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       For volume charge & current  

      𝑉 =
1

4𝜋𝜀0
 

𝜌 𝑟 ′

𝑅
𝑑𝒱′

𝒱′  

      𝐴 =  
𝜇0

4𝜋
 

𝐽 𝑟 ′

𝑅
𝑑𝒱′

𝒱′   

 where  𝑅 = 𝑟 − 𝑟 ′  (vector from source to field point) 
• In the non-static case, we have to consider the time for 

the information to travel distance 𝑅, at speed 𝑐. 
•  If we are determining the potentials and fields at time 𝑡, 

then  we need the state of the source at the earlier time 

𝑡𝑟 = 𝑡 − 𝑅 𝑐   , the “retarded time”.   

• (This will be different for different parts of the source; 
like light from distant stars...) 



Retarded Potentials 
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       Thus we should rewrite the  
       equations for the potentials: 

         𝑉(𝑟 , 𝑡) =
1

4𝜋𝜀0
 

𝜌 𝑟 ′,𝑡𝑟

𝑅
𝑑𝒱′

𝒱′  

         𝐴 (𝑟 , 𝑡) =  
𝜇0

4𝜋
 

𝐽 𝑟 ′,𝑡𝑟

𝑅
𝑑𝒱′

𝒱′   

 where  𝑅 = 𝑟 − 𝑟 ′  and  𝑡𝑟 = 𝑡 − 𝑅 𝑐  
•  These are the retarded potentials. The integrals for 𝜌 

and 𝐽  are evaluated at the earlier retarded time. 

• Griffiths shows these satisfy the inhomogeneous wave 
eqn. and Lorenz condition, so are real potentials. 

• In the static case, we do not have to consider this. 



Energy and Poynting’s Theorem (1) 
Consider work done by Lorentz force moving charge 𝑞 by 𝑑𝑙  in 

time 𝑑𝑡:  𝑑𝑊 = 𝐹 . 𝑑𝑙 = 𝑞 𝐸 + 𝑣 × 𝐵 . 𝑣  𝑑𝑡 = 𝑞𝐸. 𝑣 𝑑𝑡 

For distributed charge 𝑞 = 𝜌𝑑𝒱  and  𝜌𝑣 = 𝐽  , so for total 
charge in volume 𝒱, the rate of doing work, i.e. power, is 

𝑃 =
𝑑𝑊

𝑑𝑡
=  𝐸. 𝐽 𝑑𝒱

𝒱
   or 𝐸. 𝐽  is the power per unit volume. 

Use Maxwell’s eqns. to get this in terms of only the fields: 

𝛻 × 𝐻 = 𝐽 +
𝜕𝐷

𝜕𝑡
       𝑃 =  𝐸. 𝛻 × 𝐻 𝑑𝒱

𝒱
−  𝐸.

𝜕𝐷

𝜕𝑡
𝑑𝒱

𝒱
 

Vector identity:  𝛻. 𝐸 × 𝐻 = 𝐻. 𝛻 × 𝐸 − 𝐸. 𝛻 × 𝐻       

𝑃 =  𝐻. 𝛻 × 𝐸 𝑑𝒱
𝒱

−  𝛻. 𝐸 × 𝐻 𝑑𝒱
𝒱

−  𝐸.
𝜕𝐷

𝜕𝑡
𝑑𝒱

𝒱
 

Now 𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡
  and  𝛻. 𝐸 × 𝐻 𝑑𝒱

𝒱
=  𝐸 × 𝐻

𝒮
. 𝑑𝑎  
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Energy and Poynting’s Theorem (2) 
Then, rearranging, we get 

  𝐸.
𝜕𝐷

𝜕𝑡
+ 𝐻.

𝜕𝐵

𝜕𝑡
𝑑𝒱

𝒱
+  𝐸 × 𝐻

𝒮
. 𝑑𝑎 + 𝑃 = 0 

This result is known as Poynting’s Theorem, but it is really  
just a statement of conservation of energy. 

In l.i.h. materials  𝐸.
𝜕𝐷

𝜕𝑡
=

𝜕

𝜕𝑡

1

2
𝜀𝐸2  and 𝐻.

𝜕𝐵

𝜕𝑡
=

𝜕

𝜕𝑡

1

2𝜇
𝐵2 :  

𝜕

𝜕𝑡
 1

2
𝜀𝐸2 +

𝐵2

2𝜇
𝑑𝒱

𝒱
+  𝐸 × 𝐻

𝒮
. 𝑑𝑎 + 𝑃 = 0  

We recognise  1
2
𝜀𝐸2 = 𝑢𝑒  and  

𝐵2

2𝜇
= 𝑢𝑚 , the energy density 

of the electric and magnetic fields, so the first term is the 
rate of change of electromagnetic energy in the volume. 
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Energy Flow and the Poynting Vector 
𝜕

𝜕𝑡
 1

2
𝜀𝐸2 +

𝐵2

2𝜇
𝑑𝒱

𝒱
+  𝐸 × 𝐻

𝒮
. 𝑑𝑎 + 𝑃 = 0  

The third term, originally  𝑃 =  𝐸. 𝐽 𝑑𝒱
𝒱

 , represents the  

rate of energy dissipation (loss) in the volume.  

The second term is the flux of the vector 𝑬 × 𝑯 through the 
surface bounding the volume. This integral represents the 
total rate of energy outflow from the volume.  We define 

the Poynting vector:   𝑆 = 𝐸 × 𝐻   or   𝑆 =
1

𝜇
𝐸 × 𝐵  

    and in free space      𝑆 =
1

𝜇0
𝐸 × 𝐵     where  

 𝑆 . 𝑑𝑎  represents energy per unit time crossing area 𝑑𝑎  , i.e.  

 𝑺 represents the energy per unit time crossing unit area. 
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Poynting’s Theorem, Poynting Vector 
Then Poynting’s theorem can be rewritten (more compactly) 

  
𝜕

𝜕𝑡
𝑈𝑒 + 𝑈𝑚 +  𝑆 

𝒮
. 𝑑𝑎 + 𝑃 = 0  

        (rate of energy outflow) 
(rate of change of EM energy)    (rate of energy loss in volume)  

i.e. total energy is conserved. [ Note 𝑈𝑒 =  𝑢𝑒𝑑𝒱𝒱
,  𝑈𝑚 = ⋯] 

• 1st term can be positive or negative (𝑈 increase or decrease) 

• 2nd term can be positive or negative (𝑆  outflow or inflow) 
• 3rd term can only be ≥ 0 (energy dissipated, i.e. lost) 

• Poynting vector  𝑆 = 𝐸 × 𝐻  has units  V m . A m = W m2  
i.e. energy per unit time per unit area [or power p.u. area] 

• 𝑆  can be called the “energy flux density”. It is essential for 
understanding how EM waves transport energy.  
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Wave Equation for 𝐸  (1) 
• Immediate consequence of Maxwell’s equations 
•  Take curl of both sides of eqn. for Faraday’s law: 

  𝛻 × (𝛻 × 𝐸) = −𝛻 ×
𝜕𝐵

𝜕𝑡
= −

𝜕

𝜕𝑡
𝛻 × 𝐵  

  𝛻 𝛻 ∙ 𝐸 − 𝛻2𝐸 = −
𝜕

𝜕𝑡
𝜇0𝐽 𝑓 + 𝜇0𝜀0

𝜕𝐸

𝜕𝑡
 

 Substitute 𝛻 ∙ 𝐸 = 𝜌 𝜀0  (Gauss’s law) 

  𝛻2𝐸 − 𝛻
𝜌

𝜀0
= 𝜇0

𝜕𝐽 𝑓

𝜕𝑡
+ 𝜇0𝜀0

𝜕2𝐸

𝜕𝑡2
    or, rearranging, 

  𝛻2𝐸 = 𝜇0𝜀0
𝜕2𝐸

𝜕𝑡2
+ 𝜇0

𝜕𝐽 𝑓

𝜕𝑡
+ 𝛻

𝜌

𝜀0
 

•  The inhomogeneous wave equation   𝛻2𝜑 =
1

𝑐2

𝜕2𝜑

𝜕𝑡2
+ 𝐴 
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Wave Equation for 𝐸  (2) 
•  Away from sources, in free space where 𝜌 = 0  and  𝐽 𝑓 = 0 

 this reduces to the homogeneous wave equation 

   𝛻2𝐸 = 𝜇0𝜀0
𝜕2𝐸

𝜕𝑡2
   where  𝜇0𝜀0 =

1

𝑐2 

• i.e. Wave speed   𝑐 = 1 𝜇0𝜀0  

• Thus Maxwell’s equations predict that the electric field obeys 
the wave eqn., with wave speed equal to the speed of light.   

• Units: 𝜀0 is usually given in F/m and  𝜇0 in H/m.  

 [ 𝜀0 = 8.85 × 10−12F/m ; 𝜇0 = 4𝜋 × 10−7H/m ] 
 Exercise: Show that the units of 1 𝜇0𝜀0   are indeed  m/s. 
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Wave Equation for 𝐵  (1) 
•  Take curl of both sides of eqn. for Ampere’s law (in vacuum) 

  𝛻 × 𝛻 × 𝐵 = 𝛻 × 𝜇0𝜀0
𝜕𝐸

𝜕𝑡
= 𝜇0𝜀0

𝜕

𝜕𝑡
𝛻 × 𝐸  

  𝛻 𝛻 ∙ 𝐵 − 𝛻2𝐵 = −𝜇0𝜀0
𝜕2𝐵

𝜕𝑡2
        by Faraday’s law 

 But 𝛻 ∙ 𝐵 = 0  so we have  ( with 𝐽 𝑓 = 0 ) 

  𝛻2𝐵 = 𝜇0𝜀0
𝜕2𝐵

𝜕𝑡2
   The homogeneous wave equation 

•  Again wave speed   𝑐 = 1 𝜇0𝜀0  

• Thus Maxwell’s equations predict directly that the  
electric and magnetic fields obey the wave equation,  
with wave speed equal to the speed of light.   
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Wave Equation for 𝐵  (2) 
•  Including the source term in Ampere’s law :   

 𝛻 × 𝛻 × 𝐵 = 𝛻 × (𝜇0𝐽 + 𝜇0𝜀0
𝜕𝐸

𝜕𝑡
)   

 𝛻 𝛻 ∙ 𝐵 − 𝛻2𝐵 = 𝜇0𝛻 × 𝐽 + 𝜇0𝜀0
𝜕

𝜕𝑡
𝛻 × 𝐸  

 −𝛻2𝐵 = 𝜇0𝛻 × 𝐽 − 𝜇0𝜀0
𝜕2𝐵

𝜕𝑡2
     (Faraday’s law and 𝛻 ∙ 𝐵 = 0) 

 𝛻2𝐵 = 𝜇0𝜀0
𝜕2𝐵

𝜕𝑡2
− 𝜇0𝛻 × 𝐽    

•  Inhomogeneous wave equation, wave speed   𝑐 =
1

𝜇0𝜀0
 

• We  have already seen that the scalar and vector potentials 
obey the inhomogeneous /homogeneous wave equation, 
with the same speed, 𝑐 = 3.00× 108 m/s. 
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Plane EM Waves in Free Space 

• We know that the plane wave 𝜓(𝑧, 𝑡) = 𝜓0 cos 𝑘𝑧 − 𝜔𝑡   

is a solution of the wave eqn. 𝛻2𝜓 =
1

𝑐2

𝜕2𝜓

𝜕𝑡2
  and we can 

write this as  𝜓(𝑧, 𝑡) = 𝜓0𝑒
𝑖(𝑘𝑧−𝜔𝑡)  with the understanding 

that we take the real part to get the physical wave. 

• We examine plane waves of the form 

  𝐸 (𝑧, 𝑡) = 𝐸0𝑒
𝑖(𝑘𝑧−𝜔𝑡)    ,     𝐵 (𝑧, 𝑡) = 𝐵0𝑒

𝑖(𝑘𝑧−𝜔𝑡) 

 with complex amplitudes  𝐸0 and 𝐵0. 

• We will show that in order to satisfy Maxwell’s equations 

(which they must if they are real 𝐸 and 𝐵 fields), these 
waves must be transverse ; the waves of the two fields 
must also be mutually perpendicular and in phase. 
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Plane EM Waves are Transverse 
• Consider a plane wave with  𝐸 𝑧, 𝑡 = 𝐸0𝑒

𝑖 𝑘𝑧−𝜔𝑡   
propagating in a charge-free region (𝜌 = 0). 

• 𝐸 must satisfy Maxwell’s equations, in particular  

 𝛻 ∙ 𝐸 = 0 ,   i.e. 
𝜕𝐸𝑥

𝜕𝑥
+

𝜕𝐸𝑦

𝜕𝑦
+

𝜕𝐸𝑧

𝜕𝑧
= 0 

 But for plane wave, 𝐸 = 𝐸 𝑧  only;  

  𝜕 𝜕𝑥 = 0 , 𝜕 𝜕𝑦 = 0  

    
𝜕𝐸𝑧

𝜕𝑧
= 𝑖𝑘𝐸𝑧 = 0      𝐸𝑧 = 0  

 Since 𝛻 ∙ 𝐵 = 0 the same argument also gives  𝐵𝑧 = 0  
  There is no component in the direction of propagation:  
 an EM wave is transverse, i.e. the oscillation is 

perpendicular to the direction of propagation 13 



Relationship Between 𝐸 and 𝐵 (1)  
• 𝐸 𝑧, 𝑡 = 𝐸0𝑒

𝑖 𝑘𝑧−𝜔𝑡  must also satisfy −𝜕𝐵 𝜕𝑡 = 𝛻 × 𝐸 

 =
𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
𝑥 +

𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
𝑦 +

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
𝑧  

But 𝜕 𝜕𝑥 = 0 , 𝜕 𝜕𝑦 = 0 (plane wave), 𝐸𝑧 = 0 (transverse) so 

−
𝜕𝐵

𝜕𝑡
= −

𝜕𝐸𝑦

𝜕𝑧
𝑥 +

𝜕𝐸𝑥

𝜕𝑧
𝑦 = 𝑖𝑘 −𝐸0𝑦𝑥 + 𝐸0𝑥𝑦 𝑒𝑖 𝑘𝑧−𝜔𝑡   

Integration w.r.t. time then gives (− signs cancel)  

 𝐵 = 𝑘 𝜔 −𝐸0𝑦𝑥 + 𝐸0𝑥𝑦 𝑒𝑖 𝑘𝑧−𝜔𝑡  

Thus 𝐵 is the 𝑥𝑦-plane, i.e. transverse, and in phase with 𝐸. 

Now −𝐸0𝑦𝑥 + 𝐸0𝑥𝑦 = 𝐸   and  𝜔 𝑘 = 𝑐  so the amplitudes 

are related by  𝐵0 = 𝐸0 𝑐  
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Relationship Between 𝐸 and 𝐵 (2)  
We have 𝐵 =

𝑘

𝜔
−𝐸0𝑦𝑥 + 𝐸0𝑥𝑦 𝑒𝑖 𝑘𝑧−𝜔𝑡  

From the relationship of components,  

𝐵 and 𝐸 are mutually perpendicular 

and       𝐵 =
𝑘

𝜔
𝑧 × 𝐸   

e.g. if 𝐸 is in the 𝑥-direction then 

𝐵 is in the 𝑦-direction  

Here we say the wave  
is polarized in the 𝑥-  
direction (we use  

the direction of 𝐸.) 
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Relationship Between 𝐸 and 𝐵 (3)  
The wave vector 𝑘 is defined as the vector with magnitude 𝑘 
(the wave number = 2𝜋 𝜆 ) pointing in the direction of 

propagation of the wave. In this case 𝑘 = 𝑧  .     

We could also write the previous eqn. as  𝐵 = 𝑘 × 𝐸 /𝑐 

Write the wave velocity as a vector 𝑐 = 𝑐𝑘  , then the 
relationship between the three vectors can be written 

 𝑐 =
𝐸×𝐵

𝐵2   

(the velocity is in  
the direction of 

𝐸 × 𝐵  and has  
magnitude 𝐸 𝐵 .) 
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Relationship Between 𝐸 and 𝐵 (4)  
The fields in the wave shown in the figure below 
(polarized in the 𝑥-direction) are written (with 𝐵0 = 𝐸0 𝑐 ) 

𝐸 𝑧, 𝑡 = 𝐸0𝑥  𝑒
𝑖 𝑘𝑧−𝜔𝑡    and  𝐵 𝑧, 𝑡 = 𝐵0𝑦  𝑒

𝑖 𝑘𝑧−𝜔𝑡  

with the real fields being the real parts:  

𝐸 𝑧, 𝑡 = 𝐸0𝑥  cos 𝑘𝑧 − 𝜔𝑡   ,  𝐵 𝑧, 𝑡 = 𝐵0𝑦  cos 𝑘𝑧 − 𝜔𝑡  

The ratio of the field magnitudes in an EM wave is always  𝑐 , 
so e.g. if 𝐸0 = 300 V/m 
then  𝐵0 = 𝐸0 𝑐   

= 3×102 3× 108  

= 1 ×10−6 T   
 or 1 μT 
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Plane EM Waves in Arbitrary Direction 

• In general the wave vector 𝑘 can be in any  

 direction. Then we replace 𝑘𝑧 with 𝑘 ∙ 𝑟  : 

• The field equations for a plane wave 

 with wave vector 𝒌 and polarized in  

 the direction  𝒏  ( the direction of 𝐸 , 

 which is ⊥ 𝑘 , so that  𝑛 ⋅ 𝑘 = 0 ) are 

 𝐸 𝑟 , 𝑡 = 𝐸0𝑛  𝑒
𝑖(𝑘∙𝑟 −𝜔𝑡) ,   𝐵 𝑟 , 𝑡 =

𝐸0

𝑐
𝑘 × 𝑛  𝑒𝑖(𝑘∙𝑟 −𝜔𝑡) 

 with the real fields again the real parts: 

 𝐸 𝑟 , 𝑡 = 𝐸0𝑛  cos 𝑘 .𝑟 −𝜔𝑡  ,   

 𝐵 𝑟 , 𝑡 = 𝐸0 𝑐 𝑘 × 𝑛  cos 𝑘 .𝑟 −𝜔𝑡 = 𝑘 × 𝐸 /𝑐 

 [see Worked Examples 2 for some applications] 18 



Energy in EM Waves 

• Energy density in EM fields:  𝑢𝑒 = 1

2
𝜀0𝐸

2 and  𝑢𝑚 =
𝐵2

2𝜇0
 

• For a plane EM wave 𝐵2 = 𝐸2 𝑐2 = 𝜇0𝜀0𝐸
2  so  𝑢𝑒 = 𝑢𝑚 

• Total EM energy density  𝑢 = 𝜀0𝐸
2 = 𝜀0𝐸0

2 cos2 𝑘𝑧 − 𝜔𝑡  

• Energy per unit area per unit time transported by the fields 

is given by the Poynting vector  𝑆 = 𝐸 × 𝐻 = 𝐸 × 𝐵 𝜇0  

• For plane EM wave in 𝑧-dirn. 𝑆 = 𝑐 𝜀0𝐸0
2 cos2 𝑘𝑧 − 𝜔𝑡 𝑧  

 i.e.   𝑆 = 𝑐𝑢𝑧     [ 𝑆 = 𝐸𝐵 𝜇0 = 𝐸2 𝜇0𝑐 = 𝑐𝜀0𝐸
2 ] 

• Fields also carry momentum: momentum density (p.u. vol.) 

𝒫 = 𝑆 𝑐2 = 𝑢 𝑐 𝑧     
 [don’t worry about origin of this] 
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Intensity and Pressure in EM Waves 
• For light, 𝜆~10−7 m  and  𝑇~10−15 s  so we only want the 

average values (averaged over many cycles) 

• Average of cos2 =1 2  and we denote time avg. by   

• Then  𝑢 = 1

2
𝜀0𝐸0

2  ;  𝑆 = 1

2
𝑐𝜀0𝐸0

2𝑧    ;  𝒫 =
1

2𝑐
𝜀0𝐸0

2𝑧  

• Average power per unit area carried by EM wave is the  

intensity :  𝐼 = 𝑆 = 1

2
 𝑐 𝜀0𝐸0

2 
• When EM wave falls on absorbing surface, change in 

momentum  force  radiation pressure: 

 𝑃 =
𝐹

𝐴
=

∆𝑝 ∆𝑡 

𝐴
=

𝒫 𝐴𝑐∆𝑡

𝐴∆𝑡
=

1

2𝑐
𝜀0𝐸0

2 

 or  𝑃 = 𝐼 𝑐     For a perfectly reflecting  
 surface the pressure is 2 × this. 
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