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1. Dispersion and group velocity 

2. Wave polarization 

3. (EM waves in plasmas) 



Dispersion 
• Dispersion is the phenomenon of the  
 frequency dependence of refractive index. 
 𝑛 is not really a constant, rather 𝑛 = 𝑛 𝜔  
• A medium in which the wave speed or  
 refractive index depends on frequency is  
 called a dispersive medium,  e.g. glass  
• We noted earlier that for transparent media 

 𝑛 ≅ 𝐾 = 𝜀𝑟 , and the frequency dependence of 𝑛 can be 
explained using a model for the behaviour of electrons in 
dielectrics in terms of damped harmonic motion. This model 
leads to Cauchy’s formula  𝑛 = 1 + 𝐴 1 + 𝐵 𝜆2   where  

 𝐴 = coefficient of refraction , 𝐵 = coefficient of dispersion, 
 accounting for the slow increase of 𝑛 with frequency (or 

decrease with increasing wavelength, as in the graph above). 
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Group Velocity 
• In a dispersive medium, the velocity of the wave   𝑣 = 𝜔 𝑘   

i.e. the phase velocity (𝑣  of a surface of constant phase) 
varies with frequency, i.e. a different 𝜔 has a different 𝑣   

• A waveform which includes a range of frequencies (and Fourier 
theory says any wave train of finite length has a range of 𝜔) 
will change shape as it propagates. 

• While each frequency component travels at the phase velocity, 
the wave group, or wave packet, or envelope, travels at the 

group velocity  𝑣𝑔 =
𝑑𝜔

𝑑𝑘
   and this is the speed at which 

energy is transported by the wave. 
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Group Velocity and Dispersion 

• Group velocity  𝑣𝑔 =
𝑑𝜔

𝑑𝑘
   and 𝜔 = 𝑘𝑣  so  𝑣𝑔 = 𝑣 + 𝑘

𝑑𝑣

𝑑𝑘
 

• In non-dispersive media  𝑑𝑣 𝑑𝑘 = 0 and so  𝑣𝑔 = 𝑣  

 (all frequencies travel at the same speed). 

• In dispersive media where 𝑛 𝑘  is known, 𝜔 = 𝑘 𝑐 𝑛  and so 

𝑣𝑔 =
𝑐

𝑛
−

𝑘𝑐

𝑛2
𝑑𝑛

𝑑𝑘
       or  𝑣𝑔 = 𝑣 1 −

𝑘

𝑛

𝑑𝑛

𝑑𝑘
 

• For optical media with normal dispersion, 𝑑𝑛 𝑑𝑘 > 0  and 

therefore 𝑣𝑔 < 𝑣 : group velocity is less than phase velocity. 

• The relationship between 𝜔 and 𝑘 , i.e. 𝜔 𝑘  , is called a 
dispersion relation. e.g. plane EM waves in a conductor obey 
a dispersion relation  

 (look again at the  
 last slide of ED-08) 
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A Note on Complex Amplitudes 
• We have written a plane wave  

 as e.g. 𝐸 (𝑧, 𝑡) = 𝐸0𝑒
𝑖(𝑘𝑧−𝜔𝑡) 

= 𝐸 0[cos 𝑘𝑧 −𝜔𝑡 + 𝑖 sin 𝑘𝑧−𝜔𝑡 ] 

with real electric field given by 𝐸 (𝑧, 𝑡) = 𝐸0 cos 𝑘𝑧 − 𝜔𝑡  

and the amplitude  𝐸0 appearing in both these eqns. is real. 
•    In general a wave may have initial phase angle (or “phase 
constant” or “phase offset”) denoted by  or  , and the wave 

function is  𝐸0𝑒
𝑖(𝑘𝑧−𝜔𝑡+𝛿) with real part  𝐸 0 cos 𝑘𝑧 −𝜔𝑡+𝛿 . 

This can be written as 𝐸0𝑒
𝑖𝛿𝑒𝑖(𝑘𝑧−𝜔𝑡). Now we can treat 𝐸0𝑒

𝑖𝛿  

as complex amplitude 𝐸 0 with modulus 𝐸0 = real amplitude, 
argument 𝛿 = phase constant. Then the complex wave fn. is  

𝐸 (𝑧, 𝑡) = 𝐸 0𝑒
𝑖(𝑘𝑧−𝜔𝑡).  Ignoring the imaginary part of 𝐸 0 is 

equivalent to putting  phase constant  𝛿 = 0. 5 



Polarization of EM Waves 
• So far we have only encoutered linearly polarized waves, 

where the direction of 𝐸 is constant. We now generalise... 
• We can take the direcion of wave propagation to be the 𝑧- 

axis as before, without any loss of generality. Then a plane 

wave is  𝐸 𝑧, 𝑡 = 𝐸 𝑥𝑥 + 𝐸 𝑦𝑦 𝑒𝑖(𝑘𝑧−𝜔𝑡)  

 where we now use complex amplitudes because we can 
have a phase difference between 𝑥 and 𝑦 components. 

• The relationship between 𝑬 𝒙 and 𝑬 𝒚 describes the state 

of polarization, e.g. 𝐸 𝑦 = 0   linearly polarized in 𝑥  dir. 
• Often the most convenient form 
 is to have one amplitude real and  
 a relative phase difference  
 between the two components. 
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Circular Polarization 
• Consider as an example  𝐸 𝑦 = 𝑖𝐸 𝑥 with 𝐸 𝑥 real. This 

means 𝐸 𝑦 is out of phase with 𝐸 𝑥 by 𝑖 = 𝑒𝑖𝜋 2  or 𝛿 =
𝜋

2
 . 

The real field of the plane wave is    

𝐸 𝑧, 𝑡 = Re 𝐸𝑥𝑒
𝑖(𝑘𝑧−𝜔𝑡)𝑥 + 𝐸𝑥𝑒

𝑖𝜋 2 𝑒𝑖(𝑘𝑧−𝜔𝑡)𝑦   

= 𝐸𝑥 cos 𝑘𝑧−𝜔𝑡 𝑥 +𝐸𝑥 cos 𝑘𝑧−𝜔𝑡+𝜋 2 𝑦  

= 𝐸𝑥 cos 𝑘𝑧 − 𝜔𝑡 𝑥 − sin 𝑘𝑧 − 𝜔𝑡 𝑦   

So the field in the 𝑦-dirn. lags the 𝑥-dirn. by 

1 4  cycle. The magnitude of 𝐸 is constant  

and 𝐸 rotates in a circle in the 𝑥𝑦 plane.  

This is (left) circularly polarized light. 
e.g. VLF “whistler mode” waves in the  

plasmasphere are left circularly polarized. 
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Left and Right Handedness 
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• Either: if a “snapshot” or “frozen in time view,  

as on the previous slide, shows 𝐸 rotating  
as a “right handed screw” when moving  

in the direction of 𝑘 , this is right  
handed; if in the opposite 
direction, it is left handed. 
• Or: imagine looking along  

the 𝑘 direction and seeing  
the light falling on a screen  
(i.e. fixed 𝑧, varying with 𝑡); 

if 𝐸 rotates anticlockwise, this is right  

handed, if 𝐸 rotates clockwise it is left handed. 
These are “ ℛ-state” and “ℒ-state” polarization respectively. 

ℛ 

ℒ 



Left and Right Handedness 
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• R :  

ℛ 

ℛ 
ℒ 



Elliptical Polarization 
• More generally 𝐸 can rotate and change in magnitude 
• One can show that then the components obey the eqn. 

𝐸𝑥

𝐸0𝑥

2
+

𝐸𝑦

𝐸0𝑦

2

− 2
𝐸𝑥

𝐸0𝑥

𝐸𝑦

𝐸0𝑦
cos 𝛿 = sin2 𝛿  

 ellipse at angle 𝛼 to 𝐸𝑥 where tan 2𝛼 =
2𝐸0𝑥𝐸0𝑦 cos 𝛿

𝐸0𝑥
2−𝐸0𝑦

2  

Put  𝛼 = 0 (or 𝛿 = ±𝜋 2 ,±3𝜋 2 ,…)  familiar eqn. for an 

ellipse  
𝐸𝑥

𝐸0𝑥

2
+

𝐸𝑦

𝐸0𝑦

2

= 1  and if  𝐸0𝑥 =𝐸0𝑦 =𝐸0  we get a 

circle    𝐸𝑥
2 + 𝐸𝑦

2 = 𝐸0
2 .      If   𝛿 = 𝑛𝜋, 𝑛 even, we have  

linear    𝐸𝑦 = 𝐸0𝑦 𝐸0𝑥 𝐸𝑥     If   𝛿 = 𝑛𝜋,  𝑛 odd, 

linear    𝐸𝑦 = − 𝐸0𝑦 𝐸0𝑥 𝐸𝑥  (negative slope) 
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Elliptical Polarization 
• Elliptical polarization is “ℰ-state” (special cases ℒ , ℛ , 𝒫 ) 

• In the chart below, 𝛿 is the angle “𝐸𝑥 leads 𝐸𝑦 by”: 
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Elliptical Polarization 
• Determine the major and minor axes of the 

ellipse by finding the angle (w.r.t. 𝑥-axis) at 
which an intensity max. or min. occurs. 

• Define 𝐸 eff = 𝐸𝑥
2 + 𝐸𝑦

2
𝑒−𝑖𝜙𝑥   [‘effective’ 𝐸]  

 𝐴 = 𝐸𝑥 𝐸 eff   ,  𝐵 = 𝐸𝑦 𝐸 eff  ,  𝛿 = 𝜙𝑦 − 𝜙𝑥 

• An axis (may be major or minor) occurs at 

 𝛼 = 1

2
tan−1

2𝐴𝐵 cos 𝛿

𝐴2−𝐵2
    

• The other axis (minor or major) is at 𝛼 ±
𝜋

2
 

• Find magnitude of 𝐸 at 𝛼 and at 𝛼 ± 𝜋 2  : 

𝐸 𝛼 = 𝐸eff 𝐴2 cos2𝛼+𝐵2 sin2𝛼+𝐴𝐵cos𝛿 sin2𝛼 

𝐸 𝛼±
𝜋

2
= 𝐸eff 𝐴2 sin2𝛼+𝐵2 cos2𝛼−𝐴𝐵cos𝛿sin2𝛼 

 The larger of these must be the major axis. 12 



Elliptical Polarization 
 Elliptically polarized light can be characterized by  

•  ellipticity = ratio of minor axis to major axis: 𝑒 = 𝐸min 𝐸max  

 where  0 ≤ 𝑒 ≤ 1  [0 = linear , 1 = circular polarization] 

•  helicity or “handedness”, determined by the value of 𝛿 :  

 0 < 𝛿 < 𝜋  → left ,   𝜋 < 𝛿 < 2𝜋  → right  

Example: Elliptically polarized light with 𝐸-field components 

𝐸𝑥 = 𝐸 eff 2   ;   𝐸𝑦 = ( 𝐸 eff 2  )𝑒𝑖𝜋 4  
We find 𝛼 = 𝜋 4 = 45° ; calculating 𝐸 gives 
𝐸 𝛼 = 0.924 𝐸eff  (major) 

𝐸 𝛼−𝜋
2 = 0.380 𝐸eff  

Then the ellipticity is 

 𝑒 =
𝐸min

𝐸max
=

0.380

0.924
= 0.41 
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Linear Polarizers 
•  “Polaroid” is an example of a linear 
 polarizer. It has long molecules  
 (polymer chains) in a particular direction. 

 When 𝐸 ∥ molecules, they conduct and  

 light is absorbed; when 𝐸 ⊥ , no current  
 and no absorption:  light is transmitted. 
• Direction in which light transmitted =  
 transmission axis (for polaroid this is ⊥  
 polymer chains; there are many others) 
• A polarizer changes the state of polarization  

 by only allowing 𝐸 components ∥ the trans- 
 mission axis. e.g. If transmission axis is in  
 𝑥-direction, only 𝐸𝑥 emerges and 𝐸𝑦 → 0. 
• Linear (“plane”) polarization is “𝒫-state”. 
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Malus’s Law 
• Suppose “natural light” or “unpolarized light” with intensity 
𝐼0 is incident on linear polarizer; we get out light linearly 
polarized in the direction of the optic axis, intensity 𝐼0/2.  

• If this light is then incident on another polarizer, the 
“analyzer”, with its axis at angle 𝜃 to the first, only the 

component of 𝐸 ∥ axis is transmitted, i.e. 𝐸 cos 𝜃. 
• The intensity of the output light is then  ∝ cos2 𝜃 ; this is 

Malus’s law:  𝐼 𝜃 = 𝐼 0 cos2 𝜃  with 𝐼 0 = maximum. 
• Overall, the final 
 output intensity 
 from the two  
 polarizers is 
 𝐼 𝜃 = 𝐼0 2 cos2 𝜃 
•  Of course  𝐼 𝜋 2 = 0 15 



Wave Plates 
• A “wave plate” or “retarder” is typically made from a 

birefringent crystal, which has two values of 𝑛 , depending 

on the direction of polarization (i.e. direction of 𝐸 ) 
• Such a crystal (e.g. calcite, below) has a “fast axis” and a  

 “slow axis”, such that if 𝐸 ∥ fast axis, 𝑛 = 𝑛fast,  

 and if 𝐸 ∥ slow axis (i.e.  fast axis),  𝑛 = 𝑛slow,   
 where  𝑛slow > 𝑛fast  [ so that 𝑣slow < 𝑣fast  since 𝑛 = 𝑐 𝑣  ] 
  e.g. calcite has  𝑛slow = 1.658  and 𝑛fast = 1.486 
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Wave Plates 
• For light polarized at some angle 𝜃, the two components 

(fast and slow or “ordinary” and “extraordinary” [“o” and “e”]) 
travel at different speeds, so 

 the effect of a wave plate is to  
 introduce a phase difference 𝛿  
 between the two components 
 𝛿 = 𝑘slow𝑑 − 𝑘fast𝑑 
     = 2𝜋𝑑 𝜆0 𝑛slow − 𝑛fast   
 where 𝑑 is the thickness of the  
 plate, which can be adjusted  
 for any desired 𝛿 , and 𝜆0 is  
 the  wavelength in vacuum. 
• The ionosphere is birefringent;  
 the phase difference between ordinary and  
 extraordinary waves is ∝ ambient mag. field. 
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Wave Plates 
• Quarter wave plate produces a phase difference 

 𝛿 = 𝑘slow𝑑 − 𝑘fast𝑑 = 𝜋 2 + 2𝜋 𝑚   
 where 𝑚 is an integer (𝑚 = 0 is  
 ‘zero order’) so the polarization  
 component along the slow axis 
 is delayed by 𝜆 4   (for 𝑚 = 0).  
 linear  circular polarization 

• Half wave plate produces a phase difference 

 𝛿 = 𝑘slow𝑑 − 𝑘fast𝑑 = 𝜋 + 2𝜋 𝑚   
 where 𝑚 is an integer (𝑚 = 0 is  
 ‘zero order’) so the polarization  
 component along the slow axis 
 is delayed by 𝜆 2   (for 𝑚 = 0). 
 linear  linear polarization at 2𝜃 
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Polarization by Reflection 
• If 𝐸 is ⊥ plane of incidence, the bound electrons in the 

material oscillate and re-radiate, with both reflected and 
transmitted waves ⊥ PoI. 

• However, if 𝐸 is ∥ plane of incidence,  
 the oscillations of the bound electrons 
 are not as effective in contributing to  
 the reflected wave because of the  
 small angle to the dipole axis. 

• At the Brewster angle (only for 𝐸 ∥ ) 
 of course there is no reflected wave. 
• This means that the reflected wave has  
 a smaller proportion ∥ PoI; it is mostly 
 polarized ⊥ plane of incidence, i.e.  
 parallel to the surface. 19 



Polarization by Reflection 
• So the reflected wave is (at least partially)  polarized  
 parallel to the surface. If the surface is horizontal then a 
 polarizer with its transmission axis  
 vertical will be effective in cutting out  
 this reflected “glare” (see below) 
 
 
 
 
 
 

 

 
 
    Polaroid axis horizontal (L) and vertical (R) 20 



Polarization by Scattering 
• Scattering of light by objects small compared to  
 the wavelength is known as Rayleigh scattering; 
 it’s what makes the sky appear blue.  
 [scattered intensity ∝ 𝜔4] 
• Consider unpolarized light incident on an 
 air molecule; it can be represented by two 
 orthogonal (and incoherent)  𝒫-states,  
 both of which result in linearly polarized 
 light scattered perpendicular to the  
 incident direction [see figure]. 
• This can be observed as shown in the  
 photo, looking in a direction at 90° to the  
 direction of the Sun. The upper polaroid is 
 darker, indicating partial polarization. 21 



Partial Polarization; Stokes Parameters 
• We often have light which is partially  polarized, rather than all 

polarized in a particular way. Stokes parameters describe this.  
• Operational definition: imagine 4 filters, each of which will 

transmit 50% of natural light, as follows (intensity out given): 
 (1) isotropic, all polarization states transmitted equally : 𝐼0 
 (2) linear polarizer, axis horizontal : 𝐼1 
 (3) linear polarizer, axis at 45° : 𝐼2 
 (4) circular polarizer, extinguishing ℒ-states : 𝐼3 
• The Stokes parameters are then defined in terms of these 𝐼’s, 

and related to the electric fields by  

 𝒮0 = 2𝐼0 ≡ 𝐸0𝑥
2 + 𝐸0𝑦

2    ;    

 𝒮1 = 2𝐼1 − 2𝐼0 ≡ 𝐸0𝑥
2 − 𝐸0𝑦

2  

 𝒮2 = 2𝐼2 − 2𝐼0 ≡ 2𝐸0𝑥𝐸0𝑦 cos 𝛿  ;  

 𝒮3 = 2𝐼3 − 2𝐼0 ≡ 2𝐸0𝑥𝐸0𝑦 sin 𝛿  22 



Partial Polarization; Stokes Parameters 
• Note the “equivalence” symbol in the equations: we have 

dropped the constant 𝜀0𝑐 2  ; and 𝛿 here is the phase 

difference between 𝐸 𝑥and 𝐸 𝑦, i.e. 𝛿 = 𝜙𝑦 − 𝜙𝑥 

• The Stokes parameters are usually normalised by dividing by  
𝒮0 ; this means effectively that we have an incident beam 
with “unit intensity”.  With these normalised parameters... 

• Natural light (unpolarized) has Stokes vector  

𝒮0
𝒮1
𝒮2
𝒮3

=

1
0
0
0

 

• Others: horiz. 𝒫 

1
1
0
0

  vert. 𝒫 

1
−1
0
0

  circ. ℛ 

1
0
0
1

  circ. ℒ 

1
0
0
−1

 

 (usually written in this way as a column vector) 
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Partial Polarization; Stokes Parameters 
• The degree of polarization is defined as  𝑉 = 𝐼𝑝 𝐼𝑝 + 𝐼𝑢   

where 𝐼𝑝 and  𝐼𝑢 are polarized and unpolarized intensities. 

 It varies between 0 (all unpolarized) and 1 (all polarized). 
• 𝑉 can be obtained from the Stokes parameters as    

   𝑉 = 𝒮1
2 + 𝒮2

2 + 𝒮3
2 𝒮0    

•  When light passes through a device which changes its state 
of polarization (e.g. a quarter wave plate), this can be 
represented as a matrix operating on the Stokes vector to 
generate a new vector representing the output. These are 
known as Mueller matrices. There is also a system of 2D 
vectors, the Jones vectors, operated on by 2 × 2 Jones 
matrices representing the devices, but this system only 
works for completely polarized light (𝑉 = 1). 
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Optical Activity; Faraday Rotation 
• There are numerous “optically active” materials 
 which cause the direction of polarization of an  
 EM wave to rotate. If the rotation is clockwise 
 looking in the direction of the source, this is “d-rotatory”   
 (right handed); if anticlockwise, it is “l-rotatory” (left handed). 
• Faraday observed the rotation of the plane of polarization 

when a strong magnetic field was applied to a material. If a 
linearly polarized wave is viewed as the superposition of left 
and right circularly polarized waves, one finds these travel at 
slightly different speeds, causing the plane of polarization to 

rotate. The resulting eqn. is  ∆𝜑 =
𝑒3

2𝜀0𝑚𝑒
2𝑐 𝜔2  𝑛𝑒 𝑧 𝐵0 𝑧 𝑑𝑧  

so the rotation angle depends on the integral of electron 
density × magnetic field along the path. This is used in 
astronomy (extensively) and ionospheric physics. 25 



References for Polarization 

• Eugene Hecht, Optics , 4th Edition, Addison-Wesley, 2002 

• Justin Peatross & Michael Ware, Physics of Light and 

Optics, Brigham Young University, free online textbook 

plus resources (animations etc.) at  optics.byu.edu  
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