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Magnetic Materials (1)

Magnetic dipole Wlth moment m in uniform B experiences
torque T = m X B tending to align m with B :

In non-uniform § net force F = \7(77’1 §)

Analogousto T = p X E and F V(p E)

for electric dipole (above for permanent dipoles)

ev

Also: orbiting electron: current I = s

dipole moment m = —evRZ
In B field, tilting of m minimal (orbital contribution
to paramagnetism very small), but orbit speed
e2R2 —

B
4Mm,
This is mechanism of diamagnetism: induced

effect in opposite direction to B.

increases and we get Am = —




Magnetic Materials (2)

Magnetic dipole moment due to electron spin shows slight
tendency to align with B ; this is mechanism of

paramagnetism (effect in same direction as §).

Pauli exclusion principle — opposite spins —
cancellation for even numbers; paramagnetism usually in
atoms or molecules with odd number of electrons. Effect
stronger than diamagnetism; latter mainly for even nos.

Ferromagnetism: strong paramagnetic alignment with B
due to coupling of spins (QM).

Define magnetization

M =nm

(n atoms/unit vol., average

atomic magnetic dipole moment m ) = magnetic dipole
moment per unit volume (whether dia-, para- or ferro-

magnetic) [units: A/m]. Analogous to polarization P = np .




Potential of a Magnetized Object

Ho mX'f'

Vector potential of current loop is A = >
4T T

Volume element dV’ has m = MdV' so

A=F Mo —dV" for whole body.

41t Y1
This can be wrltten as
- M><n véd ><M
A=2[ ——dad' +22[, dV’

Shows A due to magnetic material is equivalent
to A of equivalent surface current

density l_() =M XA pIus/Tof

equwalent volume current density

]e =V xM (“Amperian currents”).

[ If material is uniform fe = 0. ]




Field of a Magnetized Object

Since equivalence works for A , also for B, so
use Biot-Savart-law for surface, vol. currents:

= K
oty Koty by Joxt gy

This eqn. is valid outside and inside material;
we can always replace material by equwalent currents

K =M X A and (if non-uniform) ]e =V x M then
calculate B as if in vacuum (note uy).

So even with materials,

V-B=0 always.

Note also that V-, = 0 (div of

curl of any vector is zero), i.e. no
accumulation of bound charges.




Magnetic Field Intensity H (“H-field”)

 Ampere’s law with magnetic materials:
VX B = ,uo(]_} +];) (free currents + bound currents)
. Substitutefe =V X M then RHS = ,uo(ff + V X M))

or VX (ﬁ/,uo M) ]f (free current den5|ty only)
* Define “magnetic field intensity” B/,uo

then |V X H = J¢| Ampere’s law for free currents.

* Analogousto V- D = pr (Gauss’s law for free charges)

where electric displacement D = EOE +P.
* |ntegrate over surface S and apply Stokes’s theorem to
obtain the integral form of Ampere’s law for free currents:

H-dl = f ~da = Ir (curve C bounds surface S)
C s Jf f




Magnetic Susceptibility y.,, , Permeability u

—> —
* For non-ferromagnetic materials, magnetization M « H :

—

M:)(mﬁ

(linear) where y,,, = magnetic susceptibility

* Xm is dimensionless (M and H both have units A/m),
positive for paramagnetics, negative for diamagnetics,

typical values ~107°

» For linear materials also B = ,uO(H + M) wo(1 + y,)H

written as

B = uH

where permeability u = uy(1 + x.,)

* |n vacuum )(m = 0 and u = uy permeability of free space

sothat B = /,LOH

* Also relative permeability 1, =1+ x,,, = 1/ o

* Since x,, is very small for non-ferromagnetics, we can often
assume to a reasonable approximation - = 1 or u = o,
whereas we cannot do this for &, and permittivity ¢ .




Boundary Conditions (1)

Interface between two media, with

relative permeabilities u,.; and u,-

Assume no free currents on interface

Short ‘Gaussian’ cylinder across

boundary: §_ B-dd =0 always

Let length of cylinder — 0, then zero flux through sides and

fsl B-dd + sz B-dd =0 (endsS; and S, in 1and 2)

i.e. fsl B, ida — sz B,,da = 0 (B, inwards, so negative)

Hence| B,,4 = B,,» |i.e. normal component of B is

continuous across the boundary




Boundary Conditions (2)

Rectangular path across boundary:

P, H-dl =0 if nofree currents

Sides perpendicular to boundary — 0
thenfclH-dl+fCZH-dl=O

(sides C; and C5 in media 1 and 2)

i.e. fcl Heidl — sz H,,dl = 0 (H, component opp. to dl)

Hence| H,y = H,,| i.e. tangential component of H is

continuous across the boundary

= ‘refraction’ of magnetic fieldlines at boundary:

tan 0, _ Urq
‘tanf0;

nuT'l cot 01 — ‘Llrz cot 62 i.e




Magnetic Field Energy

* For current densityfin a conductor, power delivered to

vol. element dV is —VV.dl Jrda with —VV = E + 04/t
. TotaI power from source is (1St term Joule heating)

— = [, E.JraV’ +fv,— Jr dV’
* In terms of B use Ampere’s law: V' X B = o ff
» Similar arguments to E and take [ dt :

1 dU,,  B?
= U, = —[.., B?dV’ :energy densit = = —
m= i gy VUm =0y = 20
] dUm _ 138 7
In magnetic materials T H ;

i . \ dU B?
and in l.i.h. materials —= = —
dv 2U




Magnetic Pressure (1)

Consider surface current density K in yz-plane:
K=Ky and K = dI/dz A/m
By the right hand rule and symmetry,

B=+B2 forx <0and B=—B2 forx >0
Ampere’s law for loop Ax by Az :

$B-dl =2BAz = pglene = poKAz
— B =+ (upK/2) Z on the two sides
Now place sheet in external field §ext = — %z“

Fields cancel for x < 0, add for x > 0.
If we rename Boy: as B/2,thenif K =B/u,,

we will have field B on one side, zero on the other
Force F = Il X B is in —x direction by RH rule




Magnetic Pressure (2)

Here we have surface current density K
sol = KAz and since [ = Ayy here,
we have F = KAz Ay § x (B/2)(—2)
But AyAz is an element of area of the
current sheet, so we get
F/A=K(B/2)(-%),

i.e. since K = B/uy we have a
| F  B?
magnetic pressure| — = ——
A 2l
This is the same as the energy density
IN/m?2=N.m/m3=1]/m?3]

Pressure on current sheet on side with

field B. Important in space physics.




