Polarization

Apply an external E-field to a non-conducting material,
i.e. a “dielectric”. We get E inside the material.

The atomic charges in the material are not free to move,

but the E-field can cause relative displacement of the
positive and negative charges = “polarization”

Each atom has an induced dipole

moment p = gs (s = separation)

If the material has n atoms per unit
volume, we define the polarization

P as P =np| (unitsC.m2)
i.e. P is the “dipole moment per unit volume”.

This is an induced effect, but some molecules also have
permanent dipole moments (“polar dielectrics”).




Bound Charge Densities (1)

* Suppose E causes separation s of + and —
* Charge crossing surface element da’ is charge in

volume of parallelepiped dV = s.da’:
dQ =n Q s.da’ (charge per unit volume x volume)
=np.dd’ = P.dd' (dipole moment 7 = Q%)

e Separation s < size of molecule, so surface charge with
d — N I
density | 0 = d—g = P.7n | (7 = normal to surface)
i.e. “bound surface charge
density = normal component

of the polarization vector”




Bound Charge Densities (2)

e Similarly, by considering the charge remaining within the
parallelepiped s.da’, we find a volume charge density

=

Pp = —V.P

i.e. “bound volume charge density =
negative of the divergence of the polarization vector”.

* Then the potential due to a slab of dielectric material is

v = 1 fs, P -dar 1 fv,udvl
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i.e. that due to all the bound surface and volume charges.

In a uniform material V.P = 0, so there are only surface
charges.




Uniformly Polarized Sphere

Useful result for model of atom within material
: e = 1 = .
Field inside: E = —QP (uniform)
0

1 p-+

Potential outside: V = (dipole at origin)
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where p = imR>P (total dipole moment)
) > U 7 .P(#") s
Potential V() = I3 dVv

4TTE
( Griffiths’ notation: “scriptr” = =7 —7')
for all points inside and outside dielectric.
Another (exaggerated) view:
separation of “centres of charge”
(+ and —) — bound surface
charge density gy,




Polarization Current Density

If E-field applied to dielectric varies with time, bound
charges produce polarization current, current density J,

Apply conservation of charge | Iy - dd = —%fv p, dV
and the divergence theorem:

> 0 = 0P
fV V]b d’VZEJ'V VPdVZ_fv ngv
This holds for any arbitrary V, so integrands are equal:
> 9P
/i

[i.e. polarization current density or bound current density
(in A.m~2) is simply the rate of change of polarization]




Bound Charge Densities

Standard notation: primed
guantities denote the source
region and unprimed quantities
denote the field region (i.e.

where we find E or V , etc.).

V = ) fSI e : fV’ V—ﬁdV'
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“Bound charge densities”, also called “polarization charge
densities” or “induced charge densities”, distinguished
from “free charge densities”, i.e. “moveable charges”.

Bound charges and free charges must both be considered
in applying e.g. Gauss’s law.




Gauss’s Law with Dielectrics

Total charge density (free + bound charges): p = pr + py,
Gauss’s law: V.E = £ or EOV.E =p=pr+pPp

€0
but pb=—|7.ﬁ SO eOV.E=pf—V.ﬁ or
V. (EOE + }_’)) = Py (free charge density only)

—

Define electric displacement |D = EOE + P

Then Gauss’s law:| 7. D = Pr
“divergence of electric displacement = free charge density”
In integral form: ¢ D.dd = Qf enc = P pr dV

(total free charge enclosed)

Outside the dielectric material P = 0 andso D = eOE




“L.1.H.” Dielectric Materials

For many materials, induced dipole moment p « E

On macroscopic scale, polarization PxE
Define electric susceptibility y, of material by

P = )(eeoﬁ (xe is dimensionless constant)
Materials which obey this egn. are linear dielectrics.

If material is also isotropic (same in all directions) and
homogeneous (uniform), we call it an L.i.h. dielectric
(linear, isotropic, homogeneous) or “Class A dielectric”.

In an L.i.h. dielectric D = eOE +P = eOE +)(e€0E
ie. D= (14 x,)eE = e.6E or| D = ¢E
where relative permittivity &. = 1 + y, (dimensionless)
(= dielectric constant K ) and permittivity [ = &,.&,




Boundary Conditions (1)

Interface between two media, with

relative permittivities €, and &,

Assume no free charges on interface

Potential V must be continuous

Short Gaussian cylinder across boundary:

P, D -dd = 0 if no free charges

Let length of cylinder — 0, then zero flux through sides and

Js B-d§+f525-d&= 0 (endsS; andS, in1and 2)

i.e. fsl D, da — sz D,,da = 0 (D, inwards, so negative)

1

Hence|D,;1 = D, | i.e. normal component of D is

continuous across the boundary




Boundary Conditions (2)

Rectangular path across boundary:

P, E -dl = 0 for electrostatic field
Sides perpendicular to boundary — 0

then f, E dl+f E-dl=0
(sides C1 and C, in media 1 and 2)
i.e. fcl E. dl — sz E,,dl = 0 (E, // component opp. to dl)

Hence| E.; = E}5 | i.e. tangential component of E is

continuous across the boundary

= ‘refraction’ of electric fieldlines at boundary:

h tan 91 E 1 Kl
87”1 cot 61 s 87‘2 cot 82 .e. — Sl _—
tan 6, &y Ky




Electric Field Energy

For N point charges Q; the electric potential energy is

U, = % 1 V:Q; where V; is potential at position of Q;
For continuous charge distribution: U, = %fv' VpdV'

By Poisson’s eqn. p = —¢&oV 2V ; substitute in above:

U, = gz—ofv, V 74V dV'; use vector identity for V. (VVV)
and divergence theorem ...

U, = -2 [ [, (VVV) - dd - fv,(VV)ZdV’]

Surface int. at least as r~>.72, choose distant S then — 0
_ o 2 117! .| AUe 2z 2
= U =< J,,» E?dV" or energy density = EoE

dU, 1= = ___du
£ ==D-E ;inl.i.h. dielectrics —=
Vo2 av

. . 1
In dielectrics = - cE?




