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Faraday’s Law
dd,,
dt
RN EN d RN RN
Integral form: ¢ E-dl=——[ B-dA
Apply Stokes’s theorem to the LHS and assume integration

path C bounding surface S is fixed in space, so the RHS
differentiation and integration can be interchanged:

Familiar form: & = —

fs (Vxﬁ)-dc'iz— E aa—l:-d(fi for any S, thus:
- dB
Differential form : VXE =— v

This is induced electric field for which V- E = 0
(no charges), i.e. lines of induced E (sometimes called
“non-electrostatic electric field” E,,) are continuous.




Scalar and Vector Potentials (1)

* Faraday’s law: VxE:—aE/at with B=V XA :
= G, > 0A
VXE:—O—E(VXA)——an—
i.e.Vx (E+d4/dt) =0

* () must be a quantity whose curl =0, viz. a grad of a scalar;
call this —=VV , then

= 0A

= VvV
ot

= Electric field can arise from (1) changing magnetic fields

and (2) potential gradients due to static charges.

* Above can also be derived from Faraday’s law in the form

gﬁE dl = CZ) gﬂA dl (use Stokes’s theorem...)




Scalar and Vector
Potentials (2)

r 4TTE r
]f+\7><1\7i . o i)f+1\71)><ﬁ /
av: + — |, da

r 4T VS r

(free + bound charges and currents over volume + surface)
e Inli.h. materials V.P = 0 vV xM=0 ; &9 €
* Differentiate these potentials for field vectors :

Ez—VV—@/T/Gt and B=UVXxA

* Equations for I/ and A are very similar, and p and ff are
related through the continuity eqn.: dpf/dt +V f =0,
50 is there a relation between V and 4 ? Yes, indeed...




The Lorenz* Condition

* For free current distribution ff, A=L ,]—de’
A V" r

* Obtain div/f; distinguish derivatives at source point and

: 7oA =H V"jf r M (9ps/0t) /
fieldpt: V- A=2f Ty = L dv

r r

[by continuity egn.] = —e,u%(fv, ﬂdV’) = —eudV /ot

r

i.e. VA + e,uaa—[t/ =0 [0l IN Vacuum]

* With this condition, we can compute 3 components of B
and 3 components of E from only the 3 components of A .

* Note: this egn. is due to Ludvig V. Lorenz (Danish physicist, 1867),
not Hendrik Antoon Lorentz (Dutch physicist, ca. 1900).
Many textbooks (including Griffiths) propagate this error.




Ampere’s Law Revisited (a la Maxwell)

* In defining 17, we obtained a version of “Ampere’s law
for free currents”: V' x H= ff

* Now, as for any vector, V - (\7 X 17) =0
However, we have a problem: by the continuity eqn.,
V- (\7 X ﬁ) = V'ff = —dpg/0t # 0 in general

 Maxwell: “something is missing” from Ampere’s law.
Add “displacement current density” fd,
then Vxﬁ=f=ff+fd and we have
V-J=V-Jp4+V-Jy=—0p; /0t +V -J; =0
With Gauss’s law for free charges,
V-j,=0dp;/0t=0/dt(V-D)="V-(aD/at)




Displacement Current

* We have V- (fd = 85/615) = 0 to which the obvious

solutionis | J; = @D /0t | (no reason to add anything)
and the term “displacement current” now makes sense.

—

* By def. D = EOE + P andinvacuum D = EOE
* “Ampere’s law with displacement current”
(Maxwell’s mod): | V X H = ff + 05/(%
orintermsof B, V X B = .uO]_)mat + Uo&p (5[_:')/615)
where fmat is the total current density “in matter” (conduction

. . - > P —
+ polarization + magnetization currents) [t =/ Ft ¢ + VXM

while the displacement current can “flow” in free space.




Maxwell’s Equations (1)

(A) In terms of E and B only:

. |V-E=£& Gauss's Law  [p; = pr + pp]
€0
e |V-B=0 Magnetic field divergenceless
0B
. |V XE+ a— =0 Faraday’s law
OF
e |V XB-— Ho€o 5, = .uO]mat Ampere’s law
[]mat:]f +E+VXM]

[this version: fields on LHS, sources on RHS]




Maxwell’s Equations (2)

(B) In terms of four fields E ) D ) B } H:

« | 7-D = Pr Gauss’s Law (free charges)

e | V-B=0 Magnetic field divergenceless
— 0B

¢« | VXE+ a— =0 Faraday’s law
— 65 -

e | VXH-— F Jr Ampere’s law

[no constants, free charges and currents only]

Remember Maxwell’s equations are PDEs with space and
time derivatives of the field vectors. To find the fields we
need to integrate and apply boundary conditions...




The Helmholtz Theorem

 Maxwell’s equations specify the div and curl of E and B :
V-E=£ V-B=0
€0
oB OF

VXE—_E VXB .uO]mat_I'.uOgO ot

* If we require the fields to — 0 at infinity, then E and B
are uniquely determined by these equations.

* This is the Helmholtz theorem: If the divergence D(7)

and the curl C (%) of a vector function F (%) are both
specified, and if they both go to zero faster than 1 /72

as r — oo, and if F(#) goes to zero as r — o, then F
is given uniquely by ...




The Helmholtz Theorem continued

. F is given uniquely by: F=-VU+VXW

where U(7) = fl”( 9,) dV' and W (%) = flca(ra,) dv’

* We expect electrlc and magnetic fields to go to zero at oo,
so the above argument is valid for £ and B.
e Corollary of Helmholtz theorem: any (differentiable)

vector function F(#) that — 0 faster than 1/r asr — o
can be expressed as grad(scalar) plus curl (vector):

EF 1 (V' X F(#
J ( ) V' ]1+V X f ~ E,)
|7 |7 — 7]

— dV’
r—1r 41

[check this for static E and B (using Gauss and Ampere)]




Scalar and Vector Potentials again

Potential formulation: B=VxX A and F = —a—A —VV

ot
This satisfies VB =0 and V X E = —6B/6t
(the egn. for E was derived from Faraday’s law)

Substitute in Gauss’s law V - E = p/&p :
0 -
V2 +—(\7-A) = —p/g,

Substitute in Ampere’s law IV X B = Mo] + oo 2’5

2
V X (VXA) ,uO] /108()\7(?;) ,uoeog—f or ... (#)

0% A A% >
(‘7214 Ho€o 7 ) \7(\7 A+ pos 3 ) = —o/

Maxwell’s equatlons in terms of potentials




Gauge Transformations (1)
* The equations \72V+i(\7-/f) = —p/g

and (\72A Uo &g azA) v (V- A+ pogo s ) = o
are cumbersome. But V and 4 are not uniquely defined.
e Consider two sets of potentials (V, /T) and (V’, /T’) which
correspond to the same fields.
* Write A=4A+a ; Vi=V+p
Since V x A’ = \7></T=§,wemusthave V'xa=0
andso a = VA, for some scalar A.
Also —dA' /ot —VV' = —9A/dt —VV = E so
da/dt+ VL =0 or V(A/dt+pB) =0
() indep. of position, but could depend on ¢, say k(t),
then f = —0dA/dt + k(t)




Gauge Transformations: Coulomb
 Redfine A=A+ fotk(t')dt’ : VA unchanged

* Thus for any scalar function A we can add VA to A and

subtract 1/t from V without changing E and B.
This is a gauge transformation.

(a) The Coulomb Gauge :

* As for magnetostatics, set I/ - A =0 then V2V = —p/&
1 p(f')l’t) dV,

ATtEy ¥ |T—T7|

e But for E we alsorequire A where [from (#) with V. A = 0]
V24 — pgey 024/0t% = —ugf + eV (3V /0t)

* For the Coulomb Gauge, while V is easy, Ais very difficult
to calculate — a major disadvantage. Also no ‘symmetry’.

(Poisson’s egn.) with soln. V (7, t) =




Gauge Transformations: Lorenz

(b) The Lorenz Gauge :

* Here put (see slide 6) VA= —UoE AV /0t
(the Lorenz condition). Then eqn. (#) (slide 13) becomes
[ ogo = 1/c?] | V24 — Ho€o 024 /0t? = —Hof

+ Theegn.forVis| V2V — uggo 04V /0t* = —p/g,
i.e. the equations are identical; there is ‘symmetry’

between A and I/, a major advantage of the Lorenz gauge.
 The same differential operator, the d’Alembertian
2=7?%—-(1/c?) 0%/ot* operates on both:

‘V=—p/gyg and 24 = —pof




Gauge Transformations

The Lorenz Gauge (continued) V - A= —Hoo oV /ot
‘V=-p/g; and 24 = —.Uof

1 0%
c2 9t2
is the natural extension of the Laplacian V4 to 4-D ;

In special relativity, the d’Alembertian =% —

above eqgns. are 4-D equivalents of Poisson’s equation.

In the Lorenz gauge, V and A satisfy the inhomogeneous
wave equation. The problem of finding the potentials for
given sources then becomes a matter of solving the
inhomogeneous wave eqgn. for these sources.

2 L 2 A -
VZV 16V=—£,V2A 16A=_‘u0]

c2 ot? o c? Ot?




Gauge Invariance

* |f the fields are invariant under a gauge transformation,
then we have gauge invariance.

 The Lorenz gauge is most commonly used

(i) because of its equal treatment of IV and A leading to
the inhomogeneous wave equations, and
(ii) because it is independent of the coordinate system

and so fits naturally with special relativity.

» 2 v
* The Lorenz condition V' -+ A = —uy&g 5 and wave eqns.

62A = 9%V
= —uoJ and V2V — pgeo = 32 —p/&

unite eIectr|C|ty and ‘magnetism’, and show pyg, = 1/c?
just as Maxwell’s equations do, but in terms of potentials.

V24 - Ho€o 572




