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EM Waves in l.i.h. Materials

* For l.i.h. materials, the same arguments leading the wave

eqns. for E and B apply as for free space; all we do is
replace g5 and uy by € and u for the material. The wave
eqgns. are (i) inhomogeneous wave egns. (with sources)

V2E = ueaz + u ]f+\7(0)

62
V2B = pe —= Sl X |
(ii) homogeneous wave egns. (no charges or currents)
2 62 2 62
V2E = He—— V2B = HE——

* The wave speedisnow |V = 1/ /e < ¢




Refractive Index

e Define refractive index (or “index of refraction”) of a

c LLE

material: = =
v Hoé€o

* Now for almost all non-ferromagnetic materials u = u,
(or u, = 1). Also &/gy = &, = K (dielectric constant) so

n = VK

- the refractive index of a material is very nearly equal to
the square root of its dielectric constant.

e All the results for free space carry over to l.i.h. materials if
we change &, —» € and Uy — u andthenc - v




Plane EM Waves in l.i.h. Materials

* So we have plane wave solutions as before
E(z, t) IR (7, t) = Bje'(kz—1)
but now |w/k = v |, the wave speed in the material.
* The wave vectors are now related by (with v = 1/,/u¢)

B=(kxE)/v or #=(ExB)/B?
e.g. Glasshasn = 1.5 s0 Vgass = ¢/n = 2.0 X 108 m/s




Wave Energy in Materials

* Continuing transcribing ¢y > c¢and yuy > pandc - v,
we get the energy density of the fields in l.i.h. materials:
BZ

2y

- - —

* The Poynting vector is S=FEXH = (E X §)//,l

and the wave intensityis | [ = (S) = %v EEO2

u, = ¢E* ; up,

* Notice herethat v = ¢/n and n = /&, or & =n-.
This means that if a wave passes from vacuum into a
material, since (S) must be the same (conservation of
energy), Ey will be smaller in the material and By = Ey/v
will be larger. This is illustrated in the following example...




Wave Energy in Materials: Example

Example : A laser beam in vacuum has a power of 20 MW and

a radius of 1 mm. (a) Find the magnitudes of E and B.
(b) The beam then travels in glass with refractive index 1.6.

Find the magnitudes of E and B now.
Solution : (a) The beam intensity is [in vacuum (S) = %c goFo”]
I =(S)=P/A =20x%x10°/[n(1073)?] = 6.4 x 10'? W/m?

2(S) 2X6.4%x1012 v
= ok \/ e \/3x108><8 85x10~12 = G
By, = Ey/c =69 x 107/3 x 108 = 0.23 T
(b)n =1.6so0v=c/n=3x%x10%/1.6 = 1.88 x 103 m/s

and &, =n? =1.6° =256 50 € = &6 = 227 X 1071 F/m

_[2(8) _ 2X6.4x1012 — 7 el
ko = \/ E \/1.88><108><2.27><10_11 pha i 5L =




Materials Interfaces: Normal Incidence

* xy-plane is boundary between
materials 1 and 2 (n;,n,)
* Plane wave in z-direction,

polarized in x-direction, normal
incidence from left:

E /(z,t) = Eyjeltiz-0t) g
§1 (z,t) = (Egp/vq)e'F1Z=@0)5
e There is a reflected wave and a transmitted wave :

Er(z,t) = E,petC e iage (in 1, to left)
Br(z,t) = —(Egp/vq)e'CF1z-005 (B reverses)
Er(z,t) = Eyretk2z=00% (in 2, to right)

§T (z,t) = (Eop/vy)e'k2z=0D5




Materials Interfaces: Normal Incidence

* We apply the boundary conditions
E1E1n = &2E2n 5 E1e = Byt
Bin = By 5 Bit/ma = By /1,
[L comps. B, B ; [/ comps. E, ﬁ]
Here we have no 1 components.
* |n medium 1 we have [ + R so
(1) Eo; + Eor = Eor and (Bo; — Bog) /11 = Bor /U, or
(Eor — Eor)/ (V1) = Eor/(42v2) [since B = E/v] i.e.

HiV1 _ KN
2) Eg; — Eqp = PEg7 Where| b = =
( ) 0] OR :8 oT :8 Uy Vs Loy

* Solve (1) and (2) to give Epr and Ey7 in terms of E;:

Eor = (1+§) Eo; and Eor = ( ﬁ) Eo;




Materials Interfaces: Normal Incidence

* We can usually make the very close
approximation u; = U, = Uy, then

_ Tz L
'B_n1 U

and we get for the real amplitudes
in terms of the refractive indices

= 2
——2\F; and Egr =( — )EOI

nq +n2

Eor =

Tl1+n2
e The ratios are often written as r and t:

rofon_ (1F) ¢ = for o () = ()
Eol 1+ﬁ ni+n,

Eog 1+B
[lower case for the “amplitude reflection and transmission

coefficients”, upper case R and T for the reflection and
transmission coefficients (ratios of intensities)...]

ni{—nms;

nq +n2




Materials Interfaces: Oblique Incidence

* Incident wave, wave vector k;, at
arbitrary angle of incidence 6, , etc.

G — Eozei@rf_wt)
EI(F» t) = (k; % EI)/V1
* Reflected and transmitted waves
Ep(F,t) = EORei(ER'F_wt) Br(7,t) = (kg X Eg)/vy
Er(7,t) = Eore'®r7=00 B 1) = (ke x Ep)/v,
* Frequency w is the same for all 3 waves, so

1Y n
klv]_:kRU]_:kTvzz(l) —> kI:kR:v_sz:n_lkT
1 2

* Boundary conditions must be satisfied for all ¥ and ¢, so
exponentials must all be equal.




Materials Interfaces: Oblique Incidence

 This means that, at z = 0,
k7 =kg-F=ky 7 (forallx,y)
* This must be satisfied by the x and
y components separately, i.e.
* ki, = kg, = kr,, (Wheny = 0) and
kiy = kry = kgy (When x = 0)
* So we can arrange the axes so that E), is in the xz-plane;
i.e. we put ki, = 0; then we must have kg, = k), =0

also, i.e. kR and k, will also be in the xz-plane.

e | This is the first law of reflection: the incident, reflected
and transmitted wave vectors all lie in the same plane
(which we call the plane of incidence).




Materials Interfaces: Oblique Incidence

 From eqgn.* (x-components // interface)
k;sin0@; = kp sin@p = k¢ sin O

* Butk; = kp = k; (both in medium 1)
so sin f; = sin Oy, i.e.

* |The second law of reflection: the

angle of incidence equals the angle

of reflection: 6; = Op

sin 6 k n
— T — L — % [slide 11]
Sin 9[ Kkt no

* From the first equation above,

* [The law of refraction (Snell’s law): the angle of incidence
and the angle of refraction (transmission) are related by

n,sinf; = n, sinf .




Fresnel’s Equations

In general the electric field of
the wave will have components
parallel to and perpendicular
to the plane of incidence.

Here we consider E

parallel to the plane of

incidence; we derive the

relationship between the I, R, T wave amplitudes.

Axes as before: interface is xy-plane (i.e. Z 1 interface);
plane of incidence (“Pol”) is xz-plane (so ¥ 1 Pol)

We apply the boundary conditions for E and §; we know
that the exponential factors el(k7-wt) cancel, so we can
apply the BCs to the (vector) amplitudes EO and §0.




Fresnel’s Equations (for E | Pol)

 The BCs for the general case (where
E has x and y components) are:

1. & (EOI + EOR)Z = & (EOT)Z D,
2. (BOI s BOR)Z — (BOT)Z [BJ_
3. (EOI + EOR)X,J/ = (EOT)x’y [E”:

1,3 , 3 13 |
= (Bor + BOR)x,y . (BOT)x,y[HII.

* For polarization (i.e. E) in the plane of incidence:
1. & (—Ey;sin8; + Eyp sinfp) = &5(—Eprsinfy) 2.0 =0
3.Ej;cosO; + Eqjr cosOp = Ey cos O7
1 1
4 (Eor —Eor) =

UqVq H2V2
Applying 68; = 0y and Snell’s law to 1. gives the same as 4.

Eor [nocosorsinas B | interface]




Fresnel’s Equations (for E | Pol)

 We have two eqgns. to solve:

Eoj—Eor= (1V1/U2v2)Eor = BEor
EOI+EOR: (COS HT/COS HI)EOT — aEOT

cos 6 v n
wherela = T,,B=H11=”12
cos 0 H2V2 HaMq
for the ratios of the fields. Solution:
Eor _ a—p Eor 2
T'||=—=_ and t”:_:_
EOI C(+ﬁ EOI C(+ﬁ
These are the Fresnel equations for polarization parallel to

the plane of incidence, denoted by the || subscript on 7 and ¢,
which are the amplitude reflection coefficient and the
amplitude transmission coefficient respectively. [There are
also r; and t, for polarization perpendicular to the Pol.]




Brewster’s Angle

* «is a function of the angle of incidence:
cos Oy  J1-sin2 87  J1—-(ny/ny)?sin2 6; \/1—(111/112)2 sin? 6;
cos 0; cos 0; cos 0; 1—sin? 0;

* When 6; = 0 (normal incidence), «a =1 [seeslide 9]

* When 0; - 90° (“grazing incidence”), a diverges and t; = 0

i.e. the wave is totally reflected (e.g. car headlights on wet road)
E L
* Fromr = === M, we see that 7, = O when a = f3,
Eol a+B

i.e. there is no reflected wave. This occurs when 8; = 05,

the Brewster angle , which is the solution of

. 2ha _ 1-p7 - -1
sin®0p = — 7 = O = tan” " (n,/n,)
* Note this only occurs for polarization || Pol ;

there is no Brewster angle for polarization L Pol .

a =




Fresnel’s Equations (for E | Pol)

* The graph shows t; and ry for
air—glass (n; = 1.0, n, = 1.5)
as functions of 8; (f = 1.5)

* At normal incidence (6; = 0)

1— ,3 2
7"” 148 = —0.2 t” _,B = (0.8

* Brewster’s angle (r; = 0) is
0z = tan"'(n,/n;) = tan"! 1.5 = 56°
* Atthe “crossover angle”, ny=t;so0 a —f = 2

2
1+af

1-af
1+apf
and there is no Brewster’s angle for polarization

;tJ__

* Fresnel’s eqns. for E L Pol : r, = ‘

perpendicular to the plane of incidence.




Transmission & Reflection Coefficients

 What about the intensities?
Power/area on interface is

I = (§).2 sointensities are
I = %vlelEO,z cos 6; incident
= %vlelEORz cos Oy reflected
I = %vzezEOTZ cos 0 transmitted [cos factor for 1 comps.]

 The reflection and transmission coefficients R and T are
the ratios of intensities; R+ T = 1 [energy conservation]

2 2
_Ir _ (EOR) il (“—,3) .
R_I,_ P oy [0 = 0;, samev,¢]

T — IT (M)Z V,€, COS O C(,B (a+'8)2

I Eo;/ v1&1 COS O




A Note on Complex Amplitudes

* We have written a plane wave
ase.g. E (z,t) = Ejelkz—0t)
= E‘O [cos(kz — wt) + isin(kz — wt)]
with real electric field given by E (z,t) = E, cos(kz — wt)
and the amplitude EO appearing in both these eqns. is real.

* In general a wave may have initial phase angle (or “phase
constant” or “phase offset”) denoted by ¢ or 0, and the wave

function is Eoei(kz“‘)t+5) with real part EO cos(kz — wt + 98).
This can be written as Eoei‘sei(kz“‘)t). Now we can treat E)Oeia
as complex amplitude E, with modulus EO = real amplitude,
argument 6 = phase constant. Then the complex wave fn. is

E (z,t) = F,elkz=at) " |anoring the imaginary part of Ej is
equivalent to putting phase constant 0 = 0 (as we have done)




EM Waves in Conductors

.
In conductors we can no longer assume [ = 0 as we did

before, and ff is related to E by Ohm’s law: ff = oE
Substitute in Maxwell-Ampere law:

V X B = uoE + ue dE /ot

Now in continuity egn. IV -ff = — dps/0t substitute for]_}
from Ohm’s law, then use Gauss’s law:

This solves as p¢(t) = pf(O)e_(“/g)t : this means that any
free charge in a conductor will go to zero (the charges will
move to the surface) in a characteristic time of £/ . Since
o is very large in good conductors, this time is very short.

Thus we can assume pr =0 andso V- E=0.




EM Waves in Conductors

Then Maxwell’s egns. are the same as for non-conductors,
except for the MJE term in Maxwell-Ampere:

V-E=0 (pf=0) V-B=0

VxE=—0B/0t Vx§=u£6§/6t+,uaﬁ
Take the curl of Faraday’s & Ampere’s laws as before —

= d2E OF 02B dB
V2E = ue — T V2B = pe 2= % T 1o —

These ‘modified” wave egns. have plane wave solutions
E(Z, t) = Eoei(kz_wt) : E)(Z, t) = E)Oei(kz_“’t)

~

but the wave number is complex: k = k + ik [k = kappa]
Substitute plane wave solutions in wave egns. —

k? = pew? + ipow | [note Im part contains o]




EM Waves in Conductors
e Then we get (where k = k + ik )...

1
: 1772
2
L s ul

Real part k = w > Jl + (Ew) + 1

: > 11/2

: - /8_“ O

Imaginary part| Kk = w > Jl + (Ew) 1

* Imaginary part — exponentially decreasing amplitude:

E(z,t) = Eyje*?eilkz=0t) . B(7 t) = B e *Zeilkz-wt)

* Amplitude decreases by 1/e in distance d = skin depth :
i.e. E(z) = EO e %/4] so|ld = 1/k

e.g. in pure water, d = 12 km
See Worked Examples 3, Q.3




