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I - Decoding the cosmos
� - Chap 1 : Defining the signal - �

• The luminosity of a object can be expressed in
function of the spectral luminosity per unit wave-
length Lλ or per unit frequency Lν by :

dL = Lλ dλ = Lν dν ⇒ L =

∫ ∞
0

Lλ dλ =

∫ 0

∞
Lν dν

λ =
c

ν
=⇒ dλ =

−c
ν2

dν∫ ∞
0

Lλ dλ =

∫ ∞
0

(
−c
ν2

)Lλ dν =

∫ 0

∞
(
c

ν2
)Lλ dν

Therefore :

Lν = Lλ
c

ν2
=⇒ Lλ =

ν2

c
Lν

’
• The spectral flux density, or just flux density
(ergs−1cm−2Hz−1)1 is the flux per unit spectral
bandwidth, either frequency or wavelength, respec-
tively:

dLν = fνdA dLλ = fλdA

df = fνdν df = fλdλ f = fν∆ν dL = fdA

Then the luminosity, L, can be found from its flux,

f (ergs−1cm−2), via : L =

∫
fdA

For a isotropic radiation Lisotropic = 4π r2 f
and for uniform radiation Luniform = r2 Ω f .
Where r is the distance from the centre of the source
to the position at which the flux has been determined.

• A detector pointed directly at a uniform in-
tensity source in the sky of small solid angle, Ω,
would measure a flux, f =

∫
Ω
I cos θdΩ ≈ IΩ.

• The astrophysical flux at the surface of an
object (e.g. a star) whose radiation is escaping
freely at all angles outwards, can be calculated by
integrating in spherical coordinates.

F =

∫
I cos θdΩ =

∫ 2π

0

∫ π/2

0

I cos θ sin θdθdφ = πI

• For stars, we now define the astrophysical flux, F ,
to be the flux at the surface of the star,

L∗ = 4πR2
∗F = 4πr2f =⇒ f = (

R∗
r

)F

Where L∗ is the star’s luminosity and R∗ is its radius.

• The solid angle Ω is : Ω = π
4 θ

2 = π
4 (dr )2.

Where d is the linear diameter. Ex: with radiation
beamed uniformly into a circular cone of solid angle,

Ω. A = πR2
∗ = r2

mars−∗Ω . Ω = π(
R∗

rmars−∗
)2

Figure 1: arc s = rθ. If d� r , s = d, hence θ = d
r

N.B: If the source in the sky is elliptical rather

than circular, in projection, then, Ω =
π

4
θ1 θ2

� - Chap 8 : Continuum emission - �

• The root-mean-square speed, vrms, corresponding

kinetic energy, Ek = 3
2 kT = 1

2mv
2
rms, vrms =

√
3kT
m

• The spectrum, in the absence of a background

source, Iν = Bν(1− e−τν ). Bν(T ) = 2h ν3

c2
1

e
h ν
k T −1

• The emission measure: εM =
∫
n2
e dl ≈ n2

e l

• For hν � kTe 1− e− hνkT ≈ hν
kT . (Opti thick).

• The ionized hydrogen mass MHII and the
total gas mass, Mg are related by : MHII = X Mg.
Where X is the mass fraction of hydrogen :
X = 0.707 for Solar abundance.

The radius, Rs of the Strömgren sphere assuming
that the effect of dust are negligible is:

. U = Rs n
2/3
e
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• The specific intensity : Iν = 2hν3

c2
1

(e
hν
kTB − 1)

.

For hν � kTB :

Iν =
2hν3

c2
1

(e
hν
kTB − 1)

≈ 2hν3

c2
1

(1 + hν
kTB

+ · · · − 1)

Iν =
2 ν2 kTB

c2

The flux density of the star :

Fν = πIν = π
2 ν2 kTB

c2
⇒ fν = (

R∗
r

)2π
2 ν2 kTB

c2

.
• The relativistic energy of the photon given by :
Ep = γ mp c

2. The relativistic gyroradius (kpc) of a

proton : r = γr0 = γm0c
2

eB

• The energy spectral index: Γ = 1 − 2α. The
observed spectral index α = −1

Iν = Sν(1− e−τν ) (all τν)

Iν = Sν ∝ ν
5
2 (τν � 1) Opti thick

Iν = jν ∝ ν−α (τν � 1) Opti thin

.
Do problem 8.13 of Decoding the Cosmos.
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
. End tutorial sum
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

II - Radiative Processes In High E Ast

� - Chap 1 : Some Fundamental definitions - �

• Emission plus absorption : In this case it is
convenient to introduce the optical depth τν :
. dτν = ανds = nσνds.
σν : cross section of the absorbing process, and n
density of ”absorbers”.
The transport equation then becomes:

dIν
ανds

= −Iν +
jν
αν

=⇒ dIν
dτν

= −Iν +
jν
αν
, Sν =

jν
αν

Iν(τν) = Iν,0e
−τν +

∫ τν

0

e−(τν−τ ′ν)Sν(τ ′ν)dτ ′ν

If the source function Sν is constant :

Iν(τν) = Iν,0e
−τν + Sν(1− e−τν )

If Iν,0 = 0, Iν(τν) = jν
αν

(1− e−τν ). Let s = R

Iν(τν) =
jνR

ανR
(1− e−τν ) = jν(

1− e−τν
τν

)

◦ Source optically thin (τν � 1) , we have
1− e−τν → 1− 1 + τν . Therefore :

Iν(τν) = jνR (τν � 1)

◦ Source optically thick (τν � 1)

Iν(τν) =
jνR

τν
(τν � 1)

The above equation explicitly shows that the inten-
sity we see from a thick source comes from a layer of
width R/τν , i.e. the layer that is optically thin. In
other words we always collect radiation from a layer
of the source, down to the depth at which the radi-
ation can escape without being absorbed (τlayer = 1).

• The mean free path (for a photon) is the
average distance l travelled by a photon without
interacting. It corresponds to a distance for which
τν = 1: τν = 1→ σνnlν = 1→ lν = 1

nσν
.

If a source has radius R and total optical depth
τν > 1, we have : lν = 1

nσν
= R

σνnR
= R

τν

• Total emitted power: Larmor formula

Figure 2: A charge is moving along a trajectory.

The electric and magnetic fields produced by a
moving charge is:

~E(~r, t) = [
q

k2R2

~n− ~β

γ2
]tret+

q

ck3R
{~n×[(~n−~β)×~̇β]}tret

~B(~r, t) = ~n× ~E

Where: tret = t− R(tret)
c , k = 1− ~n.~β, ~β = ~v

c

. γ = (1− β2)−1/2

we specialize to the non relativistic case, consider
only the radiative field, and set:
~β � 1, k = 1− ~n.~β → 0, ~n− ~β → ~n

To calculate the power per unit solid angle
carried by this electromagnetic field let consider the
Poynting vector ~S (in cgs units):

~S =
c

4π
~E× ~B =

c

4π
| ~E|2~n =

c

4π

q2

c2R2
|~n× (~n× ~̇β)|2tret
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The power crossing a surface dA = R2dΩ is :

dP = SdA = SR2dΩ→ dP

dΩ
= sR2

Therefore :

dP

dΩ
=

q2

4πc
|~n× (~n× ~̇

β)|2tret =
q2

4πc
~̇
β sin2 θ

dP

dΩ
=

q2

4πc3
a2 sin2 θ Larmor formula

The total power P :

P = int
dP

dΩ
dΩ =

q2a2

4πc3

∫ 1

−1

sin2 θd(d cos θ) =
2q2

3c3
a2

� - Chap 2 : Bremsstrahlung and black body - �

• Bremsstrahlung

We will consider an electronproton plasma.
b: impact parameter; v: velocity of the electron;
ne: number density of the electrons;
np: number density of the protons;
T : temperature of the plasma: mv2 ∼ kT → v ∼
(kT/m)1/2

◦ Let consider e− passing close to the photon.
Caracteristic (or interaction) time : τ ≈ b

v
◦ During the interaction we consider the acceler-

ation to be constant : mea ≈ Fe ≈ e2

b2 → a ≈ e2

meb2

◦ From the Larmor formula we get :

P =
2q2

3c3
a2 ≈ e2

c3
e4

m2
ec

3b4
=

e6

m2
ec

3b4

◦ Since there is a characteristic time, there is also a
characteristic frequency : ω ≈ 1

τ = v
b

P (ω) =
P

ω
=

[ e6

m2
ec

3b4 ]

ω
= [

e6

m2
ec

3b4
]
v

b
≈ e6

m2
ec

3b3v

◦ We can estimate the impact factor b from the

density of protons (targets) : b ≈ n−1/3
p → b3 = 1

np

◦ The emissivity j(ω) will be the power emit-
ted by a single electron mul- tiplied by the number
density of electrons. If the emission is isotropic we
will have to divide by 4π since the emissivity is
directional : j(ν)→ ergcm−3s−1Hz−1sr−1

j(ω) =
ne
4π
P (ω) =

ne
4π

e6

m2
ec

3b3ν
=
ne
4π

1

b3
e6

m2
ec

3

1

v

j(ω) =
ne
4π
np

e6

m2
ec

3
(
kT

me
)−1/2 =

nenp
4π

e6

m2
ec

3
(
me

kT
)1/2

◦ The total emissivity j depend upon
~ωmax = kT . This means that an electron cannot
emit a photon of energy larger than ~wmax, i.e limited
by the average energy kT . Hence by doing this we
ignore electrons with energies greater than kT .

j =

∫ wmax

0

j(ω)dω ≈ j(ω) ωmax

j =
nenp
4π

e6

m2
ec

3
(
me

kT
)1/2 ωmax =

nenp
4π

e6

m2
ec

3
(
me

kT
)1/2 (

kT

~
)

j =
nenp
4π

e6

m2
ec

3

(mekT )1/2

~
◦

<
dE

dvdtdω
>=

∫∞
vmin

jω(v)dP (v)∫∞
o
dP (v)

<
dE

dvdtdω
>=

16πe6

3
√

3m2
ec

3
neniZ

2gff
∫∞
vmin

1
v e
−mev

2

2kT d3v∫∞
0
e
−mv2

2kT d3v

<
dE

dvdtdω
>=

16πe6

3
√

3m2
ec

3
neniZ

2gff
∫∞
vmin

v e−
mev

2

2kT dv∫∞
0
v2e

−mev2

2kT dv∫ ∞
0

v2e
−mev2

2kT dv = [

√
π

4( me2kT )3/2
]∫ ∞

vmin

v e−
mev

2

2kT dv =
kT

m
e
−mev2

min
2kT

<
dE

dvdtdω
>=

32
√
πe6neniZ

2gff ( me2kT )1/2e−
mev

2
min

2kT

3
√

3m2
ec

3

Using v2
min = 2hν

me

<
dE

dvdtdω
>=

32
√
πe6neniZ

2gff ( me6kT )1/2e−
hν
kT

3m2
ec

3

jω = dj
dω = dj

2πdν ; with ω = 2πν → dω = 2πdν

jν = dj
dν = 2πjω, jν =< dE

dvdtdν >, jω =< dE
dvdtdω >

Then jν =< dE
dvdtdν >= 2π < dE

dvdtdω >. Hence

jν =
32π

3

nenie
6Z2gff

3m2
ec

3
(
2πm

3kT
)1/2 e−

hν
kT

jν(Ω) =
jν
4π

=
8

3
(
2π

3
)1/2 nenie

6Z2

3m2
ec

3
(
me

kT
)1/2 e−

hν
kT gff

j(Ω) =

∫ ∞
0

jν(Ω)dν ni = np; jν(Ω) = j(ν); j = j(Ω)

j(Ω) =
4

3π
(
2π

3
)1/2 nenie

6Z2

3m2
ec

3

(meKT )1/2

~
gff ~ =

h

2π
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• Free − free absorption

Figure 3: Changes of the Bremsstrahlung intensity with
temperature.

The three spectra correspond to different tem-
peratures. Note that for smaller temperatures the
thin part of Iν is larger (Iν ∝ T−1/2). On the
other hand, at larger T the spectrum extends to
larger frequencies, making the frequency integrated
intensity to be larger for larger T (Iν ∝ T 1/2).
Note also the self-absorbed part, whose slope is
proportional to ν2. This part ends when the optical
depth τ ∝ ανR ∼ 1.

• From bremsstrahlung to black body

Figure 4: The bremsstrahlung intensity becomes more
and more self-absorbed as the density increases,
until it becomes a blackbody. At this point in-
creasing the density does not increase the in-
tensity any longer. This is because we receive
radiation from a layer of unity optical depth.
The width of this layer decreases as we increase
the densities, but the emissivity increases, so
that: Iν = jνR

τν
∝ nenpR

nenpR
→ constant (τν � 1)

• Black body

The black body intensity is given by :

Bν = 2hν3

c2
1

(e
hν
kT − 1)

.

◦ IRJν = 2ν2 kT
c2 hν � kT ⇒ e

hν
kT − 1→ hν

kT

◦ IWien
ν = shν3

c2 e−
hν
kT ; hν � kT ⇒ e

hν
kT − 1→ e

hν
kT

� - Chap 3 : Beaming - �

• The moving bar

Figure 5

Let us consider a moving bar, of proper dimension
l′, moving in the direction of its length at velocity βc
and at an angle θ with respect to the line of sight.
The length of the bar in the frame K (according
to relativity ”without photons”) is l = l′/Γ. The
photon emitted in A1 reaches the point H in the
time interval ∆te. After ∆te the extreme B1 has
reached the position B2, and by this time, photons
emitted by the other extreme of the bar can reach
the observer simultaneously with the photons emitted
by A1, since the travel paths are equal. The length
B1B2 = βc∆te, while A1H = c∆te. Therefore:

A1H = A1B2 cos θ → ∆te =
l′ cos θ

cΓ(1− β cos θ)

The length A1B2 is then given by :

A1B2 =
A1H

cos θ
=

l′

Γ(1− β cos θ)
= δl′

In a real picture, we would see the projection of A1B2,
i.e.:

HB2 = A1B2 sin θ = l′
sin θ

Γ(1− β cos θ)
= l′δ sin θ

The observed length depends on the viewing angle,
and reaches the maximum (equal to l′) for cos θ = β.
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• Time - Frequency

Figure 6

Consider a lamp moving with velocity v = βc at an
angle θ from the line of sight. In K ′, the lamp remains
on for a time ∆t′e. According to special relativity
(”without photons”) the measured time in frame K
should be ∆te = Γ∆t′e (time dilation). However,
if we use photons to measure the time interval, we
once again must consider that the first and the last
photons have been emitted in different location, and
their travel path lengths are different. To find out
∆ta, the time interval between the arrival of the first
and last photon. The first photon is emitted in A,
the last in B. If these points are measured in frame
K, then the path AB is :

AB = βc∆te = Γβc∆t′e

While the lamp moved from A to B, the photon
emitted when the lamp was in A has travelled a
distance AC = c∆te, and is now in point D. Along
the direction of the line of sight, the first and the
last photons (the ones emitted in A and in B) are
separated by CD. The corresponding time interval,
CD/c, is the interval of time ∆ta between the arrival
of the first and the last photon:

∆ta =
CD

c
=
AD −AC

c
= ∆te − β∆te cos θ

= ∆te(1− β cos θ) = ∆t′eΓ(1− β cos θ)

∆ta =
∆t′e
δ

If θ is small and the velocity is relativistic, then δ > 1,
and ∆ta < ∆ts, i.e. we measure a time contraction
instead of time dilation. Note also that we recover
the usual time dilation (i.e. ∆ta = Γ∆t′e) if θ = 90o,
because in this case all photons have to travel the
same distance to reach us.

Since a frequency is the inverse of time, it will

transform as : ν = ν′ . It is because of this that the
factor δ is called the relativistic Doppler factor.

δ =
1

Γ(1− β cos θ)

• Aberration

Calling θ the angle between the direction of
the emitted photon and the source velocity vector,
we have:

sin θ =
sin θ′

Γ(1 + β cos θ′)
; sin θ′ =

sin θ

Γ(1− β cos θ)

cos θ =
cos θ′ + β

1 + β cos θ′
; cos θ′ =

cos θ − β
1− β cos θ

The definition of solid angle is:

dΩ = sin θdθdφ = 2π sin θdθ

dΩ = 2π[
sin θ′

Γ(1 + β cos θ′)
] [

dθ′

Γ(1 + β cos θ′)
]

dΩ =
2π sin θ′d sin θ′

[Γ(1 + β cos θ′)]2

But dΩ′ = 2π sin θ′dθ′ ; dΩ = dΩ′ 1
[Γ(1+β cos θ′)]2

With cos θ′ = cos θ−β
1−β cos θ , we get dΩ =

dΩ′

δ2

• Intensity

The specific intensity has the unit of energy
per unit surface, time, frequency and solid angle:

Iν = hν
dN

dt dν dΩ dA

∆t = (1− β cos θ)Γ∆t′ = ∆t′

δ ; ν = ν′

Γ(1−β cos θ) = δν′

The surface area stays constant since it is perpendic-
ular to the direction of the light source ⇒ dA = dA′.
In the comoving frame K ′ ( dν = δ d ν′ ):

I ′ν′ = hν′
dN ′

dt′dν′dΩ′dA′

Iν = hδν′
dN ′

(dt
′

δ )δdν′(dΩ′

δ2 )dA′
= δ h ν′

dN ′

( 1
δ2 ) dt′ dν′ dΩ′ dA′

Iν = δ3[hν′
dN ′

dt′ dν′dΩ′dA′
] = δ3 I ′ν′

I =

∫
Iνdν =

∫
δ3I ′ν′dν =

∫
δ3I ′ν′(

dν

dν′
)dν′

I = δ3

∫
I ′ν′δdν

′ = δ4

∫
I ′ν′dν

′ = δ4I ′
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• Emissivity

The (frequency integrated) emissivity j is the

Figure 7

energy emitted per unit time, solid angle and volume.
We generally have that the intensity, for an optically
thin source, is I =

∫
∆R

jdr, where ∆R is the length
of the region containing the emitting particles.
The emissivity ; j = hν dN

dV dtdΩ . The spatial volume:
dV = dAdL = δdL′dA′ = δdA′dL′ = δdV ′. Then :

j = hν
dN

dV dtdΩ
= h(δν′)

dN ′

(δdV ′)(dt
′

δ )(dΩ′

δ2 )

j = δ3hν′
dN ′

dV ′dt′dΩ′
= δ3j′

To understand the transformation properties of
emissivity consider a slab with plasma moving with
a velocity parallel to the walls (figure 7).
The observer in K will measure a ∆R which depends
on his viewing angle. In K ′ the same path has
a different length, because of the aberration of
light. The height of the slab h′ = h, since it is
perpendicular to the velocity. In K, the light ray
travels a distance : ∆R = h

sin θ and in K ′ we have :

∆R′ = h′

sin θ′ . ∆R′ = 1
δ∆R. Therefore the column

of plasma contributing to the emission, for δ > 1, is
less than what the observer in K would guess by
measuring ∆R.
For simplicity, assume a homogeneous plasma :

I = j∆R = (δ3j′)(δ∆R′) = δ4j′∆R′ = δ4I ′

I = j∆R = δ4j′∆R′ j = δ4(
∆R′

∆R
) = δ4(

1

δ
) = δ3j′

And the corresponding transformation for the specific
emissivity is j(ν) = δ2j′(ν′).

◦ Example: Blobby jet from AGN

Consider that within a distance R from the

apex of a jet (R measured in K), at any given time
there are N blobs, moving with a velocity v = βc
along the jet. To fix the ideas, let assume that
beyond R they switch off. If the viewing angle is
θ = 90o, the photons emitted by each blob travel the
same distance to reach the observer, who will see all
the 10 blobs. But if θ < 90o, the photons produced
by the rear blobs must travel for a longer distance
in order to reach the observer, and therefore they
have to be emitted before the photons produced by
the front blob. The observer will then see less blobs.
To be more quantitative, consider a viewing angle
θ < 90o. Photons emitted by blob number 3 to reach
blobs number 1 when it produces its last photon
(before to switch off) were emitted when the blobs
itself was just born (it was crossing point A). They
travelled a distance R cos θ in a time ∆t. During the
same time, the blob number 3 travelled a distance
∆R = β c∆t in the forward direction. The fraction
f of the blobs that can be seen is :

f =
R−∆R

R
= 1− ∆R

R
= 1− βc∆t

R
= 1− βR cos θ

R

f = 1− β cos θ =
Γ(1− β cos θ)

Γ
=

1

Γ

1

δ

The bottom line is the following: even if the flux
from a single blob is boosted by δ4, if the jet is made
by many (N) equal blobs, the total flux is not just
boosted by Nδ4 times the intrinsic flux of a blob,
because the observer will see less blobs if θ < 90o.

• Flux from moving sources

The relativistic Doppler Factor is defined by
:

δ =
1

Γ (1− β cos θ)
Thus : Iν = [

1

Γ(1− β cos θ)
]3I ′ν′

From the lecturer notes we have : I ′ν′ ∝ ν′
−α

I ′ν′ ∝ ν−α ⇒ Iν ∝ [
1

Γ (1− β cos θ)
]3ν′
−α

Iν ∝ [
1

Γ(1− β cos θ)
]3(
ν

δ
)−α = [

1

Γ(1− β cos θ)
]3δαν−α

Iν ∝ [
1

Γ (1− β cos θ)
]3[

1

Γ(1− β cos θ)
]α ν−α

Iν ∝ [
1

Γ (1− β cos θ)
]3+αν−α

• If the jet is moving towards the observer: θ = 0◦

cos θ = 1. Then :

Iν(θ = 0◦) ∝ [
1

Γ(1− β)
]3+αν−α
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• If the jet is moving away from the observer (receding
jet): θ = 180◦ cos θ = −1. Then :

Iν(θ = 180◦) ∝ [
1

Γ(1 + β)
]3+αν−α

Iν(θ = 0◦)

Iν(θ = 180◦)
∝ [

1 + β

1− β
]3+α

Iν(θ = 0◦)

Iν(θ = 180◦)
� 1 β → 1

The emission from the part of the jet measuring
towards observer (θ → 0o) is highly Doppler
boosted and therefore much brighter than the part
of the jet moving away from the observer.

Let’s use a more general example: when the
approaching and receding velocity is not directly
towards (θ = 0o) and away (θ = 180o).
The intensity for the part of the jet towards observer:

I1ν(towards) ∝ [
1

Γ (1− β cos θ)
]3+αν−α

For a source receding the angle will be θr = π + θ.

I2ν(away) ∝ [
1

Γ (1− β cos θr)
]3+αν−α

I2ν(away) ∝ [
1

Γ (1 + β cos θ)
]3+αν−α

I1ν(towards)

I2ν(away)
∝ [

1 + β cos θ

1− β cos θ
]3+α

For β → 1, we have : sin θ = 1
Γ ⇒ sin2 θ = 1

Γ2

1−cos2 θ = 1
Γ2 ⇒ cos2 θ = 1− 1

Γ2 = 1−(1−β2) = β2

Then cos θ = β. In this limit :

I1ν(towards)

I2ν(away)
∝ [

1 + β cos θ

1− β cos θ
]3+α ∝ (

1 + β2

1− β2
)3+α

I1ν(towards)

I2ν(away)
∝ (Γ2(1 + β2))3+α = (2Γ2)3+α β → 1

The approaching component is much brighter than
the receding component. This is why most of the
jets from AGN appear to be one-sided.

• Moving in an homogeneous radiato field

From the reference frame K ′ the Doppler fac-
tor is:

δ′ =
1

Γ(1− β cos θ′)

The intensity coming from each element is seen
boosted as:

I ′ = δ′
4
I

The radiation energy density is :

U ′ =
1

c

∫
I ′dΩ′ =

2π

c

∫ 1

β

I ′d cos θ′ =
2π

c

∫ 1

β

δ′
4
Id cos θ′

U ′ =
2π I

cΓ4
[

1

3β
(1− β cos θ′)−3]β1

U ′ = (1 + β +
β2

3
)Γ2 2π I

c
= (1 + β +

β2

3
)Γ2 U

Do tutorial 4 & 5

� - Chap 4 : Synchrotron emisso & absorpto - �

• Emission from many electrons

The most probable particle energy distribution in
high energy astrophysics is the power-law :

N(γ) = Kγ−P [m−3 γ−1]

N(γ) =
dN

dγ
⇒ N(γ)dγ =

dN

dγ
dγ = Kγ−Pdγ

We assume the pitch angle θ ∼ 0o. The differential
emissivity within a frequency interval dν is:

εs(ν)dν =
1

4π
PsN(γ)dγ

But : νs = γ2νL ⇒ γ = ( ν
νL

)1/2 ⇒ dγ
dν = 1

2(ν
−1/2

ν
1/2
L

)

With νL = eB
2πmec

.

εs(ν) =
1

4π
PsN(γ)

dγ

dν
∝ 1

4π
(γ2B2)Kγ−P

1

2
(
ν−1/2

ν
1/2
L

)

εs(ν) ∝ K (
ν

νL
)B2(

ν

νL
)−

P
2 (

ν

νL
)−1/2 ν

−1/2
L ν

−1/2
L

εs(ν) ∝ K ν−1
L B2(

ν

νL
)−(P−1

2 ) ∝ K B2ν
(P−3

2 )

L ν−(P−1
2 )

Since νL = eB
2πmec

⇒ νL ∝ B.

εs(ν) ∝ K B(P−3
2 )B2ν−(P−1

2 ) ∝ K B(P+1
2 )ν−(P−1

2 )

The synchrotron flux measured from a homogeneous
and thin source with volume V ∝ R3 at a distance
dL is determined as follows (α = P−1

2 and θs = R
dL

):

Fs(ν) ≈ Ls(ν)

4πd2
L

≈ 4πεs(ν)V

4πd2
L

≈ 4πεs(ν)× V

4πd2
L

Fs(ν) ∝ K B(P+1
2 )ν−(P−1

2 )×R
3

d2
L

∝ K R2

d2
L

Rν−αB1+α

Fs(ν) ∝ κ θ2
s RB

1+αν−α
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• Synchrotron absorption: photons

All emission processes have their own absorp-
tion counterpart. For synchrotron radiation the
emission is done by relativistic electrons and they
don’t have a pure Maxwellian distribution. We could
then have expected the same behaviour as for an
optically thick black body : Iν ∝ ν2T .
But for relativistic electrons inside the plasma we
expect an equilibrium between the energy of the
thermal particles (∼ kT ) :

kT ∼ γmec
2 ∼ mec

2(
ν

νL
)1/2

We showed earlier that predominantly photons for
which hν � kT are absorbed. In this limit:

Iν = 2kT
v2

c2
= 2[γmec

2]
ν2

c2
= 2[(

ν

νL
)1/2mec

2]
ν2

c2

Iν =
2mec

2

c2
ν
−1/2
L ν5/2 νL ∝ B Iν ∝ B−1/2ν5/2

• From thick to thin : Turnover Frequency

To describe the transition from self-absorbed
(τν � 1) to optically thin ( τν � 1 ), we make use of
the radiative transfer equation:

Iν =
jν
αν

(1−e−τν ) =
ε(ν)

κν
(1−e−τν ) =

ε(ν)R

τν
(1−e−τν )

ε(ν) = jν , κν = αν , τν = Rκν ⇒ κν = τν
R ,

◦ For τν � 1 (self absorbed regime), we sim-
ply have :

Iν =
ε(ν)R

τν
=
ε(ν)

κν

The absorption coefficient, (in cm−1), is for τν � 1:

κν =
ε(ν)

Iν
∝ K B(P+1

2 )ν−(P−1
2 )

B−1/2ν5/2
= K B(P+1

2 ) ν−(P+4
2 )

The absorption coefficient is depending strongly on
frequency. One can see that, as expected, at large
frequency the absorption is negligible.

The transition between optically thick (τν � 1)
and optically thin (τν � 1) occurs if τν = 1. This
will define the so-called turnover frequency, i.e:

τνt = Rκνt = 1 R K B(P+1
2 ) ν

−(P+4
2 )

t = 1

ν
−(P+4

2 )
t ∝ B(P+1

2 )

R K
νt ∝ [R K B(P+1

2 )]2/(P+4)

� - Chap 5 : Compton scattering - �

• The Klein-Nishina cross section

The Thomson cross section is the classical limit of
the more general Klein Nishina cross section.

σKN =
3

4
σT {

1 + x

x3
[
2x(1 + x)

1 + 2x
− ln(1 + 2x)]}

+
3

4
σT {

ln (1 + 2x)

2x
− 1 + 3x

(1 + 2x)2
}

Approximations for the non-relativistic and the
ultra-relativistic limit are:

◦ For x� 1 : σKN ' σT (1− 2x+ 26x2

5 + · · · )

◦ For x� 1 : σKN ' 3
8
σT
x [ln(2x) + 1

2 ]

With σT = 8π
3 r2

0 the Thomson cross section.

(r0 = e2

me c2
= 2.82× 10−13 cm is the classic electron

radius.)

Compton scattering is more effective in Thomson

Figure 8

limit since the cross-section has a maximum value,
i.e σT . Scattering between electrons and photons
with x > 1 is less effective since σKN → 0 in that
limit.

• Thomson & K −N limits

We transform to a reference frame where the
electron is in rest (frame co-moving with e−) and
evaluate the incoming photon energy in that frame.
If:

x′ =
hν′

mec2
< 1 ⇒ Thomson limit

x′ =
hν′

mec2
> 1 ⇒ K −N limit
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The energy of the incoming photon in the rest frame
of the electron will be Doppler shifted. If cos θ′ → β:

[Γ = γ]; ν′ =
ν

Γ(1− β cos θ′)
=

ν

Γ(1− β2)
= Γν = γν

Therefore in the frame co-moving with electron the
incoming photons (within θ′) will all be Doppler
boosted. Therefore for Inverse-Compton scattering
we have (using the fact that ν′ = γν) :

Thomson limit : ν <
mec

2

γh

K −N limit : ν >
mec

2

γh

• Scattering Energy : Thomson Regime

In K ′ the e− sees :

Figure 9

ν′ = νem
Γ(1−β cos θ′) = νem

Γ(1+β cos(π−θ′)) = νem
Γ(1+β cos Ψ′)

ν′ = νem
Γ(1+β[ cos Ψ−β

1−β cos Ψ ])
= (1−β cos Ψ)νem

Γ(1−β2)

’ ν′ = Γ(1− β cos Ψ)νem
A very convenient way to treat Inverse-Compton
scattering is to evaluate the process in the co-moving
reference frame. When we take : x′ = hν′

mec2
< 1,

we are in the Thomason limit and then we know
the scattering process is elastic and ⇒ x′1 = x′

regardless of angle.
Note that : x′1 = scattered photon energy in K ′.
. x′ = incoming photon energy in K ′.
The photon will be scattered at on angle Ψ′1 with
respect to the electron velocity. One can then use
the Doppler equation to transform this scattered
energy (x′1) and angle ( Ψ′1) to the lab frame (K).
This is done in the following way:

x1 =
hν1

mec2
= δ(

hν′

mec2
) = δx′1 ; δ =

1

Γ(1− β cos Ψ1)

x1 = δx′1 = 1
Γ(1−β cos Ψ1)x

′
1 = 1

Γ(1−β[
cos Ψ1+β

1+β cos Ψ1
])
x′1

x1 = Γ(1 + β cos Ψ′1)x′1
We can also express all quantities in that form:

x′1 = x′ = Γ(1− β cos Ψ)x

This gives: x1 = δx′1 = 1
Γ(1−β cos Ψ1)x

′

x1 =
1

Γ(1− β cos Ψ1)
× Γ(1− β cos Ψ)x = (

1− β cos Ψ

1− β cos Ψ1
)x

•Maximum Energy Transfer

The maximum energy transfer from the e− to
the scattered photon is if the collision is head-on
and the photon is scattered in opposite direction is
from where it came.
Incoming photon angle relative to e− : Ψ = π
Scattered photon angle relative to e− : Ψ1 = 0
(x1)max = (1−β cosπ

1−β cos 0 )x = (1+β
1−β )x = Γ2(1 + β)2 x

For β → 1 (x1)max = 4γ2 x

•Minimum Energy Transfer

The minimum energy transfer from e− to pho-
ton is during a head-tail collision. Here the photon
approaches the e− from behind and scattered in
opposite directions:
Incoming photon angle relative to e− : Ψ = 0
Incoming photon angle relative to e− : Ψ1 = π
(x1)max = ( 1−β cos 0

1−β cosπ )x = (1−β
1+β )x = 1

Γ2(1+β)2 x

For β → 1 (x1)max =
1

4γ2
x

Figure 10: Maximum and Minimum Energy Transfer

• Isotropic photon distribution

We showed earlier that a co-moving observer
in K ′ see on isotropic energy density of the back-
ground photons U ′ = 4

3Γ2Uiso β → 1
If the observer in K ′ is co-moving with an e− moving
with high velocity (β → 1) thus :

U ′ = N ′<x′>
V ′ ; Uiso = N<x>

V ; N ′<x′>
V ′ = 4

3Γ2N<x>
V

We know: V ′ = A′l′ = AΓl = ΓAl = ΓV ; V ′

V = Γ
In the co-moving frame the e− scatters the photon
elastically in the Thomson limit:

< x′ >=< x′1 >⇒
<x′1>
<x> = 4

3Γ2×Γ;
< x′1 >

< x >
=

4

3
Γ3

But the relation between the scattered energy in K ′

and K is : < x′1 >= Γ(1− β < cos Ψ >) < x1 >
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Since < cos Ψ >= 0; < x′1 >= Γ < x1 >
<x′1>
<x> = Γ<x1>

<x> = 4
3Γ3 ⇒ <x1>

<x> = 4
3Γ2

< x1 >=
4

3
Γ2 < x >

We can simply calculate the rate of scatterings per
electron considering all quantities in the lab frame.
Let n(ε) be the density of photons of energy ε =
hν, v the electron velocity and Ψ the angle between
the electron velocity and the incoming photon. For
monodirectional photon distributions, we have:

dN

dt
=

∫
σT vreln(ε)dε =

∫
σT c(1−

v

c
cos Ψ)n(ε)dε

dN

dt
=

∫
σT c(1− β cos Ψ)n(ε)dε; vrel = c− v cos Ψ

The power contained in the scattered radiation is :

dεγ
dt

= ε1
dN

dt

ε1 : energy of scattered photon, and dN
dt : the scattered

rate. Let x1 = ε1
mec2

, x = ε
mec2

x1 = ε1
mec2

= x( 1−β cos Ψ
1−β cos Ψ1

) = ε
mec2

( 1−β cos Ψ
1−β cos Ψ1

)

⇒ ε1 = ε(
1− β cos Ψ

1− β cos Ψ1
)

dεγ
dt

= ε1
dN

dt
=

∫
ε1c σT (1− β cos Φ)n(ε)dε

dεγ
dt

= c σT

∫
ε
(1− β cos Ψ)2

1− β cos Ψ1
n(ε)dε

dεγ
dt

= c σT γ
2

∫
(1− β cos Ψ)2ε n(ε)dε

<
dεγ
dt

>= c σT γ
2

∫
< (1− β cos Ψ)2 > εn(ε)dε

< cos Ψ >= 0; < cos2 Ψ >= 1
3

<
dεγ
dt

>= c σT γ
2

∫
(1 +

β2

3
)ε n(ε)dε

<
dεγ
dt

>= (1 +
β2

3
) c σT γ

2Uph; Uph =

∫
ε n(ε)dε

<
dεγ
dt

>= (1 +
β2

3
) c σT γ

2 εphnph

<
dεγ
dt

>= [(1 +
β2

3
)γ2 εph]× [c σT nph]

This is the power contained in scattered radiation.
This is added on top of the already existing back-
ground photon field. Therefore to probe ”only”
the Inverse-Compton power we subtract the
background field σT c nph.

Pc(γ) =
dεγ
dt −σT c nph = (1+ β2

3 ) c σTγ
2Uph−σT c nph

Pc(γ) =
(1+ 1

3 )β2 c σ Uph
1−β2 = 4

3 γ
2β2 c σT Uph

β → 1 Pc(γ) = [
4

3
γ2 εph]× [c σT nph] =< ε1 >< rate >

∗ Pc(γ) = 4
3 σT c γ

2β Uph ; Psyn(γ) = 4
3 σT c γ

2βUmag
The γ-ray production rate :

dεγ
dt

= [c σ γ2

∫
εn(ε)dε] (1− β cos Ψ)2 ⇒

dεγ(cos Ψ)
dt = const (1− β cos Ψ)2; µ = cos Ψ (in lab)

⇒ Pc(µ) = const

∫
(1− β µ)2dµ

Pγup
Pγdown

=
2
∫ 0

−1
(1− β µ)2dµ

2
∫ 1

o
(1− β µ)2dµ

= 7 ; β → 1

The scattered rate with the up-stream photons
is 7−times higher than with the photons coming from
the back.

Pγup
Pγside

=
2
∫ 0

−1
(1− β µ)2dµ

2
∫ 1

−1
(1− β µ)2dµ

=
7

4
; β → 1

• Cooling time and Compactness

The cooling time due to the inverse Compton
process is :

tIC =
E

Pc(γ)
=

γmec
2

4
3σT c γ

2 β2 Uph
=

3mec
2

4σT c γ Uph
; β → 1

This equation offers the opportunity to introduce
an important quantity, namely the compactness
of an astrophysical source, that is essentially the
luminosity L over the size R ratio. Consider in fact
how Uph and L are related: Uph = L

4πR2 c .

Although this relation is almost universally used,
there are subtleties. It is surely valid if we measured
Uph outside the source, at a distance R from its center.
In this case 4πR2c is simply the volume of the shell
crossed by the source radiation in one second. But if
we are inside an homogeneous, spherical transparent
source, a better way to calculate Uph is to think to
the average time needed to the typical photon to exit
the source. This is tesc = 3R/(4c). It is less than
R/c because the typical photon is not born at the
center (there is more volume close to the surface). If
V = (4π/3)R3 is the volume, we can write:

tIC =
3πmec

2R2

σT γ L
→ tIC

R/c
=

3π

γ

mec
3R

σT L
=

3π

γ

1

l
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Where the compactness parameter l is : l =
σT L

mec3R

For l > 1, tIC
R/c < 1 ⇒ we have that even low energy

electrons cool by the Inverse Compton process in less
than a light crossing time R/c.

• Single particle spectrum

We will give the main ideas behind the fact
that the energy (frequency) of the scattered photons
are ∼ γ2 times that of the background photons.
There are a few steps to consider:
◦ Assume that the relativistic electron travels in a
region where there is a radiation energy density Ur
made by photons which we will take, for simplicity,
monochromatic, therefore all having a dimensionless
frequency x = hν/mec

2.
◦ In the frame where the electron is at rest, half of
the photons appear to come from the front, within
an angle θ′ = 1/γ.
◦ The typical frequency of these photons is x′ ∼ γx
(it is twice that for photons coming exactly head on).
◦ If we are in Thomson regime (elastic scatter in e−

rest frame) then: x′ = hν′

mec2
< 1 = x′1.

◦ All the photons in K ′ that were scattered within
Ψ′ <= π

2 , now have angles viewed from the lab
system Ψ′1 <= 1

γ
◦ The lab energy of this scattered photon is then
obtained from the Doppler equation: x1 = δx′1
x1 =

x′1
γ[1−β cos Ψ1] =

x′1
γ[1−β2] = γx′1

< x1 >= γ < x′1 >= γ[< x′ >] = γ2x
A detailed analysis gives the IC emissivity:

εIC(x1) =
σTn I0 (1 + β0

4γ2β2x0
FIC(x1)

FIC =
x1

x0
[
x1

x0
− 1

(1 + β)2γ2
];

1

(1 + β)2γ2
<
x1

x0
< 1

FIC = x1

x0
[1− x1

x0

1
(1+β)2γ2 ]; 1 < x1

x0
< (1 + β)2γ2

Figure 11: x1/x0 < 1: scattered photons have less energy
than incoming ones. x1/x > 1: Scattered pho-
tons have more energy than incoming ones.

� - Chap 6 : Synchrotron SelfCompton - �

• SSC emissivity
The importance of this process will obviously be

high for system with i) high electron density (relativis-
tic), ii) photon density and iii) high magnetic field
energy density. If the relativistic electron distribution
is a power-law:

N(γ) = Kγ−p

We expect the SSC flux to scale as K2 (e−s work
twice), i.e quadratic in the electron density.
If the photo field is produced by synchrotron emitting
we should subtract the appropriate expression for the
synchrotron radiation energy density:

Usyn =
Lν(ergs−1Hz−1)

V
× tsec =

3R

4c

Lν
V

Usy(ν) = 4π
3R

4c
[

1

4π

Lν
V

] = 4π
3R

4c
εsyn(ν)

εIC(νIC) =
1

4π

(4
3)α

2

τc
R/c

ν−αc

∫ νmax

νmin

Uph
ν
ναdα

εIC(νIC) =
(4/3)α−1

2
τcεsyn,0ν

−α
c

∫ νmax

νmin

dα

ν

As you can see, εsyn,0ν
−α
c = εsyn(νc) is nothing else

than the specific synchrotron emissivity calculated
at the (Campton) frequency νc. Furthermore, the
integral gives a logarithmic term, that we will call
ln Λ. We finally have:

εSSC(νc) =
(4/3)α−1

2
τcεsyn(νc) ln Λ

In this form the ratio between the synchrotron and

the SSC flux is clear, it is (4/3)α−1

2 τc ln Λ ∼ τc ln Λ. It
is also clear that since τc = σTRK and εsyn(νc) =
KB1+α, then, as we have guessed, the SSC emissivity
εSSC(νc) ∝ K2 (i.e. electrons work twice). Fig. 12
summarizes the main results. .

Figure 12: Typical example of SSC spectrum, shown
in the νFν vs ν representation. The spectral
indices instead correspond to the Fν ∝ ν−α

convention.
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