
Polarization 
• Apply an external 𝐸-field to a non-conducting material, 

i.e. a “dielectric”. We get 𝐸 inside the material. 

• The atomic charges in the material are not free to move, 

but the 𝐸-field can cause relative displacement of the 
positive and negative charges = “polarization” 

• Each atom has an induced dipole  
 moment  𝑝 = 𝑞𝑠    (𝑠 = separation) 

• If the material has 𝑛 atoms per unit  
 volume, we define the polarization 

 𝑃 as         𝑃 = 𝑛𝑝       (units C.m2) 

 i.e. 𝑃 is the “dipole moment per unit volume”. 

• This is an induced effect, but some molecules also have 
permanent dipole moments (“polar dielectrics”). 1 



Bound Charge Densities (1) 

• Suppose 𝐸 causes separation 𝑠  of  and  
• Charge crossing surface element 𝑑𝑎 ′ is charge in 

volume of parallelepiped  𝑑𝒱 = 𝑠 . 𝑑𝑎 ′ :  

 𝑑𝑄 = 𝑛 𝑄 𝑠 . 𝑑𝑎 ′   (charge per unit volume × volume)  

  = 𝑛 𝑝 . 𝑑𝑎 ′ = 𝑃. 𝑑𝑎 ′   (dipole moment  𝑝 = 𝑄𝑠 ) 
•  Separation 𝑠 ≪ size of molecule, so surface charge with 

density   𝜎𝑏 =
𝑑𝑄

𝑑𝑎
= 𝑃. 𝑛     (𝑛  = normal to surface) 

 i.e. “bound surface charge 
 density = normal component  
 of the polarization vector” 
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Bound Charge Densities (2) 
• Similarly, by considering the charge remaining within the 

parallelepiped  𝑠 . 𝑑𝑎 ′ , we find a volume charge density

     𝜌𝑏 = −𝛻. 𝑃   

i.e. “bound volume charge density =  
negative of the divergence of the polarization vector”. 

• Then the potential due to a slab of dielectric material is 

 𝑉 =
1

4𝜋𝜀0
 

𝑃 ⋅𝑑𝑎′

𝑟𝑆′
−

1

4𝜋𝜀0
 

𝛻 . 𝑃

𝑟𝒱′ 𝑑𝒱′ 

i.e. that due to all the bound surface and volume charges. 

In a uniform material  𝛻. 𝑃 = 0 , so there are only surface 
charges. 
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Uniformly Polarized Sphere 
• Useful result for model of atom within material 

• Field inside: 𝐸 = −
1

3𝜀0
𝑃   (uniform) 

• Potential outside:  𝑉 =
1

4𝜋𝜀0

𝑝 ⋅𝑟 

𝑟2      (dipole at origin) 

where  𝑝 = 4

3
𝜋𝑅3𝑃     (total dipole moment) 

• Potential    𝑉(𝑟 ) =
1

4𝜋𝜀0
 

𝓇  . 𝑃(𝑟 ′)

𝓇2𝒱′ 𝑑𝒱′ 

 ( Griffiths’ notation: “script r”  𝓇 = 𝑟 − 𝑟 ′ )   
 for all points inside and outside dielectric. 
• Another (exaggerated) view: 
 separation of “centres of charge” 
 ( and )   bound surface  
 charge density 𝜎𝑏 
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Polarization Current Density 
• If 𝐸-field applied to dielectric varies with time, bound 

charges produce polarization current, current density 𝐽 𝑏 

• Apply conservation of charge   𝐽 𝑏 ∙ 𝑑𝑎 
𝑆

= −
𝜕

𝜕𝑡
 𝜌𝑏𝒱

𝑑𝒱 

and the divergence theorem: 

 𝛻 ∙ 𝐽 𝑏  𝑑𝒱𝒱
=

𝜕

𝜕𝑡
 𝛻 ∙ 𝑃
𝒱

𝑑𝒱 =  𝛻 ∙
𝜕𝑃

𝜕𝑡𝒱
𝑑𝒱  

• This holds for any arbitrary 𝒱, so integrands are equal: 

 𝐽 𝑏 =
𝜕𝑃

𝜕𝑡
 

[i.e. polarization current density or bound current density  
(in A.m2) is simply the rate of change of polarization] 
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Bound Charge Densities 
Standard notation: primed 
quantities denote the source 
region and unprimed quantities 
denote the field region (i.e. 

where we find  𝐸 or 𝑉 , etc.). 

 𝑉 =
1

4𝜋𝜀0
 

𝑃 ⋅𝑑𝑎′

𝑟𝑆′ −
1

4𝜋𝜀0
 

𝛻 . 𝑃

𝑟𝒱′ 𝑑𝒱′ 

“Bound charge densities”, also called “polarization charge 
densities” or “induced charge densities”, distinguished 
from “free charge densities”, i.e. “moveable charges”. 

Bound charges and free charges must both be considered 
in applying e.g. Gauss’s law. 
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Gauss’s Law with Dielectrics 

• Total charge density (free + bound charges):   𝜌 = 𝜌𝑓 + 𝜌𝑏 

• Gauss’s law:  𝛻. 𝐸 =
𝜌

𝜀0
   or   𝜀0𝛻. 𝐸 = 𝜌 = 𝜌𝑓 + 𝜌𝑏 

  but  𝜌𝑏 = −𝛻. 𝑃            so   𝜀0𝛻. 𝐸 = 𝜌𝑓 − 𝛻. 𝑃    or 

  𝛻. (𝜀0𝐸 + 𝑃) = 𝜌𝑓        (free charge density only) 

• Define electric displacement      𝐷 = 𝜀0𝐸 + 𝑃 

• Then Gauss’s law:  𝛻. 𝐷 = 𝜌𝑓 

 “divergence of electric displacement = free charge density” 

• In integral form:      𝐷. 𝑑𝑎 = 𝑄𝑓 enc =   𝜌𝑓 𝑑𝒱   

 (total free charge enclosed) 

• Outside the dielectric material  𝑃 = 0  and so  𝐷 = 𝜀0𝐸 
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“L.I.H.” Dielectric Materials 
• For many materials, induced dipole moment  𝑝 ∝ 𝐸 

• On macroscopic scale, polarization  𝑃 ∝ 𝐸  

• Define electric susceptibility 𝜒𝑒 of material by 

 𝑃 = 𝜒𝑒𝜀0𝐸  (𝜒𝑒 is dimensionless constant) 

 Materials which obey this eqn. are linear dielectrics. 

• If material is also isotropic (same in all directions) and 
homogeneous (uniform), we call it an l.i.h. dielectric 
(linear, isotropic, homogeneous) or “Class A dielectric”. 

• In an l.i.h. dielectric  𝐷 = 𝜀0𝐸 + 𝑃 = 𝜀0𝐸 + 𝜒𝑒𝜀0𝐸 

 i.e.  𝐷 = 1 + 𝜒𝑒 𝜀0𝐸 = 𝜀𝑟𝜀0𝐸    or   𝐷 = 𝜀𝐸 

 where relative permittivity    𝜀𝑟 = 1 + 𝜒𝑒  (dimensionless) 

 (= dielectric constant 𝐾  ) and permittivity    𝜀 = 𝜀𝑟𝜀0 
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Boundary Conditions (1) 

• Interface between two media, with 
 relative permittivities 𝜀𝑟1 and 𝜀𝑟2 
• Assume no free charges on interface 
• Potential 𝑉 must be continuous  
• Short Gaussian cylinder across boundary: 

  𝐷 ∙ 𝑑𝑎 
𝑆

= 0  if no free charges  

 Let length of cylinder  0,  then zero flux through sides and 

  𝐷 ∙ 𝑑𝑎 
𝑆1

+  𝐷 ∙ 𝑑𝑎 
𝑆2

= 0   (ends 𝑆1 and 𝑆2 in 1 and 2)  

 i.e.  𝐷𝑛1𝑑𝑎𝑆1
−  𝐷𝑛2𝑑𝑎𝑆2

= 0  (𝐷2 inwards, so negative) 

• Hence  𝐷𝑛1 = 𝐷𝑛2   i.e. normal component of 𝑫 is 

continuous across the boundary 
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Boundary Conditions (2) 
• Rectangular path across boundary: 

  𝐸 ∙ 𝑑𝑙 
𝐶

= 0  for electrostatic field 

•  Sides perpendicular to boundary  0 

 then  𝐸 ∙ 𝑑𝑙 
𝐶1

+  𝐸 ∙ 𝑑𝑙 
𝐶2

= 0  

 (sides 𝐶1 and 𝐶2 in media 1 and 2)  

 i.e.  𝐸𝑡1𝑑𝑙𝐶1
−  𝐸𝑡2𝑑𝑙𝐶2

= 0  (𝐸2 // component opp. to 𝑑𝑙 ) 

• Hence  𝐸𝑡1 = 𝐸𝑡2   i.e. tangential component of 𝑬 is 

continuous across the boundary 

•  ‘refraction’ of electric fieldlines at boundary: 

 𝜀𝑟1 cot 𝜃1 = 𝜀𝑟2 cot 𝜃2   i.e. 
tan 𝜃1

tan 𝜃2
=

𝜀𝑟1

𝜀𝑟2
=

𝐾1

𝐾2
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Electric Field Energy 
• For 𝑁 point charges 𝑄𝑖 the electric potential energy is 
 𝑈𝑒 = 1

2
 𝑉𝑖𝑄𝑖

𝑛
𝑖=1   where 𝑉𝑖 is potential at position of 𝑄𝑖 

• For continuous charge distribution: 𝑈𝑒 = 1

2
 𝑉𝜌
𝒱′ 𝑑𝒱′  

• By Poisson’s eqn. 𝜌 = −𝜀0𝛻
2𝑉 ; substitute in above: 

 𝑈𝑒 =
𝜀0

2
 𝑉 𝛻2𝑉
𝒱′ 𝑑𝒱′ ; use vector identity for 𝛻. (𝑉𝛻𝑉) 

 and divergence theorem ...    

 𝑈𝑒 = −
𝜀0

2
 𝑉𝛻𝑉 ∙ 𝑑𝑎 
𝑆′ −  𝛻𝑉 2𝑑𝒱′

𝒱′  

• Surface int. at least as  𝑟−3. 𝑟2, choose distant 𝑆 then  0 

 𝑈𝑒 =
𝜀0

2
 𝐸2𝑑𝒱′
𝒱′    or energy density   

𝑑𝑈𝑒

𝑑𝒱
=

1

2
𝜀0𝐸

2 

• In dielectrics 
𝑑𝑈𝑒

𝑑𝒱
=

1

2
𝐷 ∙ 𝐸  ; in l.i.h. dielectrics 

𝑑𝑈𝑒

𝑑𝒱
=

1

2
𝜀𝐸2 
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