astrophysical Concepts' 

● You do not need to repeat the derivation, but do 
need to understand it!

http://www.cv.nrao.edu/course/astr534/PDFnew.shtml


   

6D Phase space

● In quantum mechanics particles are identical if 
they have the same spin and occupy the same cell 
in phase space (3D position, 3D momentum)

● so if we allow up to a maximum momentum p
max 

and 2 spin states we have a max number of 
particles in a volume V:

 x  y z p x py pz=h3

8 pmax
3 V

3h3



   

Photons

● 2 spins (LHC, RHC) bosons

● Freq  ν

● number of phase space cells from p to p+dp

● so from ν to ν+dν

≡
pc
h

Z  pdp=2V
4  p2 dp

h3

Z =2[
4

2 d 

c3
]V



   

States & Probabilities

● Bosons can aggregate with zero point energy
● Relative probability for photon to be in the nth  

energy state at temperature T
● Absolute probability
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Average energy per phase cell

● energy of that cell times its probability

● replace hν/kT by x 

∑
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continued..

● using (1+a+a2 +a3...) = 1/(1-a)
● numerator

● denominator
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Finally

● combining back

● so energy density per phase cell times phase cells 
per unit volume gives

● we can ignore ½hυ as it is not observable in 
emission or absorption; it is a zero-point
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Blackbody 

● General form

● Intensity per unit area per unit frequency per unit 
solid angle (expansion at c over 4π steradians)
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Stefan's Law

● integrate to infinity

● where σ is Stefan's constant, the radiation per unit 
area

5.67x10-8 Wm-2 K-4
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Approximations

● AT low frequency (radio)  ehν /kT ~ 1+hν/kT

● At high frequency (optical and above) 
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Wien's Law

● By differentiation
∂B
∂

=0 when =59GHz×T K 

∂B
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=0 when =
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Power from warm resistor

● The resistor is the electrical equivalent of a black 
body in 1 dimension instead of 3

P ,T =
h

eh / kT−1
≃kT at low frequencies



   

Johnson-Nyquist Resistor noise

● Independant of resistance!
● Related to CCD dark current noise
● Depends on Temperature only at low freq.
● Comes from the Fluctuation-Dissipation theorem 

of statistical mechanics
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