Time-Varying Systems; Maxwell's Equations

- 1. Faraday's law in differential form
- 2. Scalar and vector potentials; the Lorenz condition
- 3. Ampere's law with displacement current
- 4. Maxwell's equations
- 5. The Helmholtz theorem
- 6. Maxwell's equations in terms of potentials
- 7. Gauge transformations

Faraday's Law

- Familiar form : $\mathcal{E} = -\frac{d\Phi_m}{dt}$
- Integral form : $\oint_c \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_s \vec{B} \cdot d\vec{A}$
- Apply Stokes's theorem to the LHS and assume integration path C bounding surface S is fixed in space, so the RHS differentiation and integration can be interchanged:

$$\int_{S} \left(\nabla \times \vec{E} \right) \cdot d\vec{a} = - \int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{a} \quad \text{for any } S, \text{ thus:}$$

Differential form :

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

• This is **induced electric field** for which $\nabla \cdot \vec{E} = 0$ (no charges), i.e. lines of induced \vec{E} (sometimes called "non-electrostatic electric field" \vec{E}_n) are continuous.

Scalar and Vector Potentials (1)

- Faraday's law: $\nabla \times \vec{E} = -\partial \vec{B} / \partial t$ with $\vec{B} = \nabla \times \vec{A}$: $\nabla \times \vec{E} = -\frac{\partial}{\partial t} (\nabla \times \vec{A}) = -\nabla \times \frac{\partial \vec{A}}{\partial t}$ i.e. $\nabla \times (\vec{E} + \partial \vec{A} / \partial t) = 0$
- () must be a quantity whose curl = 0, viz. a grad of a scalar;
 call this \(\nabla V\), then

$$\vec{E} = -\frac{\partial \vec{A}}{\partial t} - \nabla V$$

- ⇒ Electric field can arise from (1) changing magnetic fields and (2) potential gradients due to static charges.
- Above can also be derived from Faraday's law in the form $\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \oint \vec{A} \cdot d\vec{l}$ (use Stokes's theorem...)

Scalar and Vector Potentials (2)

For finite charge and current distributions,

$$\mathcal{I}^{S}V = \frac{1}{4\pi\varepsilon_{0}} \int_{\mathcal{V}'} \frac{\rho_{f} - \nabla \cdot \vec{P}}{r} d\mathcal{V}' + \frac{1}{4\pi\varepsilon_{0}} \int_{S'} \frac{\sigma_{f} - \vec{P} \cdot \hat{n}}{r} da'$$
$$\vec{A} = \frac{\mu_{0}}{4\pi} \int_{\mathcal{V}'} \frac{\vec{J}_{f} + \nabla \times \vec{M}}{r} d\mathcal{V}' + \frac{\mu_{0}}{4\pi} \int_{S'} \frac{\vec{\lambda}_{f} + \vec{M} \times \hat{n}}{r} da'$$

(free + bound charges and currents over volume + surface)

• In l.i.h. materials $\nabla . \vec{P} = 0$; $\nabla \times \vec{M} = 0$; $\varepsilon_0 \to \varepsilon$

P(x,y,z)

P'(x',y',z')

- Differentiate these potentials for field vectors : $\vec{E} = -\nabla V - \partial \vec{A} / \partial t$ and $\vec{B} = \nabla \times \vec{A}$
- Equations for V and \vec{A} are very similar, and ρ_f and \vec{J}_f are related through the continuity eqn.: $\partial \rho_f / \partial t + \nabla \cdot \vec{J} = 0$, so is there a relation between V and \vec{A} ? Yes, indeed...

The Lorenz* Condition

- For free current distribution \vec{J}_f , $\vec{A} = \frac{\mu}{4\pi} \int_{\mathcal{V}'} \frac{\dot{J}_f}{r} d\mathcal{V}'$
- Obtain div \vec{A} ; distinguish derivatives at source point and field pt.: $\nabla \cdot \vec{A} = \frac{\mu}{4\pi} \int_{\mathcal{V}'} \frac{\nabla' \cdot \vec{J}_f}{r} d\mathcal{V}' = -\frac{\mu}{4\pi} \int_{\mathcal{V}'} \frac{(\partial \rho_f / \partial t)}{r} d\mathcal{V}'$ [by continuity eqn.] $= -\epsilon \mu \frac{\partial}{\partial t} \left(\int_{\mathcal{V}'} \frac{\rho_f}{r} d\mathcal{V}' \right) = -\epsilon \mu \frac{\partial V}{\partial t} / \partial t$ i.e. $\nabla \cdot \vec{A} + \epsilon \mu \frac{\partial V}{\partial t} = 0$ [$\epsilon_0 \mu_0$ in vacuum]
- With this condition, we can compute 3 components of \vec{B} and 3 components of \vec{E} from only the 3 components of \vec{A} .
- * Note: this eqn. is due to Ludvig V. Lorenz (Danish physicist, 1867),
 not Hendrik Antoon Lorentz (Dutch physicist, ca. 1900).
 Many textbooks (including Griffiths) propagate this error.

Ampere's Law Revisited (à la Maxwell)

- In defining \vec{H} , we obtained a version of "Ampere's law for free currents": $\nabla \times \vec{H} = \vec{J}_f$
- Now, as for any vector, $\nabla \cdot (\nabla \times \vec{H}) = 0$ However, we have a **problem**: by the continuity eqn., $\nabla \cdot (\nabla \times \vec{H}) = \nabla \cdot \vec{J}_f = -\partial \rho_f / \partial t \neq 0$ in general
- Maxwell: "something is missing" from Ampere's law. Add "**displacement current density**" \vec{J}_d , then $\nabla \times \vec{H} = \vec{J} = \vec{J}_f + \vec{J}_d$ and we have $\nabla \cdot \vec{J} = \nabla \cdot \vec{J}_f + \nabla \cdot \vec{J}_d = -\partial \rho_f / \partial t + \nabla \cdot \vec{J}_d = 0$ With Gauss's law for free charges, $\nabla \cdot \vec{J}_d = \partial \rho_f / \partial t = \partial / \partial t (\nabla \cdot \vec{D}) = \nabla \cdot (\partial \vec{D} / \partial t)$

Displacement Current

- We have ∇ · (J_d ∂D/∂t) = 0 to which the obvious solution is J_d = ∂D/∂t (no reason to add anything) and the term "displacement current" now makes sense.
 By def. D = ε₀E + P and in vacuum D = ε₀E
- "Ampere's law with displacement current" (Maxwell's mod): $\nabla \times \vec{H} = \vec{J}_f + \partial \vec{D} / \partial t$ or in terms of \vec{B} , $\nabla \times \vec{B} = \mu_0 \vec{J}_{mat} + \mu_0 \varepsilon_0 (\partial \vec{E} / \partial t)$ where \vec{J}_{mat} is the total current density "in matter" (conduction + polarization + magnetization currents) $\vec{J}_{mat} = \vec{J}_f + \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$ while the displacement current can "flow" in free space.

Maxwell's Equations (1)

(A) In terms of \vec{E} and \vec{B} only:

• $\nabla \cdot \vec{E} = \frac{\rho_t}{\varepsilon_0}$ Gauss's Law $[\rho_t = \rho_f + \nabla \cdot \vec{B} = 0$ Magnetic field divergencele • $\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$ Faraday's law • $\nabla \times \vec{B} - \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{J}_{mat}$ Ampere's law $[\rho_t = \rho_f + \rho_b]$ **Magnetic field divergenceless** $[\vec{J}_{\text{mat}} = \vec{J}_f + \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}]$

[this version: fields on LHS, sources on RHS]

Maxwell's Equations (2)

(B) In terms of four fields \vec{E} , \vec{D} , \vec{B} , \vec{H} :

•	$\nabla \cdot \vec{D} = \rho_f$	Gauss's Law (free charges)
•	$\nabla \cdot \vec{B} = 0$	Magnetic field divergenceless
•	$\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$	Faraday's law
•	$\nabla \times \vec{H} - \frac{\partial \vec{D}}{\partial t} = \vec{J}_f$	Ampere's law

[no constants, free charges and currents only] Remember Maxwell's equations are PDEs with space and time derivatives of the field vectors. To find the fields we need to integrate and apply boundary conditions... 10

The Helmholtz Theorem

- Maxwell's equations specify the div and curl of \vec{E} and \vec{B} : $\nabla \cdot \vec{E} = \frac{\rho_t}{\varepsilon_0}$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = \mu_0 \vec{J}_{mat} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$
- If we require the fields to $\rightarrow 0$ at infinity, then \vec{E} and \vec{B} are uniquely determined by these equations.
- This is the **Helmholtz theorem**: If the divergence $D(\vec{r})$ and the curl $\vec{C}(\vec{r})$ of a vector function $\vec{F}(\vec{r})$ are both specified, and if they both go to zero faster than $1/r^2$ as $r \to \infty$, and if $\vec{F}(\vec{r})$ goes to zero as $r \to \infty$, then \vec{F} is given uniquely by ...

The Helmholtz Theorem continued

- \vec{F} is given uniquely by: $\vec{F} = -\nabla U + \nabla \times \vec{W}$ where $U(\vec{r}) \equiv \frac{1}{4\pi} \int \frac{D(\vec{r}')}{|\vec{r} - \vec{r}'|} d\mathcal{V}'$ and $\vec{W}(\vec{r}) \equiv \frac{1}{4\pi} \int \frac{\vec{C}(\vec{r}')}{|\vec{r} - \vec{r}'|} d\mathcal{V}'$
- We expect electric and magnetic fields to go to zero at ∞ , so the above argument is valid for \vec{E} and \vec{B} .
- **Corollary** of Helmholtz theorem: any (differentiable) vector function $\vec{F}(\vec{r})$ that $\rightarrow 0$ faster than 1/r as $r \rightarrow \infty$ can be expressed as grad(scalar) plus curl (vector):

$$\vec{F}(\vec{r}) = \nabla \left(\frac{-1}{4\pi} \int \frac{\nabla' \cdot \vec{F}(\vec{r}')}{|\vec{r} - \vec{r}'|} d\mathcal{V}' \right) + \nabla \times \left(\frac{1}{4\pi} \int \frac{\nabla' \times \vec{F}(\vec{r}')}{|\vec{r} - \vec{r}'|} d\mathcal{V}' \right)$$

[check this for static \vec{E} and \vec{B} (using Gauss and Ampere)]

Scalar and Vector Potentials again

- Potential formulation: $\vec{B} = \nabla \times \vec{A}$ and $\vec{E} = -\frac{\partial \vec{A}}{\partial t} \nabla V$
- This satisfies $\nabla \cdot \vec{B} = 0$ and $\nabla \times \vec{E} = -\partial \vec{B} / \partial t$ (the eqn. for \vec{E} was derived from Faraday's law)
- Substitute in Gauss's law $\nabla \cdot \vec{E} = \rho / \varepsilon_0$:

$$\nabla^2 V + \frac{\partial}{\partial t} \left(\nabla \cdot \vec{A} \right) = -\rho/\varepsilon_0$$

• Substitute in Ampere's law $\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$:

$$\nabla \times \left(\nabla \times \vec{A}\right) = \mu_0 \vec{J} - \mu_0 \varepsilon_0 \nabla \left(\frac{\partial V}{\partial t}\right) - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{A}}{\partial t^2} \text{ or } \dots \text{ (\#)}$$
$$\left(\nabla^2 \vec{A} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{A}}{\partial t^2}\right) - \nabla \left(\nabla \cdot \vec{A} + \mu_0 \varepsilon_0 \frac{\partial V}{\partial t}\right) = -\mu_0 \vec{J}$$

Maxwell's equations in terms of potentials

Gauge Transformations (1)

• The equations $\nabla^2 V + \frac{\partial}{\partial t} (\nabla \cdot \vec{A}) = -\rho/\varepsilon_0$ and $\left(\nabla^2 \vec{A} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{A}}{\partial t^2}\right) - \nabla \left(\nabla \cdot \vec{A} + \mu_0 \varepsilon_0 \frac{\partial V}{\partial t}\right) = -\mu_0 \vec{J}$

are cumbersome. But V and \vec{A} are not uniquely defined.

- Consider two sets of potentials (V, \vec{A}) and $(V', \vec{A'})$ which correspond to the same fields.
- Write $\vec{A}' = \vec{A} + \vec{\alpha}$; $V' = V + \beta$ Since $\nabla \times \vec{A}' = \nabla \times \vec{A} = \vec{B}$, we must have $\nabla \times \vec{\alpha} = 0$ and so $\vec{\alpha} = \nabla \lambda$, for some scalar λ . Also $-\partial \vec{A}'/\partial t - \nabla V' = -\partial \vec{A}/\partial t - \nabla V = \vec{E}$ so $\partial \vec{\alpha}/dt + \nabla \beta = 0$ or $\nabla (\partial \lambda / \partial t + \beta) = 0$ () indep. of position, but could depend on t, say k(t), then $\beta = -\partial \lambda / \partial t + k(t)$

Gauge Transformations: Coulomb

- Redfine $\lambda = \lambda + \int_0^t k(t')dt'$; $\nabla \lambda$ unchanged
- Thus for any scalar function λ we can add $\nabla \lambda$ to \vec{A} and subtract $\partial \lambda / \partial t$ from V without changing \vec{E} and \vec{B} . This is a **gauge transformation**.

(a) The Coulomb Gauge :

- As for magnetostatics, set $\nabla \cdot \vec{A} = 0$ then $\nabla^2 V = -\rho/\varepsilon_0$ (Poisson's eqn.) with soln. $V(\vec{r},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}',t)}{|\vec{r}-\vec{r}'|} d\mathcal{V}'$
- But for \vec{E} we also require \vec{A} where [from (#) with $\nabla \cdot \vec{A} = 0$] $\nabla^2 \vec{A} - \mu_0 \varepsilon_0 \partial^2 \vec{A} / \partial t^2 = -\mu_0 \vec{J} + \mu_0 \varepsilon_0 \nabla (\partial V / \partial t)$
- For the Coulomb Gauge, while V is easy, \vec{A} is very difficult to calculate a major disadvantage. Also no 'symmetry'.

Gauge Transformations: Lorenz (b) The Lorenz Gauge :

- Here put (see slide 6) $\nabla \cdot \vec{A} = -\mu_0 \varepsilon_0 \frac{\partial V}{\partial t}$ (the Lorenz condition). Then eqn. (#) (slide 13) becomes $[\mu_0 \varepsilon_0 = 1/c^2] \quad \nabla^2 \vec{A} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J}$
- The eqn. for V is $\nabla^2 V \mu_0 \varepsilon_0 \partial^2 V / \partial t^2 = -\rho / \varepsilon_0$ i.e. the equations are identical; there is 'symmetry' between \vec{A} and V, a major advantage of the Lorenz gauge.
- The same differential operator, the d'Alembertian

$$\Box^{2} \equiv \nabla^{2} - (1/c^{2}) \partial^{2}/\partial t^{2}$$
 operates on both:
$$\Box^{2} V = -\rho/\varepsilon_{0} \text{ and } \Box^{2} \vec{A} = -\mu_{0} \vec{J}$$

Gauge Transformations

The Lorenz Gauge (continued) $\nabla \cdot \vec{A} = -\mu_0 \varepsilon_0 \partial V / \partial t$ $\Box^2 V = -\rho / \varepsilon_0$ and $\Box^2 \vec{A} = -\mu_0 \vec{J}$

- In special relativity, the d'Alembertian $\Box^2 \equiv \nabla^2 \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$ is the natural extension of the Laplacian ∇^2 to 4-D; above eqns. are 4-D equivalents of Poisson's equation.
- In the Lorenz gauge, V and \vec{A} satisfy the **inhomogeneous wave equation**. The problem of finding the potentials for given sources then becomes a matter of solving the inhomogeneous wave eqn. for these sources.

$$\nabla^2 V - \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\varepsilon_0} , \quad \nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J}$$

Gauge Invariance

- If the fields are invariant under a gauge transformation, then we have gauge invariance.
- The Lorenz gauge is most commonly used

 because of its equal treatment of V and A leading to the inhomogeneous wave equations, and
 because it is independent of the coordinate system and so fits naturally with special relativity.
- The Lorenz condition $\nabla \cdot \vec{A} = -\mu_0 \varepsilon_0 \frac{\partial V}{\partial t}$ and wave eqns. $\nabla^2 \vec{A} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J}$ and $\nabla^2 V - \mu_0 \varepsilon_0 \frac{\partial^2 V}{\partial t^2} = -\rho/\varepsilon_0$ unite 'electricity' and 'magnetism', and show $\mu_0 \varepsilon_0 = 1/c^2$ just as Maxwell's equations do, but in terms of potentials.