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Magnetic Materials (1) 
• Magnetic dipole with moment 𝑚 in uniform 𝐵 experiences 

torque  𝜏 = 𝑚 × 𝐵  tending to align 𝑚 with 𝐵 :  

• In non-uniform 𝐵, net force 𝐹 = 𝛻 𝑚 ∙ 𝐵  

•  Analogous to  𝜏 = 𝑝 × 𝐸   and  𝐹 = 𝛻 𝑝 ∙ 𝐸  
 for electric dipole (above for permanent dipoles) 

• Also: orbiting electron: current 𝐼 =
𝑒𝑣

2𝜋𝑅
 ,  

 dipole moment 𝑚 = −1

2
𝑒𝑣𝑅𝑧  

• In 𝐵 field, tilting of 𝑚 minimal (orbital contribution 
 to  paramagnetism very small), but orbit speed  

 increases and we get  ∆𝑚 = −
𝑒2𝑅2

4𝑚𝑒
𝐵 

• This is mechanism of diamagnetism: induced  

 effect in opposite direction to 𝐵 . 
2 



Magnetic Materials (2) 
• Magnetic dipole moment due to electron spin shows slight 

tendency to align with 𝐵 ; this is mechanism  of 

 paramagnetism (effect in same direction as 𝐵 ). 
• Pauli exclusion principle  opposite spins  
 cancellation for even numbers; paramagnetism usually in 
 atoms or molecules with odd number of electrons. Effect 
 stronger than diamagnetism; latter mainly for even nos. 

• Ferromagnetism: strong paramagnetic alignment with 𝐵 
due to coupling of spins (QM).  

•  Define magnetization  𝑀 = 𝑛𝑚  (𝑛 atoms/unit vol., average 
atomic magnetic dipole moment 𝑚 ) = magnetic dipole 
moment per unit volume (whether dia-, para- or ferro-

magnetic) [units: A/m]. Analogous to polarization 𝑃 = 𝑛𝑝  . 
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Potential of a Magnetized Object 

• Vector potential of current loop is 𝐴 =
𝜇0

4𝜋

𝑚×𝑟 

𝑟2  

• Volume element 𝑑𝒱′ has  𝑚 = 𝑀𝑑𝒱′ so  

  𝐴 =
𝜇0

4𝜋
 

𝑀×𝑟 

𝑟2 𝑑𝒱′
𝒱′

   for whole body. 

•  This can be written as  

 𝐴 =
𝜇0

4𝜋
 

𝑀×𝑛 

𝑟
𝑑𝑎′

𝑆′
+

𝜇0

4𝜋
 

𝛻′×𝑀

𝑟
𝑑𝒱′

𝒱′
 

• Shows  𝐴   due to magnetic material is equivalent  

 to 𝐴  of equivalent surface current  

 density  𝐾𝑒 = 𝑀 × 𝑛   plus 𝐴  of  
 equivalent volume current density 

  𝐽 𝑒 = 𝛻 × 𝑀  (“Amperian currents”). 

 [ If material is uniform  𝐽 𝑒 = 0. ] 4 



Field of a Magnetized Object 

• Since equivalence works for 𝐴  , also for 𝐵, so  
 use Biot-Savart-law for surface, vol. currents: 

 𝐵 =
𝜇0

4𝜋
 

𝐾𝑒×𝑟 

𝑟2 𝑑𝑎′
𝑆′

+
𝜇0

4𝜋
 

𝐽 𝑒×𝑟 

𝑟2 𝑑𝒱′
𝒱′

 

• This eqn. is valid outside and inside material; 
  we can always replace material by equivalent currents  

  𝐾𝑒 = 𝑀 × 𝑛   and (if non-uniform)   𝐽 𝑒 = 𝛻 × 𝑀  then 

 calculate 𝐵 as if in vacuum (note 𝜇0). 
• So even with materials,   

 𝛻 ∙ 𝐵 = 0  always. 
• Note also that  𝛻 ∙ 𝑗 𝑒 = 0  (div of  
 curl of any vector is zero), i.e. no  
 accumulation of bound charges. 
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Magnetic Field Intensity 𝐻 (“𝐻-field”) 
• Ampere’s law with magnetic materials:  

 𝛻 × 𝐵 = 𝜇0 𝐽 𝑓 + 𝐽 𝑒     (free currents + bound currents) 

• Substitute 𝐽 𝑒 = 𝛻 × 𝑀  then RHS = 𝜇0 𝐽 𝑓 + 𝛻 × 𝑀  

  or       𝛻 × 𝐵 𝜇0 − 𝑀 = 𝐽 𝑓   (free current density only) 

• Define “magnetic field intensity”   𝐻 = 𝐵 𝜇0 − 𝑀    

 then   𝛻 × 𝐻 = 𝐽 𝑓     Ampere’s law for free currents. 

• Analogous to   𝛻 ∙ 𝐷 = 𝜌𝑓  (Gauss’s law for free charges) 

where electric displacement  𝐷 = 𝜀0𝐸 + 𝑃 . 
• Integrate over surface 𝑆 and apply Stokes’s theorem to 

obtain the integral form of Ampere’s law for free currents: 

  𝐻 ∙ 𝑑𝑙 
𝐶

=  𝐽 𝑓 ∙ 𝑑𝑎 
𝑆

= 𝐼𝑓    (curve 𝐶 bounds surface 𝑆) 
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Magnetic Susceptibility 𝜒𝑚 , Permeability 𝜇 

• For non-ferromagnetic materials, magnetization 𝑀 ∝ 𝐻 : 

 𝑀 = 𝜒𝑚𝐻   (linear) where 𝜒𝑚 = magnetic susceptibility 

• 𝜒𝑚 is dimensionless (𝑀 and 𝐻 both have units A/m), 
positive for paramagnetics, negative for diamagnetics, 
typical values ~10−5 

• For linear materials also 𝐵 = 𝜇0 𝐻 + 𝑀 = 𝜇0 1 + 𝜒𝑚 𝐻 

 written as  𝐵 = 𝜇𝐻   where permeability  𝜇 = 𝜇0 1 + 𝜒𝑚   
• In vacuum 𝜒𝑚 = 0  and 𝜇 = 𝜇0 permeability of free space  

 so that      𝐵 = 𝜇0𝐻 
• Also relative permeability  𝜇𝑟 = 1 + 𝜒𝑚 = 𝜇 𝜇0  
• Since 𝜒𝑚 is very small for non-ferromagnetics, we can often 

assume to a reasonable approximation 𝜇𝑟 ≈ 1  or  𝜇 = 𝜇0 , 
whereas we cannot do this for 𝜀𝑟 and permittivity 𝜀 . 7 



Boundary Conditions (1) 
• Interface between two media, with 
 relative permeabilities 𝜇𝑟1 and 𝜇𝑟2 
• Assume no free currents on interface 
• Short ‘Gaussian’ cylinder across  

 boundary:   𝐵 ∙ 𝑑𝑎 
𝑆

= 0  always  

 Let length of cylinder  0,  then zero flux through sides and 

  𝐵 ∙ 𝑑𝑎 
𝑆1

+  𝐵 ∙ 𝑑𝑎 
𝑆2

= 0   (ends 𝑆1 and 𝑆2 in 1 and 2)  

 i.e.  𝐵𝑛1𝑑𝑎𝑆1
−  𝐵𝑛2𝑑𝑎𝑆2

= 0  (𝐵2 inwards, so negative) 

• Hence  𝐵𝑛1 = 𝐵𝑛2   i.e. normal component of 𝑩 is 

continuous across the boundary 
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Boundary Conditions (2) 
• Rectangular path across boundary: 

  𝐻 ∙ 𝑑𝑙 
𝐶

= 0   if no free currents 

•  Sides perpendicular to boundary  0 

 then  𝐻 ∙ 𝑑𝑙 
𝐶1

+  𝐻 ∙ 𝑑𝑙 
𝐶2

= 0  

 (sides 𝐶1 and 𝐶2 in media 1 and 2)  

 i.e.  𝐻𝑡1𝑑𝑙𝐶1
−  𝐻𝑡2𝑑𝑙𝐶2

= 0  (𝐻2 component opp. to 𝑑𝑙 ) 

• Hence  𝐻𝑡1 = 𝐻𝑡2   i.e. tangential component of 𝑯 is 

continuous across the boundary 

•  ‘refraction’ of magnetic fieldlines at boundary: 

 𝜇𝑟1 cot 𝜃1 = 𝜇𝑟2 cot 𝜃2   i.e. 
tan 𝜃1

tan 𝜃2
=

𝜇𝑟1

𝜇𝑟2
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Magnetic Field Energy 

• For current density 𝐽  in a conductor, power delivered to 

vol. element 𝑑𝒱 is −𝛻𝑉. 𝑑𝑙  𝐽𝑓𝑑𝑎 with −𝛻𝑉 = 𝐸 + 𝜕𝐴 𝜕𝑡  

• Total power from source is (1st term Joule heating) 

 
𝑑𝑈

𝑑𝑡
=  𝐸

𝒱′ . 𝐽 𝑓 𝑑𝒱′ +  
𝜕𝐴 

𝜕𝑡𝒱′ . 𝐽 𝑓 𝑑𝒱′  

• In terms of 𝐵 use Ampere’s law: 𝛻 × 𝐵 = 𝜇0 𝐽 𝑓 

• Similar arguments to 𝐸 and take  𝑑𝑡 : 

 𝑈𝑚 =
1

2𝜇0
 𝐵2𝑑𝒱′
𝒱′  ;energy density 𝑢𝑚 =

𝑑𝑈𝑚

𝑑𝒱
=

𝐵2

2𝜇0
 

• In magnetic materials  
𝑑𝑈𝑚

𝑑𝒱
=

1

2
𝐵 ∙ 𝐻  ;  

 and in l.i.h. materials   
𝑑𝑈𝑚

𝑑𝒱
=

𝐵2

2𝜇
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Magnetic Pressure (1) 

• Consider surface current density 𝐾 in 𝑦𝑧-plane: 

 𝐾 = 𝐾𝑦   and  𝐾 = 𝑑𝐼 𝑑𝑧   A/m 
• By the right hand rule and symmetry,  

  𝐵 = +𝐵𝑧   for 𝑥 < 0 and  𝐵 = −𝐵𝑧   for 𝑥 > 0  
• Ampere’s law for loop ∆𝑥 by ∆𝑧 : 

  𝐵 ∙ 𝑑𝑙 = 2 𝐵∆𝑧 = 𝜇0𝐼enc = 𝜇0𝐾∆𝑧  

 ⟹ 𝐵 = ± 𝜇0𝐾 2  𝑧   on the two sides 

• Now place sheet in external  field  𝐵ext = − 
𝜇0𝐾

2
𝑧  

 Fields cancel for 𝑥 < 0 , add for 𝑥 > 0. 
• If we rename 𝐵ext as 𝐵/2, then if   𝐾 = 𝐵 𝜇0  ,  

 we will have field 𝐵 on one side, zero on the other 

• Force  𝐹 = 𝐼𝑙 × 𝐵 is in −𝑥 direction by RH rule 
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Magnetic Pressure (2) 
• Here we have surface current density 𝐾  

 so 𝐼 = 𝐾∆𝑧  and since 𝑙 = ∆𝑦𝑦   here,  

 we have  𝐹 = 𝐾∆𝑧 ∆𝑦 𝑦 × 𝐵 2 −𝑧  

• But ∆𝑦∆𝑧 is an element of area of the  
 current sheet, so we get   

 𝐹 /𝐴 = 𝐾 𝐵 2 −𝑥  ,  
 i.e. since 𝐾 = 𝐵 𝜇0  we have a  

 magnetic pressure   
𝐹

𝐴
=

𝐵2

2𝜇0
 

• This is the same as the energy density  
[N/m2 = N.m/m3 = J/m3] 

• Pressure on current sheet on side with 

field 𝐵. Important in space physics. 
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