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Description of the Radiation Field

 

Based on:

Chapter 1 of Rybicki & Lightman, 

 

Radiative Processes in
Astrophysics, 

 

and

Chapter 12 of Shu, 

 

Radiation.
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1 Introduction

 

We see astrophysical objects in different wavebands from
radio through to optical to X-ray and gamma-ray because
of the radiation they emit, which propagates, both through
the source and the intervening medium. Therefore, it is  im-
portant to understand the properties of the radiation field
and the manner in which it is described.

One of the most important diagnostics of radiation from an
astrophysical source is that afforded by polarisation. For
example, the direction of the magnetic field in a synchro-
tron emitting source is perpendicular to the direction of the
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-vector of the predominantly linear polarised radiation.
Polarisation is also affected by the medium through which
transverse waves travel (Faraday rotation). Hence it is im-
portant to have a sound theoretical basis from which to dis-
cuss polarisation. 

E
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2 Specific intensity and flux

2.1 Definition of specific intensity

n
dΩ

dA

n

dA

θ

dΩ

dA′ dA θcos=
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Specific intensity

 

 is defined by:

 

(1)

Electromagnetic energy

passing through surface  normal

to surface within elementary  

solid angle

IνdνdAdtdΩ=

Specific 
intensity

Solid angle
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In terms of circular frequency :

 

(2)

 

We often require the energy flowing through  at an an-
gle  to the normal. We can derive the relevant expression
in the following way. Consider the elementary surface 
which is

•normal to the ray, and
• the projection of  (see the above figure)

ω

Electromagnetic energy

passing through surface  normal

to surface

IωdωdAdtdΩ=

dA
θ

dA′

dA
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Then

 

(3)

 

and 

 

(4)

 

We put

 

 (5)

dA′ dA θcos=

Electromagnetic energy

passing through surface

at an angle θ to surface

Iν θ φ,( ) θdcos νdAdtdΩ=

Iν Iν θ φ,( )=
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to emphasize the fact that the specific intensity can vary
with direction with respect to the normal .

Units of :

We have 

(6)

so that the units of  are:

(7)

n

Iν

Joules Iν frequency area time solid angle××××=

Iν

Watts m 2– Hz 1–  Str 1–
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or

(8)

2.2 Flux density
The flux density, , is the power per unit area of the radi-

ation field. It is therefore defined by

(9)

ergs s 1– cm 2– Hz 1– Sr 1–

Fν

dFν Iν θcos dΩ=
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The flow of energy per unit area per unit time per unit fre-
quency through a surface with normal  is given by:

(10)

The density in this case refers to the “per unit frequency”
part. More about this below.

n

Fν Wm 2– Hz 1–( ) Iν θcos Ωd
Ω
∫=
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2.3 Relationship of flux density to power at tele-
scope

Iν

Ω

Source of 
cosmic radi-
ation

Bundle of rays 
from sourcen

n
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The solid angle of the bundle of rays is usually defined by
the resolving power of the telescope. The power per unit

area received by the telescope is . Frequently

in radio astronomy, you will hear people refer to the flux
density of a source.

Iν θcos Ωd
Ω
∫
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2.4 Surface brightness
For a small region of solid
angle normal to the direction
in which a telescope is point-
ing, we have:

(11)

∆Ω

dA

n

∆Fν Iν∆Ω Iν⇒
∆Fν
∆Ω
----------= =
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Hence, the specific intensity is the flux received per unit of
telescope area per unit of solid angle. For this reason, some
astronomers, and particularly radio astronomers, refer to
the specific intensity as surface brightness.

This equation is also frequently used to estimate surface
brightness of a source from an image when the image is
represented in terms of flux density per beam. More about
this later.
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Units of flux density

Often, especially in radio astronomy, we use the unit of a
Jansky (after one of the discoveries of cosmic radio radia-
tion)

(12)

2.5 Momentum flux density
Since the energy passing through a surface in a given direc-
tion is

(13)

1 Jansky (Jy) 10 26–  Wm 2– Hz 1–=

dEν Iν θdνdtdΩdAcos=
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then the magnitude of momentum passing through the sur-
face in the same direction is

(14)

However, momentum is a vector quantity. The component
of momentum in the direction of the normal is

(15)

d pν

dEν
c

----------
Iν
c
----- θdνdtdΩdAcos= =

d pν θcos
Iν
c
----- θcos2 dνdtdΩdA=
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The momentum flux density, , is the momentum per

unit time per unit frequency per unit area passing in all di-
rections through the surface, so that

(16)

Πν

Πν
1
c
--- Iν θcos2 Ωd
Ω
∫=
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2.6 Integration over frequency
The total flux of energy per unit area between two frequen-
cies  and  is just the integral of the flux density be-

tween these limits.

(17)

ν1 ν2

Total flux F Wm 2–( ) Fν νd
ν1

ν2
∫==
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Pressure is force per unit area, or equivalently, momentum
flux density per unit area, so that the total radiation pres-
sure on the surface can be found by integrating the momen-
tum flux density over frequency.

(18)

 The total intensity is just the integral of the specific inten-
sity over frequency.

(19)

Pressure p Nm 2–( ) Πν νd
ν1

ν2
∫==

Intensity I Wm 2– Str 1–( ) Iν νd
ν1

ν2
∫= =
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In particular the total flux is the frequency-integrated flux
density. Sometimes people loosely refer to flux density as
flux and I have seen pedantic thesis examiners insist on
such carelessness being expunged from a thesis before it
can be accepted.

2.7 Radiation energy density
Define

(20)uν Ω( )dVdΩdν

Energy in volume dV

solid angledΩ

and frequency interval dv

=
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Consider a cylinder of length , cross-sectional area cdt dA

dΩ

dA

cdt
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The energy of radiation in cylinder within a cone of solid
angle  is:

(21)

dΩ

dE uν Ω( )dΩdVdν uν Ω( )dΩdAcdtdν= =

cuν Ω( )dΩdAdtdν=
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All of the radiation within the cylinder passes through 
in the time . Hence,

(22)

dA
dt

cuν Ω( )dΩdAdtdν IνdΩdAdtdν=

cuν Ω( )⇒ Iν=

uν Ω( )
Iν
c
-----=
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Therefore, the total energy density at a point within the vol-
ume is given by:

(23)

uν
1
c
--- Iν Ωd

4π
∫

4π
c

------Jν= =

where Jν
1

4π
------ Iν Ωd

4π
∫ Mean intensity= =
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2.8 Constancy of specific intensity in free space

(24)

dΩ1 dΩ2

d A1
d A2

Ray

R

dΩ1

d A2

R2
----------= dΩ2

d A1

R2
----------=
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Consider the energy flux through an elementary surface
 within solid angle . Consider all of the photons

which pass through  in this direction which then pass

through . We take the solid angle of these photons to

be . By conservation of energy the energy passing

through both surfaces within the corresponding solid an-
gles is identical. Hence,

(25)

d A1 dΩ1

d A1

d A2

dΩ2

dE Iν
1d A1dtdΩ1dν1 Iν

2d A2dtdΩ2dν2= =
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The solid angles are given by:

(26)

This implies that:

(27)

Since , then

(28)

dΩ1

d A2

R2
----------= dΩ2

d A1

R2
----------=

dΩ1d A1 dΩ2d A2

d A1d A2

R2
---------------------= =

dν1 dν2=

Iν
1 Iν

2 constant along ray= =
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2.9 Spontaneous emission
Various emission processes along a ray contribute to the
specific intensity. The emissivity, in principle, is angle-de-
pendent, e.g. synchrotron emission depends upon the angle
between the emission direction and the magnetic field. The
emissivity is defined by:

(29)

Energy radiated from volume dV

in time dt  into freqency intervaldν

into solid angle dΩ

dEν jνdVdtdνdΩ= =

Emissivity
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If the emissivity is isotropic, then

(30)

The emission may be considered to be isotropic for two
reasons:

1. The emission mechanism is independent of direction.

2.The emission may be considered to be the random 
superposition of a number of anisotropic emitters, e.g. 
synchrotron emission from a tangled magnetic field.

jν
1

4π
------Pν=

Radiated power 
per unit volume
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Effect on specific intensity

Energy added to beam from emission from within
 is given by:

(31)

ds
dA

dΩ

dV dAds=

dE jνdVdΩdtdν jνdAdsdΩdtdν= =
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This is radiated into the solid angle  emerging from 
so that the change in specific intensity is given by:

(32)

dΩ dA

dIνdAdΩdtdν jνdAdsdΩdtdν=

dIν
ds

--------⇒ jν=
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2.10 Absorption
Often absorption is presented in the following form:

(33)

and we shall see examples of this later on.

dIν
ds

-------- ανIν–=

Coefficient of 
absorption
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3 The radiative transfer equation

3.1 The fundamental equation
Putting emission and absorption into the one equation, we
have

(34)

Note that the emissivity can include scattering of photons
from other directions into the direction being considered.
This is what makes the solution of radiative transfer equa-
tions a challenging problem in general.

dIν
ds

-------- jν ανIν–=
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3.2 Solution for emission only (optically thin 
emission)

Emitting (and absorb-
ing) region

Iν 0( )

Free 
space

Iν
Ray

s 0= s s1=

Emergent intensity

High Energy Astrophysics: Radiation Field                                       35/111

 (35)

In many cases:

•   

•We approximate the medium by one with constant prop-
erties. This gives,

(36)

dIν
ds

-------- jν= Iν s( ) Iν 0( ) jν s′( ) s′d
0
s
∫+=⇒

Iν 0( ) jν s′( ) s′d
0

s1
∫+=

Iν 0( ) 0=

Iν jνs1=
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Once outside the emitting region, the specific intensity is
constant, unless another emitting or absorbing region is en-
countered.

3.3 Absorption only

(37)

dIν
ds

-------- ανIν–=

Iν s( )⇒ Iν s0( ) αν s′( ) s′d
0
s
∫–exp=
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This introduces the optical depth between  and 

(38)

In terms of , the specific intensity along a ray is given by:

(39)

3.4 Both emission and absorption
The differential form of the optical depth is

(40)

0 s

τν s( ) αν s′( ) s′d
0
s
∫=

τν

Iν s( ) Iν 0( )e
τν s( )–

=

dτν ανds=
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We can write the radiative transfer equation in the form:

(41)

where

(42)

dIν
ανds
------------ Sν Iν–=

i.e.
dIν
dτ
-------- Sν Iν–=

Sν

jν
αν
------ Source function= =
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Write the transfer equation as

(43)

The integrating factor is  so that

(44)

dIν
dτν
--------- Iν+ Sν=

e
τν

d
dτν
--------- e

τνIν Sνe
τν= e

τνIν⇒ Iν 0( ) e
τν′Sν τν′( ) τνd

0

τν
∫+=

Iν⇒ e
τν–

Iν 0( ) e
τν τν′–( )–

Sν τν′( ) τν′d
0

τν
∫+=
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The optical depth delineates the region which contributes
most significantly to the intensity of an emerging ray. To
see this, consider

(45)

τν τν′– αν s′′( ) s′′d
0
s
∫ αν s′′( ) s′′d

0
s′
∫–=

αν s′′( ) s′′d
s′
s
∫=

τν s′ s,( )=
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It is obvious that the dominant contribution to the integral
comes from regions wherein the optical depth, .

Emitting (and absorb-
ing) region

Iν 0( )
Emergent inten-

Free 

Iν
Ray

s 0=

s′

s

This part gives τ s′ s,( )

τ s′ s,( ) 1<
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3.5 Relationship between flux and luminosity

The flux density received at the telescope is given by:

(46)

(We put  because for a distant source, all rays differ
very little in their direction.)

Telescope

∆Ω
Iν

Fν Iν θcos Ωd
Ωsource

∫= Iν Ωd
∆Ω
∫≈

θ 0≈
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Let  be the cross-sectional area of the bundle of light
rays at the source. For a distant source (distance ), the el-
ement of solid angle is given by

(47)

dA

ds
dV d A ds×=

dA
R

dΩ
dA

R2
-------=
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where  is approximately the same for all parts of the
source and  is the cross-sectional area of a bundle of
light rays as shown. Hence,

(48)

For optically thin radiation

(49)

R
dA

Fν
1

R2
------ Iν Ad

∆Ω
∫≈≈≈≈

Iν jν sd
ray
∫=

Fν⇒
1

R2
------ jν Ad s

1

R2
------ jν Vd

Source
∫=d

Source
∫=
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where  is the volume (element ).

The equation

(50)

shows the origin of the inverse square law for flux density.

V dV

Fν
1

R2
------ jν Vd

Source
∫

1

R2
------ Volume integrated emissivity×= =
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3.6 Isotropic emissivity
If the emissivity is isotropic

(51)

where 

(52)

jν
1

4π
------Pν

Total power emitted per unit volume
4π solid angle

----------------------------------------------------------------------------------------= =

Fν⇒
1

4πR2
------------- Pν Vd

Source
∫

Lν

4πR2
-------------= =

Lν Monochromatic luminosity=

Luminosity per unit frequency=
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3.7 Calculation of luminosity
Knowing the flux density, one can calculate the monochro-
matic luminosity, from

(53)

(54)

3.8 Example: The luminosity of a radio source
A typical extragalactic radio source would have a flux den-
sity at 1.4 GHz of a Jansky at a redshift of 0.1.

Lν 4πR2Fν=

Total luminosity Ltot 4πR2 Fν νd
0
∞
∫= =
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The distance (for small redshifts) is

(55)

so that the monochromatic luminosity is 

(56)

D
cz
H0
------- 300 000 0.1×,

70
---------------------------------- Mpc= =

430Mpc≈

Lν 4π 430 3.1
22

×10×( )
2

× 10 26–×  WHz 1–=

2.2
25

×10≈ WHz 1–
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Typical spectrum of 
an extragalactic ra-
dio source

Fν ν α–∝

νu 10 100GHz–=

Fνlog

νlog
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Typically such a source has a spectral index of 
between a generally undefined lower frequency, , and an

upper cutoff frequency , so that the to-

tal luminosity,

α 0.7=
νl

νu 10 100GHz–=
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(57)

Ltot Lν0

ν
ν0
------⎝ ⎠
⎛ ⎞ α–

νd
νl

νu
∫≈ Lν0

ν0
ν
ν0
------⎝ ⎠
⎛ ⎞ α– ν

ν0
------⎝ ⎠
⎛ ⎞d

νl ν0⁄

νu ν0⁄
∫=

Lν0
ν0

1 α–
--------------- ν

ν0
------⎝ ⎠
⎛ ⎞ 1 α–

νl ν0⁄

νu ν0⁄
=

Lν0
ν0

1 α–
---------------

νu
ν0
------
⎝ ⎠
⎜ ⎟
⎛ ⎞ 1 α–

≈≈≈≈
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Thus, for the parameters of our source,

 (58)
Ltot

2.2
25

×10 1.4
9

×10×
0.3

------------------------------------------------ 10
1.4
-------⎝ ⎠
⎛ ⎞ 0.3

× 2.7
35

×10 W≈ ≈

7
8

×10 Lsun≈≈≈≈
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4 Polarisation

4.1 Monochromatic plane wave
Plane wave solutions of Maxwell’s equations:

(59)

E E0 i ωt k x⋅⋅⋅⋅–( )exp= B B0 i ωt k x⋅⋅⋅⋅–( )exp=

ω circular frequency ck= = k wave number kn= =

E0 amplitude of Electric field=

B0 Amplitude of magnetic field 
k E0×

ω
----------------= cn E0×= =

B0 n⋅⋅⋅⋅ E0 n⋅⋅⋅⋅ 0= =
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The electric vector deter-
mines all of the parameters
of the wave. Since there
are two independent com-
ponents of  there are

two modes of polarisation. 

In general, we put

(60)

where  and  are the unit vectors in the  and  direc-

tions.

E0

B0

n

x

y

Direction
of propa-

Plane of electric &
magnetic field

E0

E0 E0 1, e1 E0 2, e2+=

e1 e2 x y
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Electromagnetic waves, far from the point of origin can be
considered to be locally plane.

Electric vector at a point in space

Consider a wave at the location . In component

form the electric field of the wave may be written

(61)

x x0=

Eα Aαe
iδαe

i ωt k x0⋅⋅⋅⋅–( )
Aαeiωte

i δα k x0⋅–( )
= =

Aαe
i ωt φα–( )

=
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Hence the real part of this wave may be expressed as

(62)

The parameters  are the phases of the two modes. They

are not both arbitrary since the origin of time is arbitrary.
However, the difference  is arbitrary.

Eα Aα ωt φα–( )cos= α 1 2,=

φα

∆φ φ2 φ1–=
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4.2 The polarisation ellipse

Consider a general elliptically polarised monochromatic
wave. The electric vector is given by:

(63)

ψ
e1

e2 e1′e2′ Definition of axes for polarisa-
tion ellipse.  is the angle of ro-
tation from the arbitrary axes to 
the principal axes.

ψE

E A1 ωt φ1–( )cos e1 A2 ωt φ2–( )cos e2+=
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N.B. The phases of both component are not free parameters
since one phase can be adjusted by a change of the time or-
igin. However, the relative phase  is arbitrary.

Write the electric field in axes corresponding to the princi-
pal axes of the ellipse:

(64)

φ2 φ1–

E E1 ωtcos e1′ E2 ωtsin e2′+=
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The aim of the following is to determine the parameters 

and  in terms of  and . To do so, we

use the relations between primed and unprimed unit vec-
tors:

(65)

E1

E2 A1 A2 φ2 φ1–, , ψ

e1′

e2′
ψcos ψsin

ψsin– ψcos

e1

e2

=
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Then write the electric field in the principal axis system in
terms of the electric field in the arbitrary axes:
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(66)

E E1 ωt ψe1cos ψe2sin+[ ]cos=

E2 ωt ψe1sin– ψe2cos+[ ]sin+

E1 ψ ωtcoscos E2 ψ ωtsinsin–[ ]e
1

=

E1 ψ ωt E2 ψ ωtsincos+cossin[ ]e2+

A1 ωt φ1–( )cos e1 A2 ωt φ2–( )e2cos+=

A1 ωt φ1 A1 ωtsin φ1sin+coscos[ ]e1=

A2 ωt φ2coscos A2 ωt φ2sinsin+[ ]e2+
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Equate the coefficients of  and  within

those terms.

(67)

e1 e2, ωtsin ωtcos,

A1 φ1cos E1 ψcos=

A1 φ1sin E2 ψsin–=

A2 φ2cos E1 ψsin=

A2 φ2sin E2 ψcos=
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So far, so good, but this is not the best form in which to de-
scribe the relationship between these coefficients. The fol-
lowing quadratic relationships are easy to verify:

(68)
A1

2 E1
2 ψcos2 E2

2 ψsin2+=

A2
2 E1

2 ψsin2 E2
2 ψcos2+=

High Energy Astrophysics: Radiation Field                                       64/111

together with:

(69)

A1A2 φ1 φ2coscos E1
2 ψ ψcossin=

A1A2 φ1 φ2sinsin E2
2 ψ ψcossin–=

A1A2 φ1 φ2cossin E1E2 ψsin2–=

A1A2 φ1 φ2sincos E1E2 ψcos2=
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We now form the following combinations of the above: 

(70)

A1
2 A2

2+ E1
2 E2

2+=

A1
2 A2

2– E1
2 E2

2–( ) ψcos2 ψsin2–( )=

E1
2 E2

2–( ) 2ψcos=
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(71)

A1A2 φ2 φ1–( )cos E1
2 E2

2–( ) ψ ψcossin=

E1
2 E2

2–( )

2
------------------------ 2ψsin=

A1A2 φ2 φ1–( )sin E1E2=
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Now define the additional angle , the parameter  and the
phase difference  by:

(72)

χ t
∆φ

E1 E0 χcos= E2 E0 χsin=

t
E1
E2
------ χcot= =

Ratio of semi-major to semi-minor axis=

φ2 φ1– ∆φ=
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The above quadratic relations become:

(73)

So the amplitudes  and the phase difference  de-

fine the parameters  and . 

E0
2 A1

2 A2
2+=

E0
2 2χ 2ψcoscos A1

2 A2
2–=

E0
2 2χ 2ψsincos 2A1A2 ∆φcos=

E0
2 2χsin 2A1A2 ∆φsin=

A1 A2, ∆φ

E0 χ, ψ
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ψ e1

e2 e1′e2′

E2 E0 χsin=

E1 E0 χcos=

Relationship between parameters

Polarisa-
tion ellipseE
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4.3 Interdependence of parameters
Note that the 4 above equations are not independent. Take
the last 3 equations; the sum of the squares of the left-hand

sides is . The sum of the squares of the right hand sides

is 

(74)

E0
4

A1
2 A2

2–( )2 4A1
2A2

2 ∆φcos2 ∆φsin2+( )+

A1
2 A2

2–( )2 4A1
2A2

2+=

A1
2 A2

2+( )2=
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So the sum of the squares of these 3 equations gives:

(75)

which of course is the first equation.

E0
4 A1

2 A2
2+( )2=

E0
2⇒ A1

2 A2
2+=
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5 The Stokes parameters – definitions

(76)

I
cε0
2

--------E0
2

cε0
2

-------- A1
2 A2

2+( )= =

Q
cε0
2

--------E0
2 2χ 2ψcoscos

cε0
2

-------- A1
2 A2

2–( )= =

U
cε0
2

--------E0
2 2χ 2ψsincos

cε0
2

-------- 2A1A2 ∆φcos( )= =

V
cε0
2

--------E0
2 2χsin

cε0
2

-------- 2A1A2 ∆φsin( )= =



High Energy Astrophysics: Radiation Field                                       73/111

(The reason for the factor of  is the relation to the

Poynting flux in the following.)

These equations can also be expressed in the form:

(77)

Squaring each equation and adding:

(78)

cε0( ) 2⁄

Q I 2χ 2ψcoscos=

U I 2χ 2ψsincos=

V I 2χsin=

I2 Q2 U2 V 2+ +=
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Note the close correspondence between these equations for
 and defining these angles and polar coordi-

nates. This correspondence is exploited when we discuss
the Poincare sphere.

I 2χ 2ψ,,( )
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5.1 Fractional polarisation
We define the fractional polarisation of a wave by:

(79)

q
Q
I
---- 2χ 2ψcoscos= =

u
U
I
---- 2χ 2ψsincos= =

v
V
I
---- 2χsin= =
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The direction of the principal axis is therefore given by:

(80)2ψtan
u
q
--- U

Q
----= =
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5.2 The Poincare sphere
Polarised light can be represented in terms of the Poincare

q

v

2ψ

u2χ

P (81)

q 2χ 2ψcoscos=

u 2χ 2ψsincos=

v 2χsin=
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sphere. The Stokes parameters for fractional polarisation
can be represented in terms of the parameters  and 
as polar angles.

The Poincare sphere makes it easy to determine the rele-
vant ranges of  and . From the diagram it is obvious that

(82)

Physically, the reason for this is as follows: 

1.Rotation of an ellipse by  and  give the same 

2ψ 2χ

ψ χ

0 2ψ 2π<<

π
2
---– 2χ

π
2
---< <

0 ψ π< <

π
4
---– χ

π
4
---< <

⇒⇒⇒⇒

ψ ψ π+

High Energy Astrophysics: Radiation Field                                       79/111

ellipse. 

2. Recall the definition of 

(83)

When  varies between ,  varies between .

This is the appropriate range for the semi-minor axis.

χ

E1 E0 χcos= E2 E0 χsin=

t
E1
E2
------ χcot= = t 1–

E2
E1
------ χtan= =

χ π 4⁄± E2 E1±
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5.3 Linear and circular polarisation

5.3.1 Linear polarisation
If the phase difference between the two components in the
arbitrary reference system is , then 

(84)

The only value of  in the appropriate range is .

This implies that

(85)

∆φ 0=

V cε0A1A2 ∆φsin 0 2χsin⇒ 0= = =

2χ⇒⇒⇒⇒ 0 π,=

χ χ 0=

E1 E0 χcos E0= = E2 E0 χsin 0= =
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Hence the electric field is:

(86)

i.e. the electric vector oscillates in one direction – hence the
name linear polarisation.

5.3.2 Circular polarisation
A purely circularly polarised wave is defined by equal am-
plitudes of the two components, differing in phase by ,
i.e.

(87)

E E0 ωtcos e1′=

π 2⁄

A1 A2±= ∆φ π 2⁄±=
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Since,

(88)

then 

(89)

Q
cε0
2

-------- A1
2 A2

2–( )=

U
cε0
2

-------- 2A1A2 ∆φcos( )=

q Q 0= =

u U 0= =
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The only remaining Stokes parameter in this case is:

(90)

V
cε0
2

-------- 2A1A2 ∆φcos( )=

v⇒

cε0
2

-------- 2A1A2 ∆φsin( )

cε0
2

-------- A1
2 A2

2+( )

----------------------------------------------- 1±= =
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The equations defining  and  are:

(91)

The solution for this is

(92)

and

(93)

ψ φ

2χ 2ψcoscos 0=

2χ 2ψsincos 0=

2χsin 1±=

2χ
π
2
---±= χ⇒⇒⇒⇒

π
4
---±=

ψ arbitrary=
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Hence

(94)

and the two waves are:

(95)

The first solution represents a vector moving anti-clock-
wise in a circle as seen by an observer facing the wave –
This is known as left circularly polarised or positive helic-
ity.

E2 E1±=

E E0 ωtcos e1′ E0 ωte2′sin+=

E E0 ωte1′cos E0 ωte2′sin–=
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The second represents a vector moving clockwise in a cir-
cle as seen by an observer facing the wave – This is known
as right circularly polarised or negative helicity.

5.3.3 General elliptical polarisation
In the general case when

(96)

(97)

When  and consequently  then  rotates anti-
clockwise (since  and ) and the wave is
left-polarised.

q u v, , 0≠≠≠≠

E E0 χcos ωtcos e1′= E0 χ ωte2′sinsin+

v 0> χ 0> E
χ 0>cos χsin 0>
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When  and consequently ,  rotates clockwise
(since  and ) and the wave is right-polar-
ised.

5.3.4 Direction of the major axis
Take

(98)

v 0< χ 0< E
χ 0>cos χsin 0<

q 2χ 2ψcoscos=

u 2χ 2ψsincos=

v 2χsin=
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then it is clear that

(99)

In the case of linear polarisation this is the direction of the
line of oscillation of the electric field.

2ψtan
u
q
---= ψ⇒⇒⇒⇒

1
2
---tan

1– u
q
---=
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5.4 The Poincare sphere revisited

q

v

2ψ

u2χ

P

The point  on the Poin-
care sphere represents 
the fractional polarisa-
tion of a monochromatic 
wave.

The North and South 
poles of the sphere, 

 and  respec-
tively, represent left-
handed and right-handed 
circular polarisation. 

P

v 1= v 1–=

Right-polarised

Left-polarised

Pure linear polari-
sation

High Energy Astrophysics: Radiation Field                                       90/111

5.5 Relationship to the Poynting flux
The Poynting flux is

(100)

For a transverse wave with wave-vector  and normal

:

(101)

S
E B×

µ0
--------------=

k

n
k
k
---=

B
k E×
ω

------------- E B×
µ0

--------------⇒⇒⇒⇒
E2

µ0ω
----------n= =
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With ,

(102)

Averaged over a period, the Poynting flux is:

(103)

The Stokes parameter  is the Poynting flux of electromag-
netic energy. 

ω ck=

S
E2

µ0c
---------n cε0E2n cε0 E1

2 ωtcos2 E2
2 ωtsin2+[ ]n= = =

S〈 〉 cε0

E1
2

2
-------

E2
2

2
-------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ cε0E0

2

2
---------------= =

I
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6 Polarisation of a quasi-monochromatic wave

6.1 The electric field
As before, we write the electric field as

(104)

E A1 ωt φ1–( )cos e1 A2 ωt φ2–( )cos e2+=

Re A1 t( )e
i– φ1 t( )

e1 Re A2 t( )e
i– φ2 t( )

e2+=
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The previous section is concerned with the case in which
the waves are purely monochromatic so that  and  are

constant. In the following a complex notation based on the
above is used.

 We consider quasi-monochromatic waves for which

(105)

where the time scale of variation of the waves is much
longer than the wave period. This is relevant to the situa-
tion where the estimate of the Stokes parameters involves
averages over many periods. For example, to consider a ra-

Aα φα

E1 t( ) A1 t( )e
i– φ1 t( )

= E2 t( ) A2 t( )e
i– φ2 t( )

=

High Energy Astrophysics: Radiation Field                                       94/111

dio wave as a monochromatic wave, one would have to

sample at the rate of once every  or so. In reality,
measurements at a radio telescope require integration times
of about 5 minutes.

10 9–  s
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6.2 Stokes parameters for quasi-monochromatic 
waves
We define the Stokes parameters as time averages ( ):〈 〉
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(106)

I
cε0
2

-------- A1
2 A2

2+〈 〉
cε0
2

-------- E1E1
*〈 〉 E2E2

*〈 〉+[ ]= =

Q
cε0
2

-------- A1
2 A2

2–〈 〉
cε0
2

-------- E1E1
*〈 〉 E2E2

*〈 〉–[ ]= =

U cε0 A1A2 ∆φcos〈 〉
cε0
2

-------- E1
*E2〈 〉 E1E2

*〈 〉+[ ]= =

V cε0A1A2 ∆φsin
cε0
2i

-------- E1
*E2〈 〉 E1E2

*〈 〉–[ ]= =
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In this case , as we now show. Denote

, then

(107)

I2 Q2 U2 V 2+ +≥

C
cε0
2

--------=

I2 C2 E1E1
*〈 〉2 E2E2

*〈 〉2 2 E1E1
*〈 〉 E2E2

*〈 〉+ +[ ]=

Q2 C2 E1E1
*〈 〉2 E2E2

*〈 〉2 2 E1E1
*〈 〉 E2E2

*〈 〉–+[ ]=

U2 C2 E1E2
*〈 〉2 E2E1

*〈 〉2 2 E1E2
*〈 〉 E2E1

*〈 〉+ +[ ]=

V 2 C2 E1E2
*〈 〉2 E2E1

*〈 〉2 2 E1E2
*〈 〉 E2E1

*〈 〉+––[ ]=
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These imply that

(108)

Since we dealing with time averages, e.g.

(109)

I2 Q2 U2 V 2+ +( )– 4C2[ E1E1
*〈 〉 E2E2

*〈 〉=

E1E2
*〈 〉 E2E1

*〈 〉 ]–

E1E1
*〈 〉

1
T
--- E1 t( )E1

* t( )〈 〉 td
0
T
∫=
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where  is the time of integration, then, using the Cauchy-
Schwarz inequality, 

(110)

implying that

(111)

T

E1E1
*〈 〉 E2E2

*〈 〉 E1E2
*〈 〉 E2E1

*〈 〉≥

I2 Q2 U2 V 2+ +( )– 0≥
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7 Superposition of independent waves

Another important case to consider is where the radiation
received by a detector is composed of a number of inde-
pendent components - “independent” meaning that the am-
plitudes and phases of the components are uncorrelated.
We put 
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(112)

Eα Eα
i

i
∑= α 1 2,=

Eα
i Aα

i e
i– φα

i
=

Aα
i Amplitude of α part of ith component=

φα
i Phase of α part of ith component=
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The Stokes parameters consist of terms of the form

 which we can write as:

(113)

Now,

(114)

EαEβ
*〈 〉

EαEβ
*〈 〉 Eα

i( )Eβ
* j( )〈 〉

j
∑

i
∑=

Eα
i Eβ

* j Aα
i Aβ

j e
i– φα

i φβ
j–( )

Aα
i Aβ

j e
i– ∆φαβ

ij
= =

∆φαβ
ij Phase difference between the α and β

parts of components i and j
=
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The essence of independent waves is that the phase differ-
ences between them be randomly distributed over .
For this reason,

(115)

Hence,

(116)

0 2π,[ ]

Eα
i Eβ

* j〈 〉 0 when i j≠=

Eα
i Eβ

* j〈 〉 Eα
i Eβ

* i〈 〉
i
∑=
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and

(117)

i.e. the Stokes parameters are the sums of the Stokes pa-
rameters of the individual waves.

I I i

i
∑= Q Qi

i
∑=

U Ui

i
∑= V V i

i
∑=
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8 Partially polarised radiation

8.1 Separation into polarised and unpolarised 
components
Consider the relations for the Stokes parameters for an ar-
bitrary quasi-monochromatic wave:
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(118)

If, on average, the amplitudes of the two parts of the wave
are the same, then

(119)

I C E1E1
*〈 〉 E2E2

*〈 〉+[ ]=

Q C E1E1
*〈 〉 E2E2

*〈 〉–[ ]=

U C E1E2
*〈 〉 E2E1

*〈 〉+[ ]=

V
C
i
---- E1E2

*〈 〉 E2E1
*〈 〉–[ ]=

Q E1E1
*〈 〉 E2E2

*〈 〉– 0= =
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Consider

(120)

If the phase difference between the two components varies
in such a way, that it averages to zero, then . Simi-
larly for . Radiation with these properties is called unpo-
larised and is distinguished by:

(121)

U E1E2
*〈 〉 E2E1

*〈 〉+ 2A1A2 ∆φcos〈 〉= =

U 0=
V

I 0≠ Q U V 0= = =
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Similarly, if radiation is composed of a number of inde-

pendent components and the phase difference  is ran-

domly distributed, then we also have 

. (122)

∆φ12
ii

Q U V 0= = =
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We separate EM radiation into polarised and unpolarised
components as follows:

(123)

I

Q

U

V

I Q2 U2 V 2+ +( )1 2/–

0

0

0

Q2 U2 V 2+ +( )1 2/

Q

U

V

+=

Unpolar-
ised compo-

Polarised 
component
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The fractional polarisation is:

(124)

8.2 Polarisation from astrophysical sources 
In general, radiation from astrophysical sources is only
weakly polarised – at the level of 1 or 2%. However, radi-
ation from synchrotron sources can be very highly polar-
ised – up to 50-70% in some cases and this is often a good
indication of the presence of synchrotron emission. 

r
Ipol

I
--------- Q2 U2 V 2+ +( )1 2/

I
------------------------------------------------= =
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Nevertheless, even polarisation at the level of 1 or 2% can
be extremely important.


