Electromagnetic Waves 2

- 1. Plane EM waves in linear materials
- 2. Reflection and refraction at materials interfaces
- 3. Fresnel equations
- 4. Plane EM waves in conductors

EM Spectrum

EM Waves in I.i.h. Materials

• For l.i.h. materials, the same arguments leading the wave eqns. for \vec{E} and \vec{B} apply as for free space; all we do is replace ε_0 and μ_0 by ε and μ for the material. The wave eqns. are (i) inhomogeneous wave eqns. (with sources)

$$\nabla^{2}\vec{E} = \mu\varepsilon\frac{\partial^{2}\vec{E}}{\partial t^{2}} + \mu\frac{\partial\vec{J}_{f}}{\partial t} + \nabla\left(\frac{\rho}{\varepsilon_{0}}\right)$$
$$\nabla^{2}\vec{B} = \mu\varepsilon\frac{\partial^{2}\vec{B}}{\partial t^{2}} - \mu\nabla\times\vec{J}$$

(ii) homogeneous wave eqns. (no charges or currents)

$$\nabla^{2}\vec{E} = \mu\varepsilon\frac{\partial^{2}\vec{E}}{\partial t^{2}} \qquad \nabla^{2}\vec{B} = \mu\varepsilon\frac{\partial^{2}\vec{B}}{\partial t^{2}}$$

• The wave speed is now $v = 1/\sqrt{\mu\varepsilon} < c$

Refractive Index

Define refractive index (or "index of refraction") of a

material:

$$n=\frac{c}{v}=\sqrt{\frac{\mu\varepsilon}{\mu_0\varepsilon_0}}$$

- Now for almost all non-ferromagnetic materials $\mu \cong \mu_0$ (or $\mu_r \cong 1$). Also $\varepsilon/\varepsilon_0 = \varepsilon_r = K$ (dielectric constant) so $n \cong \sqrt{K}$
 - the refractive index of a material is very nearly equal to the square root of its dielectric constant.
- All the results for free space carry over to l.i.h. materials if we change $\varepsilon_0 \rightarrow \varepsilon$ and $\mu_0 \rightarrow \mu$ and then $c \rightarrow v$

Plane EM Waves in I.i.h. Materials

- So we have plane wave solutions as before $\vec{E}(z,t) = \vec{E}_0 e^{i(kz-\omega t)}$; $\vec{B}(z,t) = \vec{B}_0 e^{i(kz-\omega t)}$ but now $\omega/k = v$, the wave speed in the material.
- The wave vectors are now related by (with $v = 1/\sqrt{\mu\varepsilon}$) $\vec{B} = (\hat{k} \times \vec{E})/v$ or $\vec{v} = (\vec{E} \times \vec{B})/B^2$

e.g. Glass has n = 1.5 so $v_{glass} = c/n = 2.0 \times 10^8$ m/s

Wave Energy in Materials

• Continuing transcribing $\varepsilon_0 \rightarrow \varepsilon$ and $\mu_0 \rightarrow \mu$ and $c \rightarrow v$, we get the energy density of the fields in l.i.h. materials:

$$u_e = \frac{1}{2}\varepsilon E^2 ; \quad u_m = \frac{B^2}{2\mu}$$

- The Poynting vector is $\vec{S} = \vec{E} \times \vec{H} = (\vec{E} \times \vec{B})/\mu$ and the wave intensity is $I = \langle S \rangle = \frac{1}{2} v \varepsilon E_0^2$
- Notice here that v = c/n and n = √ε_r or ε_r = n². This means that if a wave passes from vacuum into a material, since ⟨S⟩ must be the same (conservation of energy), E₀ will be smaller in the material and B₀ = E₀/v will be larger. This is illustrated in the following example...

Wave Energy in Materials: Example

Example : A laser beam in vacuum has a power of 20 MW and a radius of 1 mm. (a) Find the magnitudes of \vec{E} and \vec{B} . (b) The beam then travels in glass with refractive index 1.6. Find the magnitudes of \vec{E} and \vec{B} now.

Solution : (a) The beam intensity is [in vacuum $\langle S \rangle = \frac{1}{2}c \varepsilon_0 E_0^2$] $I = \langle S \rangle = P/A = 20 \times 10^6 / [\pi (10^{-3})^2] = 6.4 \times 10^{12} \,\text{W/m}^2$

 $\Rightarrow E_0 = \sqrt{\frac{2\langle S \rangle}{c\varepsilon_0}} = \sqrt{\frac{2\times 6.4 \times 10^{12}}{3\times 10^8 \times 8.85 \times 10^{-12}}} = 6.9 \times 10^7 \,\text{V/m}$ $B_0 = E_0/c = 6.9 \times 10^7/3 \times 10^8 = 0.23 \text{ T}$ (b) n = 1.6 so $v = c/n = 3 \times 10^8/1.6 = 1.88 \times 10^8$ m/s and $\varepsilon_r = n^2 = 1.6^2 = 2.56$ so $\varepsilon = \varepsilon_r \varepsilon_0 = 2.27 \times 10^{-11}$ F/m $E_0 = \sqrt{\frac{2\langle S \rangle}{v \varepsilon}} = \sqrt{\frac{2 \times 6.4 \times 10^{12}}{1.88 \times 10^8 \times 2.27 \times 10^{-11}}} = 5.5 \times 10^7 \,\text{V/m}; B_0 = 0.28 \,\text{T}}_{7}$

Materials Interfaces: Normal Incidence

- xy-plane is boundary between materials 1 and 2 (n₁, n₂)
- Plane wave in *z*-direction, polarized in *x*-direction, normal incidence from left: $\vec{E}_I(z,t) = E_{0I}e^{i(k_1z-\omega t)}\hat{x}$ $\vec{B}_I(z,t) = (E_{0I}/v_1)e^{i(k_1z-\omega t)}\hat{y}$

• There is a reflected wave and a transmitted wave :

$$\vec{E}_R(z,t) = E_{0R}e^{i(-k_1z-\omega t)}\hat{x}$$

$$\vec{B}_R(z,t) = -(E_{0R}/\nu_1)e^{i(-k_1z-\omega t)}\hat{y}$$

$$\vec{E}_T(z,t) = E_{0T}e^{i(k_2z-\omega t)}\hat{x}$$

$$\vec{B}_T(z,t) = (E_{0T}/\nu_2)e^{i(k_2z-\omega t)}\hat{y}$$

(in 1, to left) (\vec{B} reverses) (in 2, to right)

Materials Interfaces: Normal Incidence

• We apply the boundary conditions $\varepsilon_1 E_{1n} = \varepsilon_2 E_{2n}$; $E_{1t} = E_{2t}$ $B_{1n} = B_{2n}$; $B_{1t}/\mu_1 = B_{2t}/\mu_2$ $[\perp \text{ comps. } \vec{D}, \vec{B}; // \text{ comps. } \vec{E}, \vec{H}]$ Here we have no \perp components.

• In medium 1 we have I + R so

(1) $E_{0I} + E_{0R} = E_{0T}$ and $(B_{0I} - B_{0R})/\mu_1 = B_{0T}/\mu_2$ or $(E_{0I} - E_{0R})/(\mu_1 v_1) = E_{0T}/(\mu_2 v_2)$ [since B = E/v] i.e.

- (2) $E_{0I} E_{0R} = \beta E_{0T}$ where $\beta = \frac{\mu_1 \nu_1}{\mu_2 \nu_2} = \frac{\mu_1 n_2}{\mu_2 n_1}$
- Solve (1) and (2) to give E_{0R} and E_{0T} in terms of E_{0I} :

$$E_{0R} = \left(\frac{1-\beta}{1+\beta}\right) E_{0I}$$
 and $E_{0T} = \left(\frac{2}{1+\beta}\right) E_{0I}$

Materials Interfaces: Normal Incidence

• We can usually make the very close approximation $\mu_1 = \mu_2 = \mu_0$, then $\beta = \frac{n_2}{2} = \frac{v_1}{2}$

and we get for the real amplitudes in terms of the refractive indices

$$E_{0R} = \left| \frac{n_1 - n_2}{n_1 + n_2} \right| E_{0I}$$
 and $E_{0T} = \left(\frac{2n_1}{n_1 + n_2} \right) E_{0I}$

The ratios are often written as r and t:

$$r = \frac{E_{0R}}{E_{0I}} = \left(\frac{1-\beta}{1+\beta}\right) = \left|\frac{n_1 - n_2}{n_1 + n_2}\right| \& t = \frac{E_{0T}}{E_{0I}} = \left(\frac{2}{1+\beta}\right) = \left(\frac{2n_1}{n_1 + n_2}\right)$$

[lower case for the "amplitude reflection and transmission coefficients", upper case *R* and *T* for the reflection and transmission coefficients (ratios of intensities)...] 10

Materials Interfaces: Oblique Incidence

- Incident wave, wave vector \vec{k}_I , at arbitrary **angle of incidence** θ_I , etc. $\vec{E}_I(\vec{r},t) = \vec{E}_{0I} e^{i(\vec{k}_I \cdot \vec{r} - \omega t)}$ $\vec{B}_I(\vec{r},t) = (\hat{k}_I \times \vec{E}_I)/v_1$
- Reflected and transmitted waves $\vec{E}_{R}(\vec{r},t) = \vec{E}_{0R}e^{i(\vec{k}_{R}\cdot\vec{r}-\omega t)} \qquad \vec{B}_{R}(\vec{r},t) = (\hat{k}_{R}\times\vec{E}_{R})/\nu_{1}$ $\vec{E}_{T}(\vec{r},t) = \vec{E}_{0T}e^{i(\vec{k}_{T}\cdot\vec{r}-\omega t)} \qquad \vec{B}_{T}(\vec{r},t) = (\hat{k}_{T}\times\vec{E}_{T})/\nu_{2}$
- Frequency ω is the same for all 3 waves, so $k_I v_1 = k_R v_1 = k_T v_2 = \omega \implies k_I = k_R = \frac{v_2}{v_1} k_T = \frac{n_1}{n_2} k_T$
- Boundary conditions must be satisfied for all \vec{r} and t, so exponentials must all be equal.

Materials Interfaces: Oblique Incidence

- This means that, at z = 0, $\vec{k}_I \cdot \vec{r} = \vec{k}_R \cdot \vec{r} = \vec{k}_T \cdot \vec{r}$ (for all x, y) • This must be satisfied by the x and y components separately, i.e. * $k_{Ix} = k_{Rx} = k_{Tx}$ (when y = 0) and $k_{Iy} = k_{Ry} = k_{Ty}$ (when x = 0) • So we can arrange the axes so that \vec{k}_I is in the xz-plane;
- i.e. we put $k_{I\nu} = 0$; then we must have $k_{R\nu} = k_{T\nu} = 0$ also, i.e. \vec{k}_R and \vec{k}_I will also be in the xz-plane.
- This is the first law of reflection: the incident, reflected and transmitted wave vectors all lie in the same plane (which we call the plane of incidence).

Materials Interfaces: Oblique Incidence

- From eqn. * (x-components // interface) $k_I \sin \theta_I = k_R \sin \theta_R = k_T \sin \theta_T$
- But $k_I = k_R = k_1$ (both in medium 1) so $\sin \theta_I = \sin \theta_R$, i.e.
- The second law of reflection: the angle of incidence equals the angle $_{k_{I}}$ of reflection: $\theta_{I} = \theta_{R}$
- From the first equation above, $\frac{\sin \theta_T}{\sin \theta_I} = \frac{k_I}{k_T} = \frac{n_1}{n_2}$ [slide 11]
- The **law of refraction (Snell's law)**: the angle of incidence and the angle of refraction (transmission) are related by $n_1 \sin \theta_I = n_2 \sin \theta_T$.

Plane of Incide

Fresnel's Equations

- In general the electric field of the wave will have components parallel to and perpendicular to the plane of incidence.
- Here we consider \vec{E} **parallel to the plane of incidence**; we derive the relationship between the I = R = T we

relationship between the *I*, *R*, *T* wave **amplitudes**.

- Axes as before: interface is xy-plane (i.e. $\hat{z} \perp$ interface); plane of incidence ("PoI") is xz-plane (so $\hat{y} \perp$ PoI)
- We apply the boundary conditions for \vec{E} and \vec{B} ; we know that the exponential factors $e^{i(\vec{k}.\vec{r}-\omega t)}$ cancel, so we can apply the BCs to the (vector) amplitudes \vec{E}_0 and \vec{B}_0 .

Fresnel's Equations (for $\vec{E} \parallel PoI$)

 The BCs for the general case (where \vec{E} has x and y components) are: \mathbf{E}_R 1. $\varepsilon_1 \left(\vec{E}_{0I} + \vec{E}_{0R} \right)_7 = \varepsilon_2 \left(\vec{E}_{0T} \right)_7 [D_\perp]$ 2. $\left(\vec{B}_{0I} + \vec{B}_{0R}\right)_{z} = \left(\vec{B}_{0T}\right)_{z}$ $[B_{\perp}]$ θ_T (out 3. $\left(\vec{E}_{0I} + \vec{E}_{0R}\right)_{x,y} = \left(\vec{E}_{0T}\right)_{x,y} [E_{\parallel}] \mathbf{E}_{\parallel}$ 4. $\frac{1}{\mu_1} \left(\vec{B}_{0I} + \vec{B}_{0R} \right)_{x,y} = \frac{1}{\mu_2} \left(\vec{B}_{0T} \right)_{x,y} [H_{\parallel}]$ v axis out of page) • For polarization (i.e. \vec{E}) in the plane of incidence: 1. $\varepsilon_1 \left(-E_{0I} \sin \theta_I + E_{0R} \sin \theta_R\right) = \varepsilon_2 \left(-E_{0T} \sin \theta_T\right)$ 2. 0 = 03. $E_{0I} \cos \theta_I + E_{0R} \cos \theta_R = E_{0T} \cos \theta_T$ 4. $\frac{1}{\mu_1 \nu_1} (E_{0I} - E_{0R}) = \frac{1}{\mu_2 \nu_2} E_{0T}$ [no cos or sin as \vec{B} || interface] Applying $\theta_I = \theta_R$ and Snell's law to 1. gives the same as 4.

Fresnel's Equations (for $\vec{E} \parallel PoI$) • We have two eqns. to solve: $E_{0I} - E_{0R} = (\mu_1 v_1 / \mu_2 v_2) E_{0T} = \beta E_{0T}$ $E_{0I} + E_{0R} = (\cos \theta_T / \cos \theta_I) E_{0T} = \alpha E_{0T}$ θ_T where $\alpha = \frac{\cos \theta_T}{\cos \theta_I}$, $\beta = \frac{\mu_1 v_1}{\mu_2 v_2} = \frac{\mu_1 n_2}{\mu_2 n_1}$ \mathbf{E}_I (v axis for the ratios of the fields. Solution: out of page) $= \frac{E_{0R}}{E_{0I}} = \frac{\alpha - \beta}{\alpha + \beta} \quad \text{and} \quad t_{\parallel}$ $=\frac{E_{0T}}{E_{0I}}=\frac{2}{\alpha+\beta}$

These are the **Fresnel equations** for polarization **parallel** to the plane of incidence, denoted by the \parallel subscript on r and t, which are the **amplitude reflection coefficient** and the **amplitude transmission coefficient** respectively. [There are also r_{\perp} and t_{\perp} for polarization perpendicular to the PoI.] ¹⁶

Brewster's Angle

• α is a function of the angle of incidence:

$$\alpha = \frac{\cos \theta_T}{\cos \theta_I} = \frac{\sqrt{1 - \sin^2 \theta_T}}{\cos \theta_I} = \frac{\sqrt{1 - (n_1/n_2)^2 \sin^2 \theta_I}}{\cos \theta_I} = \sqrt{\frac{1 - (n_1/n_2)^2 \sin^2 \theta_I}{1 - \sin^2 \theta_I}}$$
• When $\theta_I = 0$ (normal incidence), $\alpha = 1$ [see slide 9]
• When $\theta_I \to 90^\circ$ ("grazing incidence"), α diverges and $t_{\parallel} = 0$
i.e. the wave is totally reflected (e.g. car headlights on wet road)
• From $r_{\parallel} = \frac{E_{0R}}{E_{0I}} = \frac{\alpha - \beta}{\alpha + \beta}$, we see that $r_{\parallel} = 0$ when $\alpha = \beta$,
i.e. there is **no reflected wave**. This occurs when $\theta_I = \theta_B$,
the **Brewster angle**, which is the solution of
 $\sin^2 \theta_B = \frac{1 - \beta^2}{(n_1/n_2)^2 - \beta^2} \Rightarrow \qquad \theta_B = \tan^{-1}(n_2/n_1)$

Fresnel's Equations (for $\vec{E} \parallel PoI$)

- The graph shows t_{\parallel} and r_{\parallel} for air-glass ($n_1 = 1.0$, $n_2 = 1.5$) as functions of θ_I ($\beta = 1.5$)
- At normal incidence ($\theta_I = 0$) $r_{\parallel} = \frac{1-\beta}{1+\beta} = -0.2$, $t_{\parallel} = \frac{2}{1+\beta} = 0.8$
- Brewster's angle $(r_{\parallel} = 0)$ is $\theta_B = \tan^{-1}(n_2/n_1) = \tan^{-1} 1.5 = 56^{\circ}$

• Fresnel's eqns. for $\vec{E} \perp \text{PoI} : r_{\perp} = \left| \frac{1 - \alpha \beta}{1 + \alpha \beta} \right|$, $t_{\perp} = \frac{2}{1 + \alpha}$ and there is no Brewster's angle for polarization perpendicular to the plane of incidence.

Transmission & Reflection Coefficients

• What about the intensities? 1.0 0.8 Power/area on interface is 0.6 $I = \langle \vec{S} \rangle$. \hat{z} so intensities are 0.4 $I_I = \frac{1}{2} v_1 \varepsilon_1 E_{0I}^2 \cos \theta_I$ incident 0.2 $I_{R} = \frac{1}{2} v_{1} \varepsilon_{1} E_{0R}^{2} \cos \theta_{R} \text{ reflected}^{0.0} \stackrel{0.0}{_{0^{\circ}}} 10^{\circ} 20^{\circ} 30^{\circ} 40^{\circ} 50^{\circ} 60^{\circ} 70^{\circ} 80^{\circ} 90^{\circ}$ $I_T = \frac{1}{2} v_2 \varepsilon_2 E_{0T}^2 \cos \theta_T$ transmitted [cos factor for \perp comps.] • The **reflection and transmission coefficients** R and T are the ratios of intensities; R + T = 1 [energy conservation] $R = \frac{I_R}{I_I} = \left(\frac{E_{0R}}{E_{0I}}\right)^2 = \left(\frac{\alpha - \beta}{\alpha + \beta}\right)^2 \quad [\theta_R = \theta_I, \text{ same } v, \varepsilon]$ $T = \frac{I_T}{I_I} = \left(\frac{E_{0T}}{E_{0I}}\right)^2 \frac{v_2 \varepsilon_2}{v_1 \varepsilon_1} \frac{\cos \theta_T}{\cos \theta_I} = \alpha \beta \left(\frac{2}{\alpha + \beta}\right)^2$

A Note on Complex Amplitudes

f(z, 0) We have written a plane wave as e.g. $\vec{E}(z,t) = \vec{E}_0 e^{i(kz-\omega t)}$ δ/k $= \vec{E}_0 [\cos(kz - \omega t) + i \sin(kz - \omega t)]$ with real electric field given by $\vec{E}(z,t) = \vec{E}_0 \cos(kz - \omega t)$ and the amplitude \vec{E}_0 appearing in both these eqns. is real. In general a wave may have initial phase angle (or "phase constant" or "phase offset") denoted by ϕ or δ , and the wave function is $\vec{E}_0 e^{i(kz-\omega t+\delta)}$ with real part $\vec{E}_0 \cos(kz-\omega t+\delta)$. This can be written as $\vec{E}_0 e^{i\delta} e^{i(kz-\omega t)}$. Now we can treat $\vec{E}_0 e^{i\delta}$ as complex amplitude \tilde{E}_0 with modulus \vec{E}_0 = real amplitude, argument δ = phase constant. Then the complex wave fn. is $\vec{E}(z,t) = \tilde{E}_0 e^{i(kz-\omega t)}$. Ignoring the imaginary part of \tilde{E}_0 is equivalent to putting phase constant $\delta = 0$ (as we have done)

EM Waves in Conductors

- In conductors we can no longer assume $\vec{J}_f = 0$ as we did before, and \vec{J}_f is related to \vec{E} by Ohm's law: $\vec{J}_f = \sigma \vec{E}$
- Substitute in Maxwell-Ampere law: $\nabla \times \vec{B} = \mu \sigma \vec{E} + \mu \epsilon \partial \vec{E} / \partial t$
- Now in continuity eqn. $\nabla \cdot \vec{J}_f = -\partial \rho_f / \partial t$ substitute for \vec{J}_f from Ohm's law, then use Gauss's law:

$$\frac{\partial \rho_f}{\partial t} = -\nabla \cdot \vec{J} = -\nabla \cdot (\sigma \vec{E}) = -\sigma (\nabla \cdot \vec{E}) = -\frac{\sigma}{\varepsilon} \rho_f$$

• This solves as $\rho_f(t) = \rho_f(0)e^{-(\sigma/\varepsilon)t}$; this means that any free charge in a conductor will go to zero (the charges will move to the surface) in a characteristic time of ε/σ . Since σ is very large in good conductors, this time is very short. Thus we can assume $\rho_f = 0$ and so $\nabla \cdot \vec{E} = 0$.

EM Waves in Conductors

- Then Maxwell's eqns. are the same as for non-conductors, except for the $\mu\sigma\vec{E}$ term in Maxwell-Ampere: $\nabla\cdot\vec{E} = 0$ ($\rho_f = 0$) $\nabla\cdot\vec{B} = 0$ $\nabla\times\vec{E} = -\partial\vec{B}/\partial t$ $\nabla\times\vec{B} = \mu\epsilon\,\partial\vec{E}/\partial t + \mu\sigma\vec{E}$
- Take the curl of Faraday's & Ampere's laws as before \rightarrow

$$\nabla^{2}\vec{E} = \mu\varepsilon\frac{\partial^{2}\vec{E}}{\partial t^{2}} + \mu\sigma\frac{\partial\vec{E}}{\partial t} , \quad \nabla^{2}\vec{B} = \mu\varepsilon\frac{\partial^{2}\vec{B}}{\partial t^{2}} + \mu\sigma\frac{\partial\vec{B}}{\partial t}$$

- These 'modified' wave eqns. have plane wave solutions $\vec{E}(z,t) = \vec{E}_0 e^{i(\tilde{k}z - \omega t)}$; $\vec{B}(z,t) = \vec{B}_0 e^{i(\tilde{k}z - \omega t)}$ but the wave number is complex: $\tilde{k} = k + i\kappa$ [κ = kappa]
- Substitute plane wave solutions in wave eqns. \rightarrow $\tilde{k}^2 = \mu \varepsilon \omega^2 + i \mu \sigma \omega$ [note Im part contains σ]

EM Waves in Conductors

Then we get (where $\tilde{k} = k + i\kappa$)...

R

Real part
$$k = \omega \sqrt{\frac{\varepsilon \mu}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\varepsilon \omega}\right)^2} + 1 \right]^{1/2}$$

Imaginary part $\kappa = \omega \sqrt{\frac{\varepsilon \mu}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\varepsilon \omega}\right)^2} - 1 \right]^{1/2}$

- Imaginary part \rightarrow exponentially decreasing amplitude: $\vec{E}(z,t) = \vec{E}_0 e^{-\kappa z} e^{i(kz-\omega t)} ; \vec{B}(z,t) = \vec{B}_0 e^{-\kappa z} e^{i(kz-\omega t)}$
- Amplitude decreases by 1/e in distance d =skin depth : [i.e. $\vec{E}(z) = \vec{E}_0 e^{-z/d}$] so $d = 1/\kappa$ e.g. in pure water, d = 12 km See Worked Examples 3, Q.3 23