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Retarded Potentials

For volume charge & current
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where R = # — #' (vector from source to field point)

In the non-static case, we have to consider the time for
the information to travel distance R, at speed c.

If we are determining the potentials and fields at time ¢,
then we need the state of the source at the earlier time

t. =t — R/c|, the “retarded time”.

(This will be different for different parts of the source;
like light from distant stars...)




Retarded Potentials

Thus we should rewrite the
equations for the potentials:
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where R=#—7"and t, =t — R/c
* These are the retarded potentials. The integrals for p
and J are evaluated at the earlier retarded time.

e Griffiths shows these satisfy the inhomogeneous wave
eqn. and Lorenz condition, so are real potentials.

* |n the static case, we do not have to consider this.




Energy and Poynting’s Theorem (1)

Consider work done by Lorentz force moving charge g by dlin
time dt: dW = F.dl = q(E + ¥ x B). ¥ dt = qE. dt

For distributed charge g = pdV and pv = f, so for total
charge in volume V, the rate of doing work, i.e. power, is

dw = =4 .
P ==5 fv (E.f)dV or E.J is the power per unit volume.

Use Maxwell’s egns. to get this in terms of only the fields:

-
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Vector identity: V. (E X 17) = 17(\7 X E) —E.(V X 17) —

P=[, H(VxE)av— [, v.(ExH)dv -, E2dVv

Now 7 x B = =22 and [, 7.(E x H)dV = §; (E x H).da




Energy and Poynting’s Theorem (2)

Then, rearranging, we get

J, (EG—D+H )dv+gﬁ (ExH).di+P=0

This result is known as Poynting’s Theorem, but it is really
just a statement of conservation of energy.
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In l.i.h. materials E.— =—(—£E2) and H.— =—(—BZ):
ot Ot \2 ot  at \2u

21, (%3E2+§—M)d17+955 (Ex H).dd+P =0
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R B% :
We recognise EEE = U, and o U, , the energy density

of the electric and magnetic fields, so the first term is the
rate of change of electromagnetic energy in the volume.




Energy Flow and the Poynting Vector
= (§5E2+§)dv+955 (Ex H).dd+P =0

The third term, originally P = fv (E.f)dV , represents the
rate of energy dissipation (loss) in the volume.

The second term is the flux of the vector E X H through the
surface bounding the volume. This integral represents the
total rate of energy outflow from the volume. We define

- — —> - 1 — —>
the Poynting vector: |[S = E X H or S = ;(E X B)

and in free space S =— (E X B) where

S.dd represents energy per unlt time crossing area da , i.e.
S represents the energy per unit time crossing unit area.




Poynting’s Theorem, Poynting Vector
Then Poynting’s theorem can be rewritten (more compactly)
d = | LN

~(Ue+Up) +¢; S.dai+P =0

\
(rate of energy\outflow) \
(rate of change of EM energy) (rate of energy loss in volume)

i.e. total energy is conserved. [ Note U, = fv u.,dv, U, = -]
* 1st term can be positive or negative (U increase or decrease)

e 2nd term can be positive or negative (§ outflow or inflow)

* 3rd term can only be = 0 (energy dissipated, i.e. lost)

* Poynting vector S =FE x H has units V/m.A/m = W/m?
i.e. energy per unit time per unit area [or power p.u. area]

- S can be called the “energy flux density”. It is essential for
understanding how EM waves transport energy.




Wave Equation for E (1)

* Immediate consequence of Maxwell’s equations
* Take curl of both sides of eqn. for Faraday’s law:

Vx(VxE)z—an—lfz—i(Vxﬁ)

= = | OF
‘7(‘7 ' E) —VE = (Ho]f T Ho€o 5, )
Substitute V - E = p/ &y (Gauss's Iaw)

V2E — V7 (8%) Uo af + o€ 57 o, rearranging,
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* The inhomogeneous wave equation V%@ = ——+1A




Wave Equation for E (2)

Away from sources, in free space where p = 0 and ff =0
this reduces to the homogeneous wave equation

2—)
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i.e. Wave speed |c = 1//lp€

Thus Maxwell’s equations predict that the electric field obeys
the wave eqgn., with wave speed equal to the speed of light.

Units: &y is usually given in F/m and ugy in H/m.
[go =8.85x107*°F/m; uy = 4w X 10~’H/m |
Exercise: Show that the units of 1/./lip€, are indeed m/s.




Wave Equation for B (1)

* Take curl of both sides of egn. for Ampere’s law (in vacuum)

Vx(VxB)= VXMOEOaaE—MOEO%(VXE)

V(V-B)—V?B = —H050227 by Faraday’s law
ButV -B = 0 so we have (withfsz)

62
VZB Uo 80 The homogeneous wave equation

* Again wave speed c =1/\Uog&

 Thus Maxwell’s equations predict directly that the
electric and magnetic fields obey the wave equation,
with wave speed equal to the speed of light.




Wave Equation for B (2)

* Including the source term in Ampere’s law :
Vx(VxB)=Vx (#o]+ﬂo€an

V(V-B)—V?B = uoV ><]+uoeoa(l7x§)

2 2 ~
—V?B = uyv ><] Mofog ~ (Faraday’slawand V - B = 0)
2 52 7
V2B = Ho€o MoV X J
1
* |Inhomogeneous wave equation, wave speed Cc =
g q P e

 We have already seen that the scalar and vector potentials
obey the inhomogeneous /homogeneous wave equation,
with the same speed, ¢ = 3.00 x 10® m/s.




Plane EM Waves in Free Space

* We know that the plane wave Y(z,t) = Y, cos(kz — wt)
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is a solution of the wave eqn. V% = C—Z% and we can

write this as ¥ (z,t) = Pee!*Z=®Y with the understanding
that we take the real part to get the physical wave.

* We examine plane waves of the form
E (z,t) = Ege!®2=9) B (z,t) = Bye'kz=D)

with complex amplitudes EO and §0.

 We will show that in order to satisfy Maxwell’s equations

(which they must if they are real E and B fields), these
waves must be transverse ; the waves of the two fields
must also be mutually perpendicular and in phase.




Plane EM Waves are Transverse
* Consider a plane wave with E (z,t) = Eoei(kz_wt)
propagating in a charge-free region (p = 0).
. E must satisfy Maxwell’s equations, in particular

= . O0Ey , OEy, 0E, _

V E—O, l.e. 9 | B | aZ_O

But for plane wave, E = E(z) only;
0/0x=0,0d/0y =0
OE '

= —— =1kE; =0 = E, =0

Since V - B = 0 the same argument also gives B, = 0

There is no component in the direction of propagation:
an EM wave is transverse, i.e. the oscillation is
perpendicular to the direction of propagation




Relationship Between E and B (1)

- E (z,t) = Eoei(kz_wt) must also satisfy — 6§/6t =V XE

ady 0z 0z dx dx ady

But d/dx =0, d/dy = 0(plane wave), E, = 0 (transverse) so

0B _  OEy NSNS

—— = —==

— N & a1, i(kz—wt)
Y = e = ik|—Eo,% + EoxJ e
Integration w.r.t. time then gives (— signs cancel)

— i N . » k "
B = (k/w)|~Eoy2 ¥ Eox9]e" "

Thus B is the xy-plane, i.e. transverse, and in phase with E.
Now ‘—Eoya? + EOx)A/‘ = |£_?)‘ and w/k = c so the amplitudes
are related by By = EO/C




— —>
Relationship Between E and B (2)
We have B = S[—Eoyf + EOxy]ei(kZ—wt)

From the relationship of components,
B and E are mutually perpendicular

—> k " —
and B =— (Z X E)
0
e.g. if E is in the x-direction then
B is in the y-direction N

Here we say the wave
is polarized in the x-
direction (we use

the direction of E.)




Relationship Between E and B (3)

The wave vector k is defined as the vector with magnitude k
(the wave number = 2w /A1) pointing in the direction of
propagation of the wave. In this case k = 2.

We could also write the previous eqgn. as |B = (I’E X E)/C

Write the wave velocity as a vector ¢ = ck , then the
relationship between the three vectors can be written

—

> EXB
C = 52
(the velocity is in
the direction of

E X B and has
magnitude E /B .)




Relationship Between E and B (4)

The fields in the wave shown in the figure below
(polarized in the x-direction) are written (with By = Ey/c)

E (Z, t) - E05C\ ei(kz—a)t) and E (Z, t) — BOS; ei(kZ—a)t)
with the real fields being the real parts:

E(zt) = Eyx cos(kz — wt) , B (z,t) = B,y cos(kz — wt)
The ratio of the field magnitudes in an EM wave is always c,
soe.g.if E,b =300V/m
then By, = E,/c
= 3% 10%/3 x 10°
=1x107°T

or 1 uT




Plane EM Waves in Arbitrary Direction

* |n general the wave vector k can be in any
direction. Then we replace kz with k-7
* The field equations for a plane wave
with wave vector k and polarized in
the direction n ( the direction of E,
which is 1 l_c),sothat fi-k=0)are

E (7,t) = Egh e/kT=00 B (1) = % (k x 71) eiKT-00

with the real fields again the real parts:

E (#t) = Eyft cos(l?.?—a)t) ,

B (r, t) = (EO/C)(E X ﬁ) cos(l?.?— wt) = (I? X E)/c
[see Worked Examples 2 for some applications]




Energy in EM Waves

Energy density in EM fields: u, = %eOEZ and u,, = ZB—:()
For a plane EM wave B? = E%/c? = uyeoE? so u, = u,,

Total EM energy density u = ggE? = gyEy° cos?(kz — wt)
Energy per unit area per unit time transported by the fields

is given by the Poynting vector S=ExH= (E X E)/,uo
For plane EM wave in z-dirn. S = ¢ goEy” cos?(kz — wt) 2

ie. S=cuz [S=EB/uy=E?/usc = ceyE?]
Fields also carry momentum: momentum density (p.u. vol.)

P =S5/c? = (u/c)z

[don’t worry about origin of this]




Intensity and Pressure in EM Waves

e For light, A~10~7 m and T~10"1°>s so we only want the
average values (averaged over many cycles)

* Average of cos? =1/2 and we denote time avg. by ( )

—

2 - 2 A 1 2 A

 Then (U) — %EOEO , <S> — %CE()EO zZ , <?> — Z_CEOEO Z
* Average power per unit area carried by EM wave is the

intensity ;| [ = (S) = %C EOEOZ

* When EM wave falls on absorbing surface, change in

momentum — force — radiation pressure:
F Ap/At  (P)AcAt 1

P —_— = ke — — _goEOZ
A A ANt 2¢C

or P =1/c For a perfectly reflecting
surface the pressure is 2 X this.




