Magnetic Materials

- 1. Magnetization
- 2. Potential and field of a magnetized object
- 3. *H*-field
- 4. Susceptibility and permeability
- 5. Boundary conditions
- 6. Magnetic field energy and magnetic pressure

Magnetic Materials (1)

- Magnetic dipole with moment \vec{m} in uniform \vec{B} experiences torque $\vec{\tau} = \vec{m} \times \vec{B}$ tending to align \vec{m} with \vec{B} :
- In non-uniform \vec{B} , net force $\vec{F} = \nabla (\vec{m} \cdot \vec{B})$
- Analogous to $\vec{\tau} = \vec{p} \times \vec{E}$ and $\vec{F} = \nabla (\vec{p} \cdot \vec{E})$ for electric dipole (above for permanent dipoles)
- Also: orbiting electron: current $I = \frac{ev}{2\pi R}$, dipole moment $\vec{m} = -\frac{1}{2}evR\hat{z}$
- In \vec{B} field, tilting of \vec{m} minimal (orbital contribution to paramagnetism very small), but orbit speed increases and we get $\Delta \vec{m} = -\frac{e^2 R^2}{4m_e} \vec{B}$
- This is mechanism of **diamagnetism**: induced effect in opposite direction to \vec{B} .

Magnetic Materials (2)

- Magnetic dipole moment due to electron **spin** shows slight tendency to align with \vec{B} ; this is mechanism of **paramagnetism** (effect in same direction as \vec{B}).
- Pauli exclusion principle → opposite spins → cancellation for even numbers; paramagnetism usually in atoms or molecules with odd number of electrons. Effect stronger than diamagnetism; latter mainly for even nos.
- Ferromagnetism: strong paramagnetic alignment with \vec{B} due to coupling of spins (QM).
- Define **magnetization** $\vec{M} = n\vec{m}$ (*n* atoms/unit vol., average atomic magnetic dipole moment \vec{m}) = magnetic dipole moment per unit volume (whether dia-, para- or ferro-magnetic) [units: A/m]. Analogous to polarization $\vec{P} = n\vec{p}$.

Potential of a Magnetized Object

- Vector potential of current loop is $\vec{A} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \hat{r}}{r^2}$
- Volume element $d\mathcal{V}'$ has $\vec{m} = \vec{M}d\mathcal{V}'$ so
 - $\vec{A} = rac{\mu_0}{4\pi} \int_{\mathcal{V}'} rac{\vec{M} \times \hat{r}}{r^2} d\mathcal{V}'$ for whole body.
- This can be written as

$$\vec{A} = \frac{\mu_0}{4\pi} \int_{S'} \frac{\vec{M} \times \hat{n}}{r} da' + \frac{\mu_0}{4\pi} \int_{\mathcal{V}'} \frac{\nabla' \times \vec{M}}{r} d\mathcal{V}'$$

• Shows \vec{A} due to magnetic material is equivalent to \vec{A} of equivalent surface current density $\vec{K}_e = \vec{M} \times \hat{n}$ plus \vec{A} of equivalent volume current density $\vec{J}_e = \nabla \times \vec{M}$ ("Amperian currents"). [If material is uniform $\vec{J}_e = 0$.]

Field of a Magnetized Object

• Since equivalence works for \vec{A} , also for \vec{B} , so use Biot-Savart-law for surface, vol. currents:

$$\vec{B} = \frac{\mu_0}{4\pi} \int_{S'} \frac{\vec{K}_e \times \hat{r}}{r^2} da' + \frac{\mu_0}{4\pi} \int_{\mathcal{V}'} \frac{\vec{J}_e \times \hat{r}}{r^2} d\mathcal{V}'$$

- This eqn. is valid outside and inside material; we can **always** replace material by **equivalent currents** $\vec{K}_e = \vec{M} \times \hat{n}$ and (if non-uniform) $\vec{J}_e = \nabla \times \vec{M}$ then calculate \vec{B} as if in vacuum (note μ_0).
- So even with materials, $\nabla \cdot \vec{B} = 0$ always.
- Note also that $\nabla \cdot \vec{j}_e = 0$ (div of curl of any vector is zero), i.e. no accumulation of bound charges.

Magnetic Field Intensity \vec{H} ("H-field")

• Ampere's law with magnetic materials:

 $\nabla \times \vec{B} = \mu_0 (\vec{J}_f + \vec{J}_e)$ (free currents + bound currents)

- Substitute $\vec{J}_e = \nabla \times \vec{M}$ then RHS = $\mu_0 (\vec{J}_f + \nabla \times \vec{M})$ or $\nabla \times (\vec{B}/\mu_0 - \vec{M}) = \vec{J}_f$ (free current density only)
- Define "magnetic field intensity" $\vec{H} = \vec{B}/\mu_0 \vec{M}$

then $\nabla \times \vec{H} = \vec{J}_f$ **Ampere's law for free currents**.

- Analogous to $\nabla \cdot \vec{D} = \rho_f$ (Gauss's law for free charges) where electric displacement $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$.
- Integrate over surface S and apply Stokes's theorem to obtain the integral form of Ampere's law for free currents:

$$\oint_{C} \vec{H} \cdot d\vec{l} = \int_{S} \vec{J}_{f} \cdot d\vec{a} = I_{f} \quad (\text{curve } C \text{ bounds surface } S)$$

Magnetic Susceptibility χ_m , Permeability μ

- For non-ferromagnetic materials, magnetization $\vec{M} \propto \vec{H}$: $\vec{M} = \chi_m \vec{H}$ (linear) where χ_m = magnetic susceptibility
- χ_m is dimensionless (\vec{M} and \vec{H} both have units A/m), positive for paramagnetics, negative for diamagnetics, typical values $\sim 10^{-5}$
- For linear materials also $\vec{B} = \mu_0 (\vec{H} + \vec{M}) = \mu_0 (1 + \chi_m) \vec{H}$ written as $\vec{B} = \mu \vec{H}$ where **permeability** $\mu = \mu_0 (1 + \chi_m)$
- In vacuum $\chi_m = 0$ and $\mu = \mu_0$ permeability of free space so that $\vec{B} = \mu_0 \vec{H}$
- Also relative permeability $\mu_r = 1 + \chi_m = \mu/\mu_0$
- Since χ_m is very small for non-ferromagnetics, we can often assume to a reasonable approximation $\mu_r \approx 1$ or $\mu = \mu_0$, whereas we cannot do this for ε_r and permittivity ε .

Boundary Conditions (1)

- Interface between two media, with relative permeabilities μ_{r1} and μ_{r2}
- Assume no free currents on interface
- Short 'Gaussian' cylinder across boundary: $\oint_{s} \vec{B} \cdot d\vec{a} = 0$ always Let length of cylinder $\rightarrow 0$, then zero flux through sides and $\int_{S_1} \vec{B} \cdot d\vec{a} + \int_{S_2} \vec{B} \cdot d\vec{a} = 0 \quad (\text{ends } S_1 \text{ and } S_2 \text{ in 1 and 2})$ i.e. $\int_{S_1} B_{n1} da - \int_{S_2} B_{n2} da = 0$ (\vec{B}_2 inwards, so negative) • Hence $B_{n1} = B_{n2}$ i.e. normal component of \vec{B} is continuous across the boundary

Boundary Conditions (2)

• Rectangular path across boundary:

$$\oint_C \vec{H} \cdot d\vec{l} = 0 \quad \text{if no free currents}$$

• Sides perpendicular to boundary $\rightarrow 0$ then $\int_{C_1} \vec{H} \cdot d\vec{l} + \int_{C_2} \vec{H} \cdot d\vec{l} = 0$ (sides C_1 and C_2 in media 1 and 2)

- i.e. $\int_{C_1} H_{t1} dl \int_{C_2} H_{t2} dl = 0$ (\vec{H}_2 component opp. to $d\vec{l}$) • Hence $H_{t1} = H_{t2}$ i.e. tangential component of \vec{H} is continuous across the boundary
- \Rightarrow 'refraction' of magnetic fieldlines at boundary: $\mu_{r1} \cot \theta_1 = \mu_{r2} \cot \theta_2$ i.e. $\frac{\tan \theta_1}{\tan \theta_2} = \frac{\mu_{r1}}{\mu_{r2}}$

Magnetic Field Energy

- For current density \vec{J} in a conductor, power delivered to vol. element $d\mathcal{V}$ is $-\nabla V \cdot d\vec{l} J_f da$ with $-\nabla V = \vec{E} + \partial \vec{A} / \partial t$
- Total power from source is (1st term Joule heating) $\frac{dU}{dt} = \int_{\mathcal{V}'} \vec{E} \cdot \vec{J}_f \, d\mathcal{V}' + \int_{\mathcal{V}'} \frac{\partial \vec{A}}{\partial t} \cdot \vec{J}_f \, d\mathcal{V}'$
- In terms of \vec{B} use Ampere's law: $\nabla \times \vec{B} = \mu_0 \vec{J}_f$
- Similar arguments to \vec{E} and take $\int dt$:

$$\Rightarrow U_m = \frac{1}{2\mu_0} \int_{\mathcal{V}'} B^2 d\mathcal{V}' \text{ ; energy density } u_m = \frac{dU_m}{d\mathcal{V}} = \frac{B^2}{2\mu_0}$$

• In magnetic materials $\frac{dU_m}{dV} = \frac{1}{2}\vec{B}\cdot\vec{H}$; and in l.i.h. materials $\frac{dU_m}{dV} = \frac{B^2}{2\mu}$

Magnetic Pressure (1)

- Consider surface current density \vec{K} in yz-plane: $\vec{K} = K\hat{y}$ and K = dI/dz A/m
- By the right hand rule and symmetry, $\vec{B} = +B\hat{z}$ for x < 0 and $\vec{B} = -B\hat{z}$ for x > 0
- Ampere's law for loop Δx by Δz : $\oint \vec{B} \cdot d\vec{l} = 2 B\Delta z = \mu_0 I_{enc} = \mu_0 K\Delta z$ $\Rightarrow \vec{B} = \pm (\mu_0 K/2) \hat{z}$ on the two sides
- Now place sheet in external field $\vec{B}_{ext} = -\frac{\mu_0 K}{2}\hat{z}$ Fields cancel for x < 0, add for x > 0.
- If we rename B_{ext} as B/2, then if $K = B/\mu_0$, we will have field \vec{B} on one side, zero on the other
- Force $\vec{F} = I\vec{l} \times \vec{B}$ is in -x direction by RH rule

Magnetic Pressure (2)

- Here we have surface current density \vec{K} so $I = K\Delta z$ and since $\vec{l} = \Delta y \hat{y}$ here, we have $\vec{F} = K\Delta z \Delta y \hat{y} \times (B/2)(-\hat{z})$
- But $\Delta y \Delta z$ is an element of area of the current sheet, so we get $\vec{F}/A = K(B/2)(-\hat{x})$, i.e. since $K = B/\mu_0$ we have a magnetic pressure $\frac{F}{A} = \frac{B^2}{2\mu_0}$
- This is the same as the energy density [N/m² = N.m/m³ = J/m³]
- Pressure on current sheet on side with field \vec{B} . Important in space physics.

