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1. Plane EM waves in linear materials 

2. Reflection and refraction at materials interfaces 

3. Fresnel equations 

4. Plane EM waves in conductors 



EM Spectrum 
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EM Waves in l.i.h. Materials 

• For l.i.h. materials, the same arguments leading the wave 

eqns. for 𝐸 and 𝐵 apply as for free space; all we do is 
replace 𝜀0 and 𝜇0 by 𝜀 and 𝜇 for the material. The wave 
eqns. are (i) inhomogeneous wave eqns. (with sources) 

   𝛻2𝐸 = 𝜇𝜀
𝜕2𝐸

𝜕𝑡2
+ 𝜇

𝜕𝐽 𝑓

𝜕𝑡
+ 𝛻

𝜌

𝜀0
 

  𝛻2𝐵 = 𝜇𝜀
𝜕2𝐵

𝜕𝑡2
− 𝜇𝛻 × 𝐽   

 (ii) homogeneous wave eqns. (no charges or currents) 

   𝛻2𝐸 = 𝜇𝜀
𝜕2𝐸

𝜕𝑡2
     𝛻2𝐵 = 𝜇𝜀

𝜕2𝐵

𝜕𝑡2
 

• The wave speed is now   𝑣 = 1 𝜇𝜀 < 𝑐  
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Refractive Index 

• Define refractive index (or “index of refraction”) of a 

material:  𝑛 =
𝑐

𝑣
=

𝜇𝜀

𝜇0𝜀0
  

• Now for almost all non-ferromagnetic materials 𝜇 ≅ 𝜇0  
(or 𝜇𝑟 ≅ 1).   Also  𝜀 𝜀0 = 𝜀𝑟 = 𝐾 (dielectric constant) so 

    𝑛 ≅ 𝐾 
 - the refractive index of a material is very nearly equal to 
 the square root of its dielectric constant.  
• All the results for free space carry over to l.i.h. materials if 

we change  𝜀0 → 𝜀  and  𝜇0 → 𝜇  and then 𝑐 → 𝑣 
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Plane EM Waves in l.i.h. Materials 

• So we have plane wave solutions as before 

 𝐸 𝑧, 𝑡 = 𝐸0𝑒
𝑖(𝑘𝑧−𝜔𝑡)   ;    𝐵 𝑧, 𝑡 = 𝐵0𝑒

𝑖(𝑘𝑧−𝜔𝑡) 

 but now  𝜔 𝑘 = 𝑣  , the wave speed in the material.  

• The wave vectors are now related by  (with 𝑣 = 1 𝜇𝜀  ) 

 𝐵 = 𝑘 × 𝐸 /𝑣      or      𝑣 = 𝐸 × 𝐵 𝐵2    

 e.g. Glass has 𝑛 = 1.5   so  𝑣glass = 𝑐 𝑛 = 2.0 × 108 m/s  
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Wave Energy in Materials 

• Continuing transcribing  𝜀0 → 𝜀 and 𝜇0 → 𝜇 and 𝑐 → 𝑣 , 
we get the energy density of the fields in l.i.h. materials: 

  𝑢𝑒 = 1

2
𝜀𝐸2  ;   𝑢𝑚 =

𝐵2

2𝜇
 

• The Poynting vector is       𝑆 = 𝐸 × 𝐻 = 𝐸 × 𝐵 𝜇   

 and the wave intensity is    𝐼 = 𝑆 = 1

2
𝑣 𝜀𝐸0

2 

•  Notice here that  𝑣 = 𝑐 𝑛   and  𝑛 = 𝜀𝑟   or  𝜀𝑟 = 𝑛2.  
This means that if a wave passes from vacuum into a 
material, since 𝑆  must be the same (conservation of 
energy), 𝐸0 will be smaller in the material and  𝐵0 = 𝐸0 𝑣   
will be larger. This is illustrated in the following example... 
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Wave Energy in Materials: Example 
Example : A laser beam in vacuum has a power of 20 MW and  

a radius of 1 mm.  (a) Find the magnitudes of 𝐸 and 𝐵.  
(b) The beam then travels in glass with refractive index 1.6.  

Find the magnitudes of 𝐸 and 𝐵 now. 

Solution : (a) The beam intensity is  [in vacuum  𝑆 = 1

2
𝑐 𝜀0𝐸0

2] 

𝐼 = 𝑆 = 𝑃 𝐴 = 20× 106 𝜋 10−3 2 = 6.4 × 1012 W/m2 

  𝐸0 =
2 𝑆

𝑐𝜀0
=

2×6.4×1012

3×108×8.85×10−12 = 6.9 × 107 V/m  

  𝐵0 = 𝐸0 𝑐 = 6.9 × 107 3 × 108 = 0.23 T 
(b) 𝑛 = 1.6 so 𝑣 = 𝑐 𝑛 = 3× 108 1.6 = 1.88× 108 m/s 

and  𝜀𝑟 = 𝑛2 = 1.6 2 = 2.56  so  𝜀 = 𝜀𝑟𝜀0 = 2.27× 10−11 F/m 
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𝐸0 =
2 𝑆

𝑣 𝜀
=

2×6.4×1012

1.88×108×2.27×10−11  = 5.5×107 V/m   ;  𝐵0 = 0.28 T 



Materials Interfaces: Normal Incidence 
• 𝑥𝑦-plane is boundary between  
 materials 1 and 2  (𝑛1 , 𝑛2) 
• Plane wave in 𝑧-direction,  

 polarized in 𝑥-direction, normal 

 incidence from left:  

 𝐸𝐼 𝑧, 𝑡 = 𝐸0𝐼𝑒
𝑖(𝑘1𝑧−𝜔𝑡)𝑥  

 𝐵𝐼 𝑧, 𝑡 = (𝐸0𝐼/𝑣1)𝑒
𝑖(𝑘1𝑧−𝜔𝑡)𝑦  

• There is a reflected wave and a transmitted wave : 

 𝐸𝑅 𝑧, 𝑡 = 𝐸0𝑅𝑒
𝑖(−𝑘1𝑧−𝜔𝑡)𝑥    (in 1, to left) 

 𝐵𝑅 𝑧, 𝑡 = −(𝐸0𝑅/𝑣1)𝑒
𝑖(−𝑘1𝑧−𝜔𝑡)𝑦  (𝐵 reverses) 

 𝐸𝑇 𝑧, 𝑡 = 𝐸0𝑇𝑒
𝑖(𝑘2𝑧−𝜔𝑡)𝑥    (in 2, to right) 

 𝐵𝑇 𝑧, 𝑡 = (𝐸0𝑇/𝑣2)𝑒
𝑖(𝑘2𝑧−𝜔𝑡)𝑦  

8 



Materials Interfaces: Normal Incidence 
• We apply the boundary conditions  
 𝜀1𝐸1𝑛 = 𝜀2𝐸2𝑛 ;   𝐸1𝑡 = 𝐸2𝑡 
 𝐵1𝑛 = 𝐵2𝑛  ;  𝐵1𝑡 𝜇1 = 𝐵2𝑡 𝜇2  

   [ comps. 𝐷, 𝐵 ; // comps. 𝐸, 𝐻] 
   Here we have no  components. 
• In medium 1 we have 𝐼 + 𝑅 so 
(1) 𝐸0𝐼 + 𝐸0𝑅 = 𝐸0𝑇    and   𝐵0𝐼 − 𝐵0𝑅 𝜇1 = 𝐵0𝑇 𝜇2   or 
 𝐸0𝐼 − 𝐸0𝑅 (𝜇1𝑣1) = 𝐸0𝑇 (𝜇2𝑣2)   [since 𝐵 = 𝐸 𝑣 ]  i.e. 

(2) 𝐸0𝐼 − 𝐸0𝑅 = 𝛽𝐸0𝑇    where  𝛽 =
𝜇1𝑣1

𝜇2𝑣2
=

𝜇1𝑛2

𝜇2𝑛1
 

• Solve (1) and (2) to give 𝐸0𝑅  and 𝐸0𝑇 in terms of 𝐸0𝐼: 

 𝐸0𝑅 =
1−𝛽

1+𝛽
𝐸0𝐼    and    𝐸0𝑇 =

2

1+𝛽
𝐸0𝐼 
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Materials Interfaces: Normal Incidence 
• We can usually make the very close 
 approximation 𝜇1 = 𝜇2 = 𝜇0, then 

   𝛽 =
𝑛2

𝑛1
 =

𝑣1

𝑣2
 

 and we get for the real amplitudes 
 in terms of the refractive indices 

   𝐸0𝑅 =
𝑛1−𝑛2

𝑛1+𝑛2
𝐸0𝐼   and    𝐸0𝑇 =

2𝑛1

𝑛1+𝑛2
𝐸0𝐼 

•  The ratios are often written as 𝑟 and 𝑡: 

  𝑟 =
𝐸0𝑅

𝐸0𝐼
=

1−𝛽

1+𝛽
=

𝑛1−𝑛2

𝑛1+𝑛2
  &  𝑡 =

𝐸0𝑇

𝐸0𝐼
=

2

1+𝛽
=

2𝑛1

𝑛1+𝑛2
 

 [lower case for the “amplitude reflection and transmission 
 coefficients”, upper case 𝑅 and 𝑇 for the reflection and 
 transmission coefficients (ratios of intensities)...] 10 



Materials Interfaces: Oblique Incidence 

• Incident wave, wave vector 𝑘𝐼, at  
arbitrary angle of incidence 𝜃𝐼 , etc.  

 𝐸𝐼 𝑟 , 𝑡 = 𝐸0𝐼𝑒
𝑖(𝑘𝐼∙ 𝑟 −𝜔𝑡) 

 𝐵𝐼 𝑟 , 𝑡 = (𝑘 𝐼 × 𝐸𝐼)/𝑣1 

• Reflected and transmitted waves 

 𝐸𝑅 𝑟 , 𝑡 = 𝐸0𝑅𝑒
𝑖(𝑘𝑅∙ 𝑟 −𝜔𝑡)    𝐵𝑅 𝑟 , 𝑡 = (𝑘 𝑅 × 𝐸𝑅)/𝑣1  

 𝐸𝑇 𝑟 , 𝑡 = 𝐸0𝑇𝑒
𝑖(𝑘𝑇∙ 𝑟 −𝜔𝑡)    𝐵𝑇 𝑟 , 𝑡 = (𝑘 𝑇 × 𝐸𝑇)/𝑣2  

•  Frequency 𝜔 is the same for all 3 waves, so 

 𝑘𝐼𝑣1 = 𝑘𝑅𝑣1 = 𝑘𝑇𝑣2 = 𝜔      𝑘𝐼 = 𝑘𝑅 =
𝑣2

𝑣1
𝑘𝑇 =

𝑛1

𝑛2
𝑘𝑇 

• Boundary conditions must be satisfied for all 𝑟  and 𝑡, so 

exponentials must all be equal. 
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Materials Interfaces: Oblique Incidence 
•  This means that, at 𝑧 = 0,  

 𝑘𝐼 ∙ 𝑟 = 𝑘𝑅 ∙ 𝑟 = 𝑘𝑇 ∙ 𝑟     (for all 𝑥, 𝑦) 

• This must be satisfied by the 𝑥 and  
 𝑦 components separately, i.e. 

 𝑘𝐼𝑥 = 𝑘𝑅𝑥 = 𝑘𝑇𝑥 (when 𝑦 = 0) and  

 𝑘𝐼𝑦 = 𝑘𝑅𝑦 = 𝑘𝑇𝑦 (when 𝑥 = 0)  

• So we can arrange the axes so that 𝑘𝐼 is in the 𝑥𝑧-plane; 

i.e. we put 𝑘𝐼𝑦 = 0 ; then we must have  𝑘𝑅𝑦 = 𝑘𝑇𝑦 = 0 

also, i.e. 𝑘𝑅 and 𝑘𝐼 will also be in the 𝑥𝑧-plane. 

• This is the first law of reflection: the incident, reflected 

and transmitted wave vectors all lie in the same plane 

(which we call the plane of incidence). 
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Materials Interfaces: Oblique Incidence 
•  From eqn. (𝑥-components // interface) 

 𝑘𝐼 sin 𝜃𝐼 = 𝑘𝑅 sin 𝜃𝑅 = 𝑘𝑇 sin 𝜃𝑇 

•  But 𝑘𝐼 = 𝑘𝑅 = 𝑘1 (both in medium 1) 

 so sin 𝜃𝐼 = sin 𝜃𝑅, i.e.  

• The second law of reflection: the  

 angle of incidence equals the angle 

 of reflection:   𝜃𝐼 = 𝜃𝑅 

• From the first equation above, 
sin 𝜃𝑇

sin 𝜃𝐼
=

𝑘𝐼

𝑘𝑇
=

𝑛1

𝑛2
  [slide 11] 

• The law of refraction (Snell’s law): the angle of incidence 

and the angle of refraction (transmission) are related by 

 𝑛1 sin 𝜃𝐼 = 𝑛2 sin 𝜃𝑇  . 
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Fresnel’s Equations 
• In general the electric field of  
 the wave will have components 
 parallel to and perpendicular 
 to the plane of incidence. 

•  Here we consider 𝑬  
 parallel to the plane of  
 incidence; we derive the   
 relationship between the 𝐼, 𝑅, 𝑇 wave amplitudes. 
• Axes as before: interface is 𝑥𝑦-plane (i.e. 𝑧 ⊥ interface); 

plane of incidence (“PoI”) is 𝑥𝑧-plane (so 𝑦 ⊥ PoI) 

• We apply the boundary conditions for 𝐸 and 𝐵; we know 

that the exponential factors 𝑒𝑖 𝑘.𝑟 −𝜔𝑡  cancel, so we can 

apply the BCs to the (vector) amplitudes 𝐸0 and 𝐵0. 
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Fresnel’s Equations (for 𝐸 ∥ PoI) 
• The BCs for the general case (where 

 𝐸 has 𝑥 and 𝑦 components)  are: 

1. 𝜀1 𝐸0𝐼 + 𝐸0𝑅 𝑧
= 𝜀2 𝐸0𝑇 𝑧

  [𝐷⊥] 

2.      𝐵0𝐼 + 𝐵0𝑅 𝑧
= 𝐵0𝑇 𝑧

  [𝐵⊥] 

3.    𝐸0𝐼 + 𝐸0𝑅 𝑥,𝑦
= 𝐸0𝑇 𝑥,𝑦

  [𝐸∥] 

4. 
1

𝜇1
𝐵0𝐼 +𝐵0𝑅 𝑥,𝑦

=
1

𝜇2
𝐵0𝑇 𝑥,𝑦

[𝐻∥] 

• For polarization (i.e. 𝐸) in the plane of incidence: 
1.  𝜀1 −𝐸0𝐼 sin 𝜃𝐼 + 𝐸0𝑅 sin 𝜃𝑅 = 𝜀2 −𝐸0𝑇 sin 𝜃𝑇    2. 0 = 0 

3. 𝐸0𝐼 cos 𝜃𝐼 + 𝐸0𝑅 cos 𝜃𝑅 = 𝐸0𝑇 cos 𝜃𝑇  

4. 
1

𝜇1𝑣1
𝐸0𝐼 −𝐸0𝑅 =

1

𝜇2𝑣2
𝐸0𝑇    [no cos or sin as 𝐵 ∥ interface] 

 Applying  𝜃𝐼 = 𝜃𝑅  and Snell’s law to 1. gives the same as 4. 15 



Fresnel’s Equations (for 𝐸 ∥ PoI) 
• We have two eqns. to solve: 

𝐸0𝐼−𝐸0𝑅= 𝜇1𝑣1 𝜇2𝑣2 𝐸0𝑇 = 𝛽𝐸0𝑇   

𝐸0𝐼+𝐸0𝑅= cos𝜃𝑇 cos𝜃𝐼 𝐸0𝑇 = 𝛼𝐸0𝑇   

where 𝛼 =
cos 𝜃𝑇

cos 𝜃𝐼
, 𝛽 =

𝜇1𝑣1

𝜇2𝑣2
=

𝜇1𝑛2

𝜇2𝑛1
  

for the ratios of the fields. Solution: 

   𝑟∥ =
𝐸0𝑅

𝐸0𝐼
=

𝛼−𝛽

𝛼+𝛽
      and     𝑡∥ =

𝐸0𝑇

𝐸0𝐼
=

2

𝛼+𝛽
   

These are the Fresnel equations for polarization parallel to 
the plane of incidence, denoted by the ∥ subscript on 𝑟 and 𝑡, 
which are the amplitude reflection coefficient and the 
amplitude transmission coefficient respectively. [There are 
also 𝑟⊥ and 𝑡⊥ for polarization perpendicular to the PoI.] 
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Brewster’s Angle 
• 𝛼 is a function of the angle of incidence:         

𝛼 =
cos 𝜃𝑇

cos 𝜃𝐼
=

1−sin2 𝜃𝑇

cos 𝜃𝐼
=

1− 𝑛1 𝑛2 2 sin2 𝜃𝐼

cos 𝜃𝐼
=

1− 𝑛1 𝑛2 2 sin2 𝜃𝐼

1−sin2 𝜃𝐼
  

• When 𝜃𝐼 = 0 (normal incidence),  𝛼 = 1     [see slide 9] 

• When 𝜃𝐼 → 90° (“grazing incidence”), 𝛼 diverges and 𝑡∥ = 0 
i.e. the wave is totally reflected  (e.g. car headlights on wet road) 

• From 𝑟∥ =
𝐸0𝑅

𝐸0𝐼
=

𝛼−𝛽

𝛼+𝛽
 ,  we see that  𝑟∥ = 0 when  𝛼 = 𝛽 , 

i.e. there is no reflected wave. This occurs when 𝜃𝐼 = 𝜃𝐵 , 
the Brewster angle , which is the solution of  

 sin2 𝜃𝐵 =
1−𝛽2

𝑛1 𝑛2 2−𝛽2      𝜃𝐵 = tan−1 𝑛2 𝑛1  

• Note this only occurs for polarization ∥ PoI ;  
 there is no Brewster angle for polarization  PoI . 
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Fresnel’s Equations (for 𝐸 ∥ PoI) 
• The graph shows 𝑡∥ and 𝑟∥ for 
 air–glass (𝑛1 = 1.0  , 𝑛2 = 1.5) 
 as functions of 𝜃𝐼  (𝛽 = 1.5) 
• At normal incidence (𝜃𝐼 = 0) 

 𝑟∥ =
1−𝛽

1+𝛽
= −0.2 , 𝑡∥ =

2

1+𝛽
= 0.8 

• Brewster’s angle (𝑟∥ = 0) is   

 𝜃𝐵 = tan−1 𝑛2 𝑛1 = tan−1 1.5 = 56° 

• At the “crossover angle”, 𝑟∥ = 𝑡∥ so  𝛼 −𝛽 = 2 

• Fresnel’s eqns. for 𝐸 ⊥ PoI : 𝑟⊥ =
1−𝛼𝛽

1+𝛼𝛽
   , 𝑡⊥ =

2

1+𝛼𝛽
  

and there is no Brewster’s angle for polarization 

perpendicular to the plane of incidence. 
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Transmission & Reflection Coefficients 
• What about the intensities? 

Power/area on interface is 

𝐼 = 𝑆 . 𝑧   so intensities are 

𝐼𝐼 = 1

2
𝑣1𝜀1𝐸0𝐼

2 cos 𝜃𝐼  incident 

𝐼𝑅 = 1

2
𝑣1𝜀1𝐸0𝑅

2 cos 𝜃𝑅  reflected 

𝐼𝑇 = 1

2
𝑣2𝜀2𝐸0𝑇

2 cos 𝜃𝑇  transmitted  [cos factor for  comps.] 

• The reflection and transmission coefficients 𝑅 and 𝑇 are  
the ratios of intensities;  𝑅 + 𝑇 = 1   [energy conservation]  

 𝑅 =
𝐼𝑅

𝐼𝐼
=

𝐸0𝑅

𝐸0𝐼

2
=

𝛼−𝛽

𝛼+𝛽

2
      [ 𝜃𝑅 = 𝜃𝐼 ,  same 𝑣 , 𝜀 ] 

 𝑇 =
𝐼𝑇

𝐼𝐼
=

𝐸0𝑇

𝐸0𝐼

2 𝑣2𝜀2

𝑣1𝜀1

cos 𝜃𝑇

cos 𝜃𝐼
= 𝛼𝛽

2

𝛼+𝛽

2
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A Note on Complex Amplitudes 
• We have written a plane wave  

 as e.g. 𝐸 (𝑧, 𝑡) = 𝐸0𝑒
𝑖(𝑘𝑧−𝜔𝑡) 

= 𝐸 0[cos 𝑘𝑧 −𝜔𝑡 + 𝑖 sin 𝑘𝑧−𝜔𝑡 ] 

with real electric field given by 𝐸 (𝑧, 𝑡) = 𝐸0 cos 𝑘𝑧 − 𝜔𝑡  

and the amplitude  𝐸0 appearing in both these eqns. is real. 
•    In general a wave may have initial phase angle (or “phase 
constant” or “phase offset”) denoted by  or  , and the wave 

function is  𝐸0𝑒
𝑖(𝑘𝑧−𝜔𝑡+𝛿) with real part  𝐸 0 cos 𝑘𝑧 −𝜔𝑡+𝛿 . 

This can be written as 𝐸0𝑒
𝑖𝛿𝑒𝑖(𝑘𝑧−𝜔𝑡). Now we can treat 𝐸0𝑒

𝑖𝛿  

as complex amplitude  𝐸 0 with modulus 𝐸0 = real amplitude, 
argument 𝛿 = phase constant. Then the complex wave fn. is  

𝐸 (𝑧, 𝑡) = 𝐸 0𝑒
𝑖(𝑘𝑧−𝜔𝑡).  Ignoring the imaginary part of 𝐸 0 is 

equivalent to putting  phase constant  𝛿 = 0 (as we have done) 20 



EM Waves in Conductors 
• In conductors we can no longer assume  𝐽 𝑓 = 0 as we did 

before, and 𝐽 𝑓 is related to 𝐸 by Ohm’s law:   𝐽 𝑓 = 𝜎𝐸   

• Substitute in Maxwell-Ampere law: 

 𝛻 × 𝐵 = 𝜇𝜎𝐸 + 𝜇𝜀 𝜕𝐸 𝜕𝑡  

• Now in continuity eqn. 𝛻 ∙ 𝐽 𝑓 = −𝜕𝜌𝑓 𝜕𝑡  substitute for 𝐽 𝑓 
from Ohm’s law, then use Gauss’s law: 

 
𝜕𝜌𝑓

𝜕𝑡
= −𝛻 ∙ 𝐽 = −𝛻 ∙ 𝜎𝐸 = −𝜎 𝛻 ∙ 𝐸 = −

𝜎

𝜀
𝜌𝑓  

•  This solves as 𝜌𝑓 𝑡 = 𝜌𝑓 0 𝑒− 𝜎 𝜀 𝑡 ; this means that any 

free charge in a conductor will go to zero (the charges will 
move to the surface) in a characteristic time of 𝜀 𝜎  . Since 
𝜎 is very large in good conductors, this time is very short.  

 Thus we can assume  𝜌𝑓 = 0  and so  𝛻 ∙ 𝐸 = 0 . 
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EM Waves in Conductors 
• Then Maxwell’s eqns. are the same as for non-conductors, 

except for the 𝜇𝜎𝐸 term in Maxwell-Ampere: 

  𝛻 ∙ 𝐸 = 0   (𝜌𝑓 = 0)    𝛻 ∙ 𝐵 = 0 

  𝛻 × 𝐸 = −𝜕𝐵 𝜕𝑡     𝛻 × 𝐵 = 𝜇𝜀 𝜕𝐸 𝜕𝑡 + 𝜇𝜎𝐸 
• Take the curl of Faraday’s & Ampere’s laws as before  

 𝛻2𝐸 = 𝜇𝜀
𝜕2𝐸

𝜕𝑡2
+ 𝜇𝜎

𝜕𝐸

𝜕𝑡
    ,    𝛻2𝐵 = 𝜇𝜀

𝜕2𝐵

𝜕𝑡2 + 𝜇𝜎
𝜕𝐵

𝜕𝑡
 

• These ‘modified’ wave eqns. have plane wave solutions 

  𝐸 𝑧, 𝑡 = 𝐸0𝑒
𝑖(𝑘 𝑧−𝜔𝑡)   ;    𝐵 𝑧, 𝑡 = 𝐵0𝑒

𝑖(𝑘 𝑧−𝜔𝑡) 

 but the wave number is complex:  𝑘 = 𝑘 + 𝑖𝜅   [𝜅 = kappa] 

• Substitute plane wave solutions in wave eqns.  

  𝑘 2 = 𝜇𝜀𝜔2 + 𝑖𝜇𝜎𝜔     [note Im part contains 𝜎] 
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EM Waves in Conductors 
•  Then we get (where 𝑘 = 𝑘 + 𝑖𝜅 )... 

 Real part  𝑘 = 𝜔
𝜀𝜇

2
1 +

𝜎

𝜀𝜔

2
+ 1

1
2 

  

 Imaginary part 𝜅 = 𝜔
𝜀𝜇

2
1 +

𝜎

𝜀𝜔

2
− 1

1
2 

 

• Imaginary part  exponentially decreasing amplitude: 

 𝐸 𝑧, 𝑡 = 𝐸0𝑒
−𝜅𝑧𝑒𝑖(𝑘𝑧−𝜔𝑡)  ;  𝐵 𝑧, 𝑡 = 𝐵0𝑒

−𝜅𝑧𝑒𝑖(𝑘𝑧−𝜔𝑡)  

• Amplitude decreases by 1 𝑒  in distance 𝑑 = skin depth : 

 [i.e.  𝐸 𝑧 = 𝐸0 𝑒
−𝑧/𝑑 ]  so  𝑑 = 1 𝜅  

 e.g. in pure water, 𝑑 = 12 km    
 See Worked Examples 3, Q.3 23 


