Worked Examples Set 1

Q.1. [Griffiths Example 4.5 and Problem 4.26] A metal sphere of radius a carries a charge Q. It is surrounded, out to radius b, by a linear dielectric with permittivity ε . (a) Find the potential at the centre. (V = 0 at ∞) Solution: We know $\vec{E} = 0$ inside the sphere, and $\vec{E} = -\nabla V$ so V at the centre = V at the surface of the sphere. This we can get by integrating \vec{E} from ∞ (where V = 0) to r = a. We should use Gauss's law, but for \vec{E} we will need to include \vec{P} . We can use Gauss's law for free charges, since we put free charge Q on the sphere. This gives \vec{D} (Gaussian sphere, rad. r): $\oint \vec{D} \cdot d\vec{a} = Q_{fenc} = Q \quad \Rightarrow \quad \vec{D} = \frac{Q}{4\pi r^2} \hat{r} \text{ for all } r > a$

Q.1. Solution [continued] Now $\vec{D} = \varepsilon \vec{E}$ in dielectric, $\vec{D} = \varepsilon_0 \vec{E}$ in vacuum $\Rightarrow \vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \hat{r} \ (r > b) \ , \ \frac{Q}{4\pi\epsilon_0 r^2} \hat{r} \ (a < r < b)$ The potential at the centre is then $V = -\int_{\infty}^{0} \vec{E} \cdot d\vec{r}$ $V = -\int_{\infty}^{b} \frac{Q}{4\pi\epsilon_{0}r^{2}} dr - \int_{b}^{a} \frac{Q}{4\pi\epsilon_{0}r^{2}} dr - \int_{a}^{0} 0 dr$ $= \frac{Q}{4\pi} \left\{ \left[\frac{1}{\varepsilon_0 r} \right]^b + \left[\frac{1}{\varepsilon r} \right]^a_b \right\} = \frac{Q}{4\pi} \left\{ \frac{1}{\varepsilon_0 b} + \frac{1}{\varepsilon a} - \frac{1}{\varepsilon b} \right\}$ (b) Find the bound surface charge densities on the inside and outside surfaces of the dielectric. Solution: The dielectric is linear, so $\vec{P} = \chi_e \varepsilon_0 \vec{E} = \frac{\chi_e \varepsilon_0 Q}{4\pi cr^2} \hat{r}$ This is constant so $\rho_b = -\nabla \cdot \vec{P} = 0$; there is only $\sigma_b = \vec{P} \cdot \hat{n}$ On the outer surface r = b and $\hat{n} = \hat{r}$ so $\sigma_{b(\text{out})} = \frac{\chi_e \varepsilon_0 Q}{4\pi s h^2}$

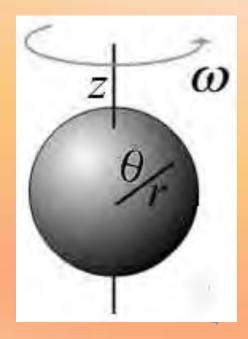
Q.1. Solution [continued] On the inner surface r = a and $\hat{n} = -\hat{r}$ (out w.r.t. dielectric) so $\sigma_{b(in)} = -\frac{\chi_e \varepsilon_0 Q}{4\pi \varepsilon_0 q^2}$ [Can you easily check total bound charge = 0 ?] (c) Find the energy stored in this system. Solution: $U = \frac{1}{2} \int \vec{D} \cdot \vec{E} \, d\mathcal{V} = \frac{1}{2} \int DE d\mathcal{V}$ with \vec{D} and \vec{E} from (a); $D = \frac{Q}{4\pi r^2}$ (all r), $E = \frac{Q}{4\pi \epsilon r^2}$ (a < r < b), $\frac{Q}{4\pi \epsilon_0 r^2}$ (r > b) Integrate over 'spherical shell' $4\pi r^2 dr$ from $a \rightarrow b \rightarrow \infty$: $U = \frac{1}{2} \left(\frac{Q}{4\pi} \right)^2 \left\{ \int_a^b \frac{1}{r^2} \frac{1}{\epsilon r^2} 4\pi r^2 dr + \int_b^\infty \frac{1}{r^2} \frac{1}{\epsilon_0 r^2} 4\pi r^2 dr \right\}$ $= \frac{Q^2}{8\pi} \left\{ \frac{1}{\varepsilon} \left[\frac{-1}{r} \right]_a^b + \frac{1}{\varepsilon_0} \left[\frac{-1}{r} \right]_b^\infty \right\} = \frac{Q^2}{8\pi\varepsilon_0} \left\{ \frac{1}{\varepsilon_r} \left(\frac{1}{a} - \frac{1}{b} \right) + \frac{1}{b} \right\}$ $= \frac{Q^2}{8\pi\varepsilon_0\varepsilon_r} \left\{ \frac{1}{a} + \frac{(\varepsilon_r - 1)}{b} \right\}$

Q.2. [Griffiths Problem 5.6]

(a) A phonograph record carries a uniform surface density of "static electricity" σ . If it rotates at constant angular velocity ω , what is the surface current density K (magnitude) at a distance r from the center?

(b) A uniformly charged solid sphere, of radius R and total charge Q, is centered at the origin and spinning at a constant angular velocity ω about the z axis. Find the current density \vec{J} at any point (r, θ, ϕ) within the sphere. [Hint: $\vec{J} = \rho \vec{v}$]





Q.2. Solution:

(a) (see ED-04-Magnetostatics, slide 2): Surface current density $K = \sigma v$ At radius r, $v = r\omega$ so very simply

 $K = \sigma r \omega$

(b) Let's take the hint: $\vec{J} = \rho \vec{v}$ Volume charge density $\rho = \frac{Q}{v} = \frac{Q}{\frac{4}{2}\pi R^3} = \frac{3Q}{4\pi R^3}$

Now \vec{v} will be in the $\hat{\phi}$ direction (azimuthal) and a point distance r from the centre ($0 \le r \le R$) will rotate in a circle of radius $r \sin \theta$.

Thus
$$\vec{v} = \omega r \sin \theta \ \hat{\phi}$$

and so $\vec{J} = \rho \vec{v} = \frac{3Q}{4\pi R^3} \omega r \sin \theta \ \hat{\phi}$

Q.3. A solenoid is made by winding n turns of wire per unit length onto a paramagnetic rod of permeability μ_1 which has a radius a and length $l \gg a$. This solenoid is surrounded by a region of permeability μ_2 which extends to infinity parallel to the axis and radially out to radius 2a. Outside this region the magnetic field is zero. (a) Use flux conservation ($\oint \vec{B} \cdot d\vec{S} = 0$) to show that, well away from the ends, the magnetic field inside the solenoid is three times that outside.

(b) Show that the field inside the solenoid has magnitude

 $B = n I \frac{3\mu_1\mu_2}{\mu_1 + 3\mu_2}$ where *I* is the current in the solenoid.

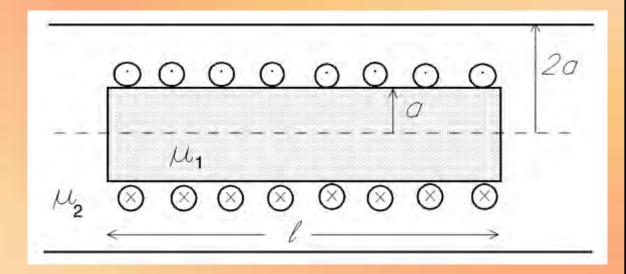
20 M

Q.3. Solution: (a) Since $\overline{B} = 0$ outside the region and $\nabla \cdot \overline{B} = 0$, all field lines emerging from the end of the solenoid must loop back through region 2 to conserve the flux. Thus

$$\Phi = \int_{S_1} \vec{B}_1 \cdot d\vec{S}_1 = \int_{S_2} \vec{B}_2 \cdot d\vec{S}_2$$

Assuming the magnetic field is uniform (away from the ends) this means (solving the integrals) $P_{\alpha} \pi a^2 = P_{\alpha} (\pi (2\alpha)^2 - \pi \alpha^2) \implies P_{\alpha} = 2P_{\alpha}$

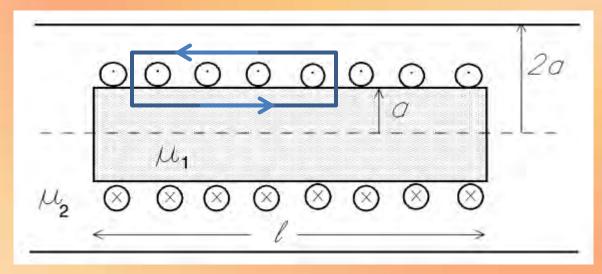
$$B_1 \pi a^2 = B_2(\pi (2a)^2 - \pi a^2) \implies B_1 = 3B_2$$



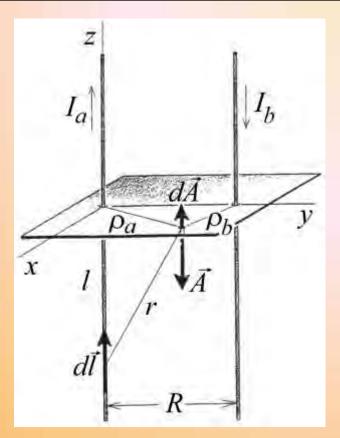
Q.3. Solution: (b) Apply Ampere's circuital law to the anticlockwise rectangular path shown: $\oint \vec{H} \cdot d\vec{l} = n I dl$ (*n* turns per unit length, *n dl* times current *I* in length *dl*)

i.e. $H_1 dl + H_2 dl = n I dl$ (\overline{H} parallel to $d\overline{l}$ in both media)

i.e.
$$\frac{B_1}{\mu_1} + \frac{B_2}{\mu_2} = n I$$
 But $B_1 = 3B_2$ from part (a) so
 $B_1\left(\frac{1}{\mu_1} + \frac{1}{3\mu_2}\right) = n I \implies B = \left(\frac{3\mu_1\mu_2}{\mu_1 + 3\mu_2}\right) n I$



Q.4. [A rather long and involved Example from Lorrain & Corson, Ch. 7] The figure shows two long parallel wires separated by distance R and carrying equal and opposite currents I_a and I_b . (a) Calculate the magnetic vector potential \overline{A} as a function of position. (b) Calculate the magnetic field \overline{B} as a function of position.



(c) What is *B* at the midpoint between the two wires?

[Hint: Begin with one wire of finite length 2*L*, and first find the equation for \vec{A} for this length (assume distance from the wire $\rho \ll L$). Let the distances be ρ_a and ρ_b from the two wires, and add the two vector potentials. Then let $L \rightarrow \infty$ for a long wire.]

Q.4. Solution: (a) For one long straight wire $\vec{A} = \int \frac{\mu_0 I}{4\pi} \frac{d\vec{l}}{r}$ where $Id\vec{l}$ is always in the *z*-direction here. For length 2*L*, integrate from 0 to *L* and multiply by 2 :

 A_{i}

if $\rho^2 \ll L^2$

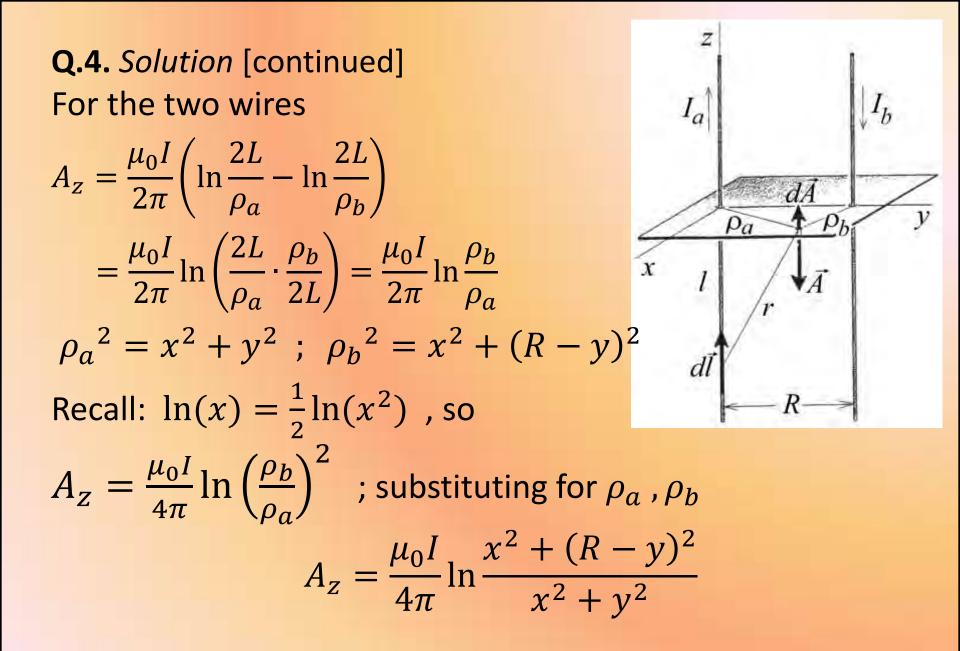
$$z = 2 \frac{\mu_0 I}{4\pi} \int_0^L \frac{dl}{\sqrt{l^2 + \rho^2}}$$

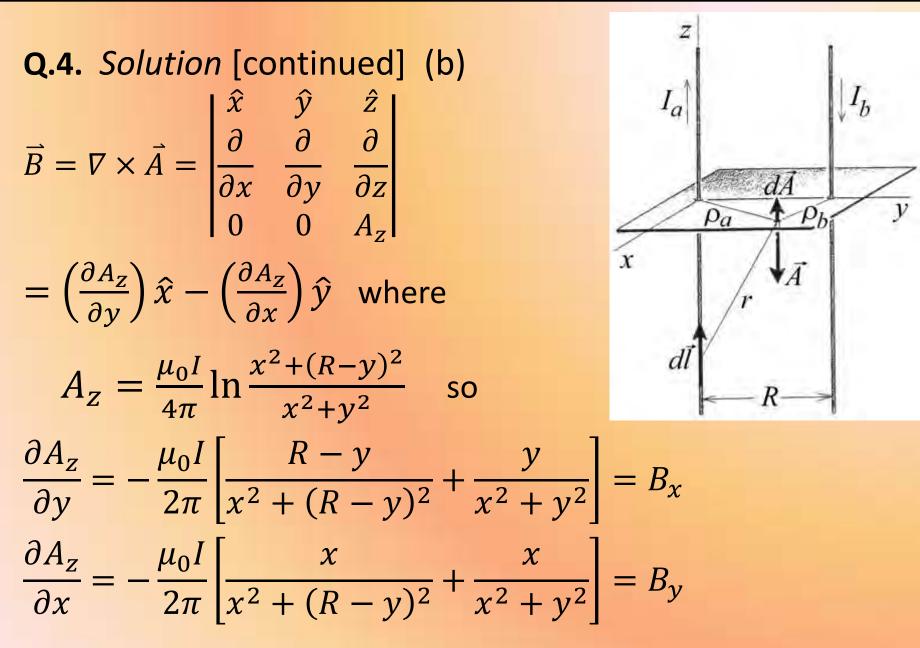
$$= \frac{\mu_0 I}{2\pi} \Big[\ln \Big\{ l + \sqrt{l^2 + \rho^2} \Big\} \Big]_0^L$$

$$= \frac{\mu_0 I}{2\pi} \Big[\ln L \Big\{ 1 + \sqrt{1 + \rho^2 / L^2} \Big\} - \ln \rho \Big]$$

$$\approx \frac{\mu_0 I}{2\pi} \Big[\ln 2L - \ln \rho \Big] = \frac{\mu_0 I}{2\pi} \ln \frac{2L}{\rho}$$

re,
$$\begin{bmatrix} z \\ I_a \end{bmatrix}$$
 $\begin{bmatrix} I_b \\ I_b \end{bmatrix}$ $\begin{bmatrix} dA \\ P_a \\ P_a \\ P_b \end{bmatrix}$ $\begin{bmatrix} A \\ P_b \end{bmatrix}$ $\begin{bmatrix} V \\ V \\ V \\ A \\ \hline R \end{bmatrix}$

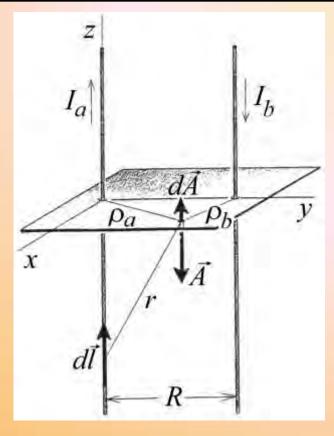




[x and y components of the curl respectively]

Q.4. Solution [continued] (c) At the midpoint between the two wires x = 0, y = R/2 (and R - y = R/2) and so from (b)

$$B_{x} = -\frac{\mu_{0}I}{2\pi} \left[\frac{1}{R/2} + \frac{1}{R/2} \right] = -\frac{2\mu_{0}I}{\pi R}$$
$$B_{y} = 0$$



Note *B* is in the negative x-direction.

[Check that this is what you would expect by applying the right hand rule, using the given directions of the currents.]