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| - Decoding the cosmos
® - Chap 1 : Defining the signal - ©

e The luminosity of a object can be expressed in
function of the spectral luminosity per unit wave-
length Ly or per unit frequency L, by :
0
/ L, dv
o0

dL:L,\d)\:LVdV:L:/ Lyd\ =
0

v 14

oo © _ . 0 c
: L)\ d\ = ) (ﬁ)LA dv = OO(;)L)\ dv

Therefore :

2
L,=Lyv—> = Ly="1L,
14 C

I

e The spectral flux density, or just flux density
(ergs™tem™2Hz71)1 is the flux per unit spectral
bandwidth, either frequency or wavelength, respec-
tively:

dL, = f,dA dLy = frdA

df = fudv df = fxdX | f=f,Av | dL = fdA]

Then the luminosity, L, can be found from its flux,

f (ergs™tem™2), via: |L = /fdA
For a isotropic radiation Ljsotropic = 47T7“2f
and for uniform radiation Lypiform = r2Q f.

Where r is the distance from the centre of the source
to the position at which the flux has been determined.

e A detector pointed directly at a uniform in-
tensity source in the sky of small solid angle, €2,
would measure a flux, f = fﬂ I cos0dS) ~ I9).

e The astrophysical flux at the surface of an
object (e.g. a star) whose radiation is escaping
freely at all angles outwards, can be calculated by
integrating in spherical coordinates.

2w /2
F= /Icos 0dQ) = / / I cosOsin0dOdp = wl
o Jo

e For stars, we now define the astrophysical flux, F',
to be the flux at the surface of the star,

R,
L, =47R2F = 4nr*f = f=(—)F
r
Where L, is the star’s luminosity and R, is its radius.

e The solid angle Q is : Q = Z¢? = Z(%)2

Where d is the linear diameter. Ex: with radiation
beamed uniformly into a circular cone of solid angle,

R* )2

rmars— *

Q. |A=nR? =12 Q|

mars—*
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Figure 1: arc s=7r0. Ifd<r , s=d, henceﬁ:%

N.B: If the source in the sky is elliptical rather
I
Q=-60,40

AL

than circular, in projection, then,

® - Chap 8 : Continuum emission - ©

e The root-mean-square speed, v,.,s, corresponding

3kT

kinetic energy, E, = 3 kT = 5muv2,.,, Urms = 1/ °2

e The spectrum, in the absence of a background
source, I, = B,(1 —e™ ™). B,(T) = 2h® 1

2 h v
€ eRT

e The emission measure: eM = [n2dl ~n?

hy

e For hv < kT, 1 — e *7 ~ 2. (Opti thick).

e The ionized hydrogen mass Mpyg;; and the
total gas mass, M, are related by : Mg = X M,.
Where X is the mass fraction of hydrogen
X = 0.707 for Solar abundance.

The radius, R, of the Stromgren sphere assuming
that the effect of dust are negligible is:

U = R, n%/?
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2 h® 1

e The specific intensity : I, =

CQ _hv
(6 kTB _ 1)
For hv <« KT :
2hv3 1 2hv3 1
L’ = hy ~ 2 hv
¢ (eFTs — 1) & I+ 4+ —1)
2 I/2 ]{?TB
v= T 5
c

The flux density of the star :

2 V2 k‘TB

202 kT
L = = ()2

F,==nl,=x
c

e The relativistic energy of the photon given by :

E, = v m,c?. The relativistic gyroradius (kpc) of a

proton : =1 = 777;%52
e The energy spectral index: I' = 1 — 2a. The
observed spectral index oo = —1

I,=5,(1—¢e¢™) (all 1,)

I, =5, x % (1, > 1) Opti thick

I, =j, xv™® (1, <1) Opti thin

Do problem 8.13 of Decoding the Cosmos.

Il - Radiative Processes In High E Ast

©® - Chap 1 : Some Fundamental definitions - ©
e Emission plus absorption : In this case it is
convenient to introduce the optical depth 7,:

dr, = a,ds = no,ds.
o, cross section of the absorbing process, and n
density of "absorbers”.
The transport equation then becomes:

adfcll/s =L il; Zf',i =~ Z:,’ S = iyy
L(r,)=ILoe"™ + / " e~ (=TS, (7)) dr,
If the source function 5(’),, is constant :
I(r,) =10+ S,(1—€e"™)

If -[1/,0 = 07 IU(TV) = iil;(l - e_TV). Let s=R

JuR . 1
(I—e™)=ju(——)

Il/ v) —
(7v) a, R Ty

o Source optically thin (7, < 1) , we have
1—e™ ™ —1—1+47,. Therefore :

II/(TV) = ]UR (Tl/ < 1)

o Source optically thick (7, > 1)
Jul

v

I(r) = (v > 1)

The above equation explicitly shows that the inten-
sity we see from a thick source comes from a layer of
width R/7,, i.e. the layer that is optically thin. In
other words we always collect radiation from a layer
of the source, down to the depth at which the radi-
ation can escape without being absorbed (Tjqyer = 1).

e The mean free path (for a photon) is the
average distance 1 travelled by a photon without
interacting. It corresponds to a distance for which
=1 n=1—=0oml,=1—=1, L

If a source has radius R and total optlcal depth

7, > 1, we have : ll,:ni :JJER =

e Total emitted power: Larmor formula

Particle at time t

Particle at time t,q

Figure 2: A charge is moving along a trajectory.

The electric and magnetic fields produced by a
moving charge is:

o g i—-f q i B
E(r.t) = [WT]M”JF??,R{”X[(n—/@)xﬁ]}tm
B(fit)=nx E

Where: tret i 2 M, k=1-— ﬁg’ g: g

v=(1-p%)"12
we specialize to the non relativistic case, consider
only the radiative field, and set:
<1, k=1-#B—=0 7-F—1
To calculate the power per unit solid angle
carried by this electromagnetic field let consider the
Poynting vector S (in cgs units):

2 >
i x (A x B .,

c = = C =9_, c q
— ExB=—|E]’i=
4 % 47T| |n

5= A 2 R2?
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The power crossing a surface dA = R2dS) is :

dP = SdA = SR?*dQ) — % = sR?

Therefore :
P ¢ @ 7.,
dQ ~ 4re (7 B)|tm Wcﬁsm b
dP 2
¥l 4q 3(12 sin’ 0 Larmor formula
TC

The total power P :

dP q’a®
P =int—dQ =
imn 43

dQ

1 2 2
/1 sin? fd(d cos ) = %aQ

® - Chap 2 : Bremsstrahlung and black body - ©
¢ Bremsstrahlung

We will consider an electronproton plasma.

b: impact parameter; v: velocity of the electron;

ne: number density of the electrons;

np: number density of the protons;

T: temperature of the plasma: mv? ~ kT — v ~
(KT /m)"/?

passing close to the photon.

r~ b
v

o Let consider e~
Caracteristic (or interaction) time :

o During the interaction we consider the acceler-

62

. 2
ation to be constant : mea =~ F, ~ 2—2 A Ry~
o From the Larmor formula we get :
b 22 , €2 ¢ b
= —q ~ — =
3c3 A m2e3bt m2e3bt

o Since there is a characteristic time, there is also a

characteristic frequency : w % =7
e6
P(w)zfz[m}: el ]E% eb
w w m2c3bt' b m2c3biu
o We can estimate the impact factor b from the
density of protons (targets) : b~ n, U3 =L

np

o The emissivity j(w) will be the power emit-
ted by a single electron mul- tiplied by the number
density of electrons. If the emission is isotropic we
will have to divide by 4m since the emissivity is
directional :  j(v) — ergem™3s 1Hz tsr—1!

Ne ef

TPW) = e

4m m2e3b3v

nel eb 1

4 b3 m2c3 v
6 6
. Te e kT NeNy €
Jw) = -——ny (—) V=22

Me1/2
Pnic ()"

Me 47 m203 kT

o The total emissivity j depend upon
Awmae = kT. This means that an electron cannot
emit a photon of energy larger than hw,,q., i.e limited
by the average energy k7. Hence by doing this we
ignore electrons with energies greater than k7.

j= / J(@)dw % () Wimas
0

| — fleTtp 66 (m6)1/2 Wmaz = nenp 66 (m6)1/2 (kl)
Ar - m2c3 kT dr m2c3 kT h
nen, €9 (mkT)V/?
 4r m2c3 h
0 oo
e[, awarw)
dvdtdw =~ [° dP(v)
dE 3\1/§7re2 snenZZ gff fvm”L v 77’52; d3
< = 7m'U
dvdtdw fo e T d3u
dE 3\;%82 snean grf fvmzn _WQLZ% dv
< Jodtdew ~ -
/l} w 7(4
fo v2e 2kt dv
oo me'uz
/ v2e 2kT dv—[Lg/z]
0 4(2kT)
o0 7m€112
/ v e_ 7’;2’11]"2 d'U — @6 2k7?”n
Umin m
me’“?nin
dE o 32y/me’neniZ gff(sz)1/2 T
< dodide 3v/3m2c3
Using 07, = 2%
L
B >= 32y/meneniZ gff(GkT)1/2€ i
< dodide 3m2c?
Jw = % = Q;ZV; with w =2mv — dw = 2ndv
jDZ%ZQﬂ-jW’ j” =< ducil% g j‘*’ =< defdw >
Then j, =< dvdtdy >=21 < dvdtdw >. Hence
) 3271 nen;eb 22 gff 2mm. g0 _hy
kT
= T amze Gpr) | ©
, Jv 8,21 1 neni€®Z% me 12 by
5@ = [ @y m = Gl = )5 § = (O
0
) 4 2r nen;eb 72 (mKT)l/2 h
0) = 1/2 Tbellq e h=
Jj(Q) = 37T( 3 ) 3m2c? 7 grf ot
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e Free — free absorption

Log v

Figure 3: Changes of the Bremsstrahlung intensity with
temperature.

The three spectra correspond to different tem-
peratures. Note that for smaller temperatures the
thin part of I, is larger (I, o T7'/2). On the
other hand, at larger T the spectrum extends to
larger frequencies, making the frequency integrated
intensity to be larger for larger T (I, o< T'/?).
Note also the self-absorbed part, whose slope is
proportional to v?. This part ends when the optical
depth T x o, R ~ 1.

e From bremsstrahlung to black body
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Figure 4: The bremsstrahlung intensity becomes more
and more self-absorbed as the density increases,
until it becomes a blackbody. At this point in-
creasing the density does not increase the in-
tensity any longer. This is because we receive
radiation from a layer of unity optical depth.
The width of this layer decreases as we increase
the densities, but the emissivity increases, so
that: I, = &8 o 2By constant (1, > 1)

T nenp R

e Black body

The black body intensity 1is given by
B, — 2m? 1
v T2 Ry .
(ekT —1)
015*1:2”2# hu<<kT:>e%—1%%

hv

e’l%;hy>>k:T:>el%flﬁelT

® - Chap 3 : Beaming - ®

e The moving bar

Lo ob=erver

Figure 5

Let us consider a moving bar, of proper dimension
', moving in the direction of its length at velocity B¢
and at an angle # with respect to the line of sight.
The length of the bar in the frame K (according
to relativity ”without photons”) is [ = I’/T". The
photon emitted in A; reaches the point H in the
time interval At.. After At. the extreme B; has
reached the position By, and by this time, photons
emitted by the other extreme of the bar can reach
the observer simultaneously with the photons emitted
by Aj, since the travel paths are equal. The length
B1By = BcAt,, while A1H = cAt,. Therefore:

I cosf
cl'(1 — Bcosh)
The length A1 Bs is then given by :

AH A ,
cosf I'(1 — Bcosb) -

In a real picture, we would see the projection of A1 B,
ie.

A1H = A1Bycos — At, =

A1B2 =

in g
HBy = AyBysinf =1'— 2%
2 172 5 I'(1 — Bcosb)

The observed length depends on the viewing angle,
and reaches the maximum (equal to I’) for cosd = 3.

=11§sinb
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e Time - Frequency

to observer

Figure 6

Consider a lamp moving with velocity v = Sc at an
angle 6 from the line of sight. In K’, the lamp remains
on for a time At/,. According to special relativity
(”without photons”) the measured time in frame K
should be At, = I'At, (time dilation). However,
if we use photons to measure the time interval, we
once again must consider that the first and the last
photons have been emitted in different location, and
their travel path lengths are different. To find out
At,, the time interval between the arrival of the first
and last photon. The first photon is emitted in A,
the last in B. If these points are measured in frame
K, then the path AB is :

AB = BcAt, = TBeAt,

While the lamp moved from A to B, the photon
emitted when the lamp was in A has travelled a
distance AC' = cAt,, and is now in point D. Along
the direction of the line of sight, the first and the
last photons (the ones emitted in A and in B) are
separated by C'D. The corresponding time interval,
CD/e¢, is the interval of time At, between the arrival
of the first and the last photon:

_CD _AD-AC

At, = At, — fAt. cos b
c c
= At.(1 - Bcosf) = At.T(1 — B cosh)
At!
At, = 2l
)

If 0 is small and the velocity is relativistic, then § > 1,
and At, < At,, i.e. we measure a time contraction
instead of time dilation. Note also that we recover
the usual time dilation (i.e. At, =TAt)) if § = 90°,
because in this case all photons have to travel the
same distance to reach us.

Since a frequency is the inverse of time, it will

transform as : . It is because of this that the
factor ¢ is called the relativistic Doppler factor.

1

0= I'(1 — Bcosb)

e Aberration

Calling 6 the angle between the direction of
the emitted photon and the source velocity vector,
we have:

sind sin 6’ i sin 6
inf=————; sinf/ = —————
I'(1+ Bcost)’ I'(1 — Bcosh)
cosd — cost + 3 o5l — cos — 3
14 Bcosd’ ~ 1—fcosb

The definition of solid angle is:

dQ) = sin 6dOd¢ = 2m sin 0d0
sin 6’ B do’
(1+ Bcos®) 'T(14 Bcosh)
27 sinf'dsin ¢’
I'(1+ Bcost)]?

Q) = 27r[F ]

df) =

But dQ/ = 2msin 9'd9' 5 dQ) = dglm
dsy’
With cos @’ = lcfzecgfe, we get |dQ = el

e Intensity

The specific intensity has the unit of energy
per unit surface, time, frequency and solid angle:

dN
L, =hy ——
Y dtdvdQdA
At = (1 —ﬁCOSH)FAt/ = ATt, V= chosg) = 51//
The surface area stays constant since it is perpendic-
ular to the direction of the light source = dA = dA’.

In the comoving frame K’ (dv =0dv"):

AN’
I// = h /7
v =W A Ay dA
dN' AN’
I = hv' e = Sh
(F)odv'(455)dA (&) dt' dv' dQ dA
AN’
I, =8 ————] =81,
S drard Al v

dv
3 3
I:/Iydl/:/6 Il,,/dV:/(s IZ,,/(W)dV/

I — 63/ ;/(5dV/ — 54/ L/dVl — 54_[/
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e Emissivity

The (frequency integrated) emissivity j is the

Figure 7

energy emitted per unit time, solid angle and volume.
We generally have that the intensity, for an optically
thin source, is I = [, 5 jdr, where AR is the length
of the region containing the emitting particles.

The emissivity ; j = hl/dvdd%. The spatial volume:
dV = dAdL = §dL'dA’ = §dA'dL' = 6dV’. Then :
dN dN’
j = hy——— = h(dV/
7= v aean = M) Gy
dN’
- 3 / _ 8§35/
=0 qragy =0

To understand the transformation properties of
emissivity consider a slab with plasma moving with
a velocity parallel to the walls (figure 7).

The observer in K will measure a AR which depends
on his viewing angle. In K’ the same path has
a different length, because of the aberration of
light. The height of the slab h’ = h, since it is
perpendicular to the velocity. In K, the light ray

travels a distance : AR = siﬁ& and in K’ we have :
AR = Si’:e,. AR = %AR. Therefore the column

of plasma contributing to the emission, for § > 1, is
less than what the observer in K would guess by
measuring AR.

For simplicity, assume a homogeneous plasma, :

I =jAR = (0*j)(0AR') = 6*j/'AR' = &*I’

I =jAR=§"'AR

And the corresponding transformation for the specific
emissivity is j(v) = §25/(v/).

o Example: Blobby jet from AGN

Consider that within a distance R from the

apex of a jet (R measured in K), at any given time
there are N blobs, moving with a velocity v = B¢
along the jet. To fix the ideas, let assume that
beyond R they switch off. If the viewing angle is
0 = 90°, the photons emitted by each blob travel the
same distance to reach the observer, who will see all
the 10 blobs. But if 8 < 90°, the photons produced
by the rear blobs must travel for a longer distance
in order to reach the observer, and therefore they
have to be emitted before the photons produced by
the front blob. The observer will then see less blobs.
To be more quantitative, consider a viewing angle
0 < 90°. Photons emitted by blob number 3 to reach
blobs number 1 when it produces its last photon
(before to switch off) were emitted when the blobs
itself was just born (it was crossing point A). They
travelled a distance Rcosf in a time At. During the
same time, the blob number 3 travelled a distance
AR = S cAt in the forward direction. The fraction
f of the blobs that can be seen is :

_R—AR_l_ﬁ_l_BcAt_l_ﬁRcosﬁ
- R R R R
B (1 —-Bcosf) 11
f—l—ﬁcosﬁ——r =T3

The bottom line is the following: even if the flux
from a single blob is boosted by &4, if the jet is made
by many (N) equal blobs, the total flux is not just
boosted by N§* times the intrinsic flux of a blob,
because the observer will see less blobs if § < 90°.

e Flux from moving sources

The relativistic Doppler Factor is defined by

1 1

= Thus: I, = [————— I,
I'(1— /5 cos®) e [F(l—ﬂcose)] v
From the lecturer notes we have : I, oc v/~ %
1 _
I, xv =1, o« [ 2V
v XV (X[F(I—BCOSH)]
1 v 1
]p 37 \—« — 3
O([F(l—ﬁcose)] ((5) [F(l—ﬁcose)]
1 3 1 a . —a
I”OC[F(l—BCOSG)] [F(l—ﬁcosﬁ)]
1 3+ay—a

Iy o [I‘ (1-p COSQ)]

e If the jet is moving towards the observer: § = 0°
cosf = 1. Then :

1

100 =07 o< 5=

]3+o¢l/fo¢
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e If the jet is moving away from the observer (receding
jet): 6 =180° cosf® = —1. Then :

1
I'l1+p)

I,(0 =0°) 1+ B350
I,(6 = 180°) [1—5]
L, (‘9 - OO)
I,(6 = 180°)
The emission from the part of the jet measuring
towards observer (# — 0°) is highly Doppler

boosted and therefore much brighter than the part
of the jet moving away from the observer.

I,(0 = 180°) o | Proy—«

v

>1 =1

Let’s use a more general example: when the

approaching and receding velocity is not directly

towards (6 = 0°) and away (6 = 180°).

The intensity for the part of the jet towards observer:
1

Il,,(towcw“ds) X [m

]3+aV—a

For a source receding the angle will be 0, = 7 + 6.

1
I, (away) | ey

I'(1—pBcosb,)

1
I' (1 + Bcosh)

I, (towards) |
I, (away)

Ly (away) | Je e

I—FBCOSQPJrcv
1— Bcost

For g — 1, we have : slne—f:>51n 6——
1—cos? 6 = 2:>cosz€—1——2—1—( B2)2ﬁ2
Then cosH—ﬁ In this limit :

I, (towards) [1+ﬂ0080]3+a ~ (1+52>3+a
Iy, (away) 1— Bcosh 1— 32
hy(towards)

o (F2(1 +ﬁ2))3+a — (2F2)3+a B 1

Iy, (away)

The approaching component is much brighter than
the receding component. This is why most of the
jets from AGN appear to be one-sided.

e Moving in an homogeneous radiat® field

From the reference frame K’ the Doppler fac-

tor is:
1

I'(1 — Bcost)
The intensity coming from each element is seen
boosted as:

§ =

I =6

The radiation energy density is :

1 2 o (1
U = /IdQ’— 7T/ Idcose/:”/ 5" Id cos @'
C C /B C /5

_2nl 1
cI' "33

52

1 —Bcosd) 3|

U'= i

(1+8+ )

=(1+p8+ ) U

‘ Do tutorial 4 & 5

© - Chap 4 : Synchrotron emiss® & absorpt® - ©
e Emission from many electrons

The most probable particle energy distribution in
high energy astrophysics is the power-law:

N(y) =Ky "

dN

AN -
N(v):WéN(v)dv:ad'y:Kv Py

We assume the pitch angle 8 ~ 0°. The differential
emissivity within a frequency interval dv is:

[m =y~

1
J(V)dy = —P,N(~)d
€s(v)dv gy (v)dy

y—1/2

But : vy =~ =y = (£)/2 = 2 =¥ J77)
With vy = 271'8156(:'
dry 1, 5. 5 _pl oyl
s PSN — BAOK _
&) = GhN O g, x (P BIKy 2(,&/2)
v V-2,V —1/2 —1/2
GS(V)O(K(Z)BZ(Z) 2(5) 2y 12y, o
eu(v) o K v By~ o K B2 7 )
VL
Since vy, = =<2 = 1, x B.

2Tmec

PJrl) _(P*l)

es(v) x K BT B2~ (7Y o Kk B3 3

The synchrotron flur measured from a homogeneous
and thin source with volume V oc R3 at a distance

dy, is determined as follows (a = £5 and 6, )
Ls(v) Admes(v)V V
F ~ ~ ~ 4me, —
2 4rd? 4rd? mes (1) X 4rd?
! R? R?
Fy(v) x K B'Z v Bite
() ox &0

F,(v) x k 0> RB'" oy«
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e Synchrotron absorption: photons

All emission processes have their own absorp-
tion counterpart. For synchrotron radiation the
emission is done by relativistic electrons and they
don’t have a pure Maxwellian distribution. We could
then have expected the same behaviour as for an
optically thick black body : I,, o< 1T

But for relativistic electrons inside the plasma we
expect an equilibrium between the energy of the
thermal particles (~ kT) :

2 L)1/2

~ mECQ(yL

KT ~ ymec

We showed earlier that predominantly photons for
which hv < kT are absorbed. In this limit:

2 2 2
B v a0V: vV .1/9 o V
I, = 2kT§ = 2[ymec ]07 = 2[(;) Pmec ]67
2mec? ~1/2 5/2 —1/2.5/2
L,:TVL v v, x B |I, xB v

C

e From thick to thin : Turnover Frequency

To describe the transition from self-absorbed
(1, > 1) to optically thin ( 7, < 1 ), we make use of
the radiative transfer equation:

e()R

Ty

1= amemy = Waemy

l—e™™
o py (1—e™™)

Ty

R

E(V):jl,, Ky =0, T, =Rk, = kK,

oFor 7, > 1 (self absorbed regime), we sim-
ply have :

Ty Ry

The absorption coefficient, (in em™1), is for 7, > 1:

® - Chap 5 : Compton scattering - ©
e The Klein-Nishina cross section

The Thomson cross section is the classical limit of
the more general Klein Nishina cross section.

3 1+2x 2x(1+x)

UKN:ZJT{ 3 [ 1422

—In(1 + 22)]}

3

In(1l+ 2z
+ZO'T{ ( )

2z B

14 3z
(1+2x)

5 )

Approximations for the non-relativistic and the
ultra-relativistic limit are:

o Forz<1:ogn~ aT(1—2x+¥+...)

o Forz>1:o0xny ~ 2% [In(2z) + 3]
With o7 = %% r3 the Thomson cross section.

(ro = LQ =2.82x 10713 em is the classic electron
dius.)
radius.

Compton scattering is more effective in Thomson

Figure 8

P+1y _(P—1
Ky — 651/) - K B; 21/;V5/(2 7 ) K B(Pgl) V_(P2+4)
v Bty 2

limit since the cross-section has a maximum value,
i.e op. Scattering between electrons and photons
with © > 1 is less effective since oy — 0 in that

The absorption coefficient is depending strongly on
frequency. One can see that, as expected, at large
frequency the absorption is negligible.

The transition between optically thick (7, > 1)
and optically thin (7, < 1) occurs if 7, = 1. This
will define the so-called turnover frequency, i.e:

_(P+4
Tw=Rey=1 RKB™ )y 2 =1
Pi1
yt_(#) x BJ;;{) v o [R K B2/ (P+4)

limit.
e Thomson & K — N limits

We transform to a reference frame where the
electron is in rest (frame co-moving with e~) and

evaluate the incoming photon energy in that frame.
If:

/ hv' ..
T = 5 < 1 = Thomson limit
MeC
hy'
= 2>1 = K — N limit
MeC
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The energy of the incoming photon in the rest frame
of the electron will be Doppler shifted. If cos# — f:

=) v v B v

7 I'(1—Bcosd) T(1-p2)
Therefore in the frame co-moving with electron the
incoming photons (within #") will all be Doppler
boosted. Therefore for Inverse-Compton scattering

we have (using the fact that v/ = qv) :

=Tv=~yv

Thomson limit : v < Me€
vh
. Mec?
K — N limit : v >
vh

e Scattering Energy : Thomson Regime

In K’ the e~ sees :

Figure 9

I Vem — Vem — Vem
T I'(1—Bcos®’) = I'(1+Bcos(mr—0")) — TI'(1+Bcos¥’)
/ Ve _ (1—BcosV)vem,
T T[T T TR

’ V' =T — Bcos ¥)vem
A very convenient way to treat Inverse-Compton
scattering is to evaluate the process in the co-moving
reference frame. When we take : 2’ n?:c; < 1,
we are in the Thomason limit and then we know

the scattering process is elastic and = |z} =2’

regardless of angle.
Note that : 1:’1 = scattered photon energy in K'.

x' = incoming photon energy in K'.
The photon will be scattered at on angle ¥} with
respect to the electron velocity. One can then use
the Doppler equation to transform this scattered
energy (z}) and angle ( ¥}) to the lab frame (K).
This is done in the following way:

hvy hv! y=20dzh; ¢ !
xr1 = = —) =021 ; -
1= . 15 - ﬁcos )
1= 021 = Fises 1 = T A
cos W1
21 =T(1 + Beos W)z}

We can also express all quantities in that form:

=I'(1—-BcosV)x

ro_
Ty =2

=01) = v @

This gives: z; T(1—Bcos Uy)

x, = I'(1—Bcos¥)x = (

I'(1 — Bcos¥y) .

1 1—Bcos¥
— )
1— Bcos¥y

e Maximum Energy Transfer

The maximum energy transfer from the e~ to
the scattered photon is if the collision is head-on
and the photon is scattered in opposite direction is
from where it came.

Incoming photon angle relative toe™ : ¥ =7
Scattered photon angle relative to e™ : W1 =0
(#1)mar = (228270 — (14B)p — T2(1 4 B2

For =1

(xl)maw = 47 z

e Minimum Energy Transfer

The minimum energy transfer from e~ to pho-
ton is during a head-tail collision. Here the photon
approaches the e~ from behind and scattered in
opposite directions:

Incoming photon angle relative to e~
Incoming photon angle relative to e~

V=0
2\I’1

=T

(xl)mar = (i__g%:g)x (14—2) W r
1

For 6 — 1 T1)mazx = 7 5 L

( 1) 4,72

P . ore.
; [ fhowe S ‘[34 Yoaller
in Ty € >
f-(lqumﬂw‘ Tarre sotte

Figure 10: Mazimum and Minimum Energy Transfer

e Isotropic photon distribution

We showed earlier that a co-moving observer
in K’ see on isotropic energy density of the back-
ground photons U’ = %FZUiso 8 — 1

If the observer in K’ is co-moving with an e~ moving
with high velocity (68— 1) thus :

U= N'<a'>.  Uiso = N<z>. N'<a’> _ Ap2N<z>
v/ 180 Vv 9 3 , \%
We know: V' — Al = ATl = T Al - rv, ¥ =r

In the co-moving frame the e~ scatters the photon
elastically in the Thomson limit:

<zi>
<z>

<z > _ gr3
<z > 3
But the relation between the scattered energy in K’

and K is: <2} >=T(1—-8<cos¥ >) < x1 >

<zl >=<a) >= = 4% x T}
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Since < cos¥ >=0; <zf>=I <z > P.(y) = ddt —or Cnyp, = (1+%2)CJT72Uph—aTcnph

<zi> <T1> _ 473 <z1> _ 4712 1+ U,
<z> =T <z:1> - BF = <:zl> - SF P.(v) = (458" o Upn )1675620 2E = g’YQBQCUT Uph
_ 4 4 5
<x1 >= §F <x> B — 1 |P.(y)= [gfy eph] X [cornpn] =< €1 >< rate >

We can simply calculate the rate of scatterings per P.(y) = % o1 2B Uph ; Poyn(7) = % 07¢V2 BUnag
electron considering all quantities in the lab frame. The ~-ray production rate :
Let n(e) be the density of photons of energy e =
hv, v the electron velocity and W the angle between

the electron velocity and the incoming photon. For

dc% =[co? / en(e)de] (1 — Beos ¥)* =

monodirectional photon distributions, we have: dew(gis V) _ const (1— B cos \11)2; 11 = cos W (in lab)
dN v
g e de = 1— —cosV¥ d
yr orUrern(€)de /JTC( - cos W)n(e)de L P = const/(l B
dN
— = [ orc(l — BeosU)n(e)de; vpep = ¢ —vcos W P Qf (1—Bp) Qdﬂ
dt Tup ; 6 1
The power contained in the scattered radiation is : Prioun 2 fo (1 — B p)2du
de AN The scattered rate with the up-stream photons
v _ . . . : .
- Yar is 7—times higher than with the photons coming from
the back.
€1 : energy of scattered photon, and dN : the scattered 5
rate. Let T = meslcz, T = m:c2 Py, 2f71(1 — Bu)dp _T B—1
_ e _ ,(1-Bcos¥\_ e (1—Bcos¥ = =3
T = m:c2 - x(l—BcZOss\Ill) - mECQ(l—ﬂcC(fss\Ill) P’ySide 2f_1(1 _B,U)zd:u 4
= (L fes? Cooling ti dc t
€ =€(—————
1 1~ Beos Ty e Cooling time an ompactness
de dN The cooling time due to the inverse Compton
d—; =a = ercor(l — BeosP)n(e)de process is :
d 1-— )2 E oC? 3mec?
ev:CUT/EWCOS)n(E)dE tro = _ el M gy
dt 1— Bcos¥y P.(v) sorcy?B2Up,  4orcyUpn
dﬂ =cop~y? /(1 — Bcos \I/)ze n(e)de This equation offers the opportunity to introduce
dt an important quantity, namely the compactness
de, 9 9 of an astrophysical source, that is essentially the
< E s=cory / < (1= Bcos¥)” > en(e)de luminosity L over the size R ratio. Consider in fact

. _ _ L
< cos W >=0: < cos2 U S— % how Uy, and L are related: Upn = Y e
de., ) 32 Although this relation is almost universally used,
< dat >=cory / (1+ ?)en( €)de there are subtleties. It is surely valid if we measured
Uy outside the source, at a distance R from its center.

2 In this case 47 R?c is simply the volume of the shell

de,,
< = >= (1+%)CUT72Uph; Uph :/en(e)de

dt crossed by the source radiation in one second. But if
de., 9 we are inside an homogeneous, spherical transparent
< E >= (14 g) cory? EphTph source, a better way to calculate Uy, is to think to

the average time needed to the typical photon to exit

dey 2 the source. This is t.s. = 3R/(4c). It is less than

< E >=11+ 3)7 epnl X leor ] R/c because the typical photo/rg is) not born at the

This is the power contained in scattered radiation. center (there is more volume close to the surface). If
This is added on top of the already existing back- V = (47/3)R? is the volume, we can write:

ground photon field. Therefore to probe ”only”

the Inverse-Compton power we subtract the 3mmec? R? tic _ 3mmec’R 3R 3m 1

t et — = e
background field o cnypp,. fe oryL R/c v or or L 1

2
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For [>1, g—fe < 1 = we have that even low energy

electrons cool by the Inverse Compton process in less
than a light crossing time R/c.

o~

Where the compactness parameter [ is :

e Single particle spectrum

We will give the main ideas behind the fact
that the energy (frequency) of the scattered photons
are ~ 72 times that of the background photons.
There are a few steps to consider:

o Assume that the relativistic electron travels in a
region where there is a radiation energy density Ur
made by photons which we will take, for simplicity,
monochromatic, therefore all having a dimensionless
frequency x = hv/mc?.

o In the frame where the electron is at rest, half of
the photons appear to come from the front, within
an angle §' = 1/~.

o The typical frequency of these photons is 2’ ~ vy
(it is twice that for photons coming exactly head on).
o If we are in Thomson regime (elastic scatter in e~
rest frame) then: x’ = n’;”c/g <1=ua.

o All the photons in K’ that were scattered within
V" <= 7, now have angles viewed from the lab
system U} <= %
o The lab energy of this scattered photon is then
obtained from the Doppler equation: z1 = dz}

— ) — Ty — /
T y[1—BcosW¥i] T ~A[1-B2] LS
<z >=y<)>=q[<2 > =~

A detailed analysis gives the IC' emissivity:

x

orn Iy (14 B0

erc(z1) = 172822, Fre(x1)
1.2 1 1 T
Froc = —|—— ; < —x<1
1= ey T TH BB T B < o

vod ol o ol o vnd ind sy

1
104

o | a
10 100 1000
x, Ky

,_.
=]
Ll

Figure 11: z1/xg < 1: scattered photons have less energy
than incoming ones. x1/x > 1: Scattered pho-
tons have more energy than incoming ones.

© - Chap 6 : Synchrotron SelfCompton - ©

e SSC emissivity

The importance of this process will obviously be
high for system with 7) high electron density (relativis-
tic), i1) photon density and 4ii) high magnetic field
energy density. If the relativistic electron distribution
is a power-law:

N(y)=Ky™*

We expect the SSC flux to scale as K? (e”s work
twice), i.e quadratic in the electron density.

If the photo field is produced by synchrotron emitting
we should subtract the appropriate expression for the
synchrotron radiation energy density:

Uy = L,,(ergs‘;le_l) Xt = %%
Ua(0) = am o 22 = am 20
erc(vic) = ;T(gz)ag;cvca /an.wz %uada
erc(vic) = (4/32)(11%651171,0%_0‘ /Vn.mz dja

As you can see, €5y 0V © = €syn (V) is nothing else
than the specific synchrotron emissivity calculated
at the (Campton) frequency v.. Furthermore, the
integral gives a logarithmic term, that we will call
In A. We finally have:
(4/3)~!
2
In this form the ratio between the synchrotron and
the SSC flux is clear, it is %TG InA~7.InA. Tt
is also clear that since 7. = o RK and €y, (v.) =
KBt then, as we have guessed, the SSC emissivity
essc(ve) o< K2 (i.e. electrons work twice). Fig. 12
summarizes the main results. .

essc(ve) = Te€syn(Ve) In A

Log oF, [erg em? 57]
|
5 v
T T ‘ TT1 1T | T T ‘ T T ‘

10 15
Log v [Hz]

Figure 12: Typical example of SSC spectrum, shown
in the vF, vs v representation. The spectral
indices instead correspond to the F,, o< v=¢
convention.
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