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Abstract

Completeness for metric spaces is traditionally presented in terms of con-
vergence of Cauchy sequences, and for uniform spaces in terms of Cauchy
filters. Somewhat more abstractly, a uniform space is complete if and only
if it is closed in every uniform space in which it is embedded, and so isomor-
phic to any space in which it is densely embedded. This is the approach to
completeness used in the point-free setting, that is, for uniform and nearness
frames: a nearness frame is said to be complete if every strict surjection onto
it is an isomorphism.

Quasi-uniformities and quasi-nearnesses on biframes provide appropriate struc-
tures with which to investigate uniform and nearness ideas in the asymmetric
context. In [9] a notion of completeness (called “quasi-completeness”) was
presented for quasi-nearness biframes in terms of suitable strict surjections
being isomorphisms, and a quasi-completion was constructed for any quasi-
nearness biframe.

In this paper we show that quasi-completeness can indeed be viewed in terms
of the convergence of certain filters, namely, the regular Cauchy bifilters.
We use the notion of a T -valued bifilter, which generalizes the characteristic
function of a filter. An important tool is an appropriate composition for
such bifilters. We show that the right adjoint of the quasi-completion is the
universal regular Cauchy bifilter and use it to prove this characterization of
quasi-completeness.

We also construct the so-called Cauchy filter quotient for a biframe using a
quotient of the downset biframe that involves only the Cauchy, and not the
regularity, condition. Like the quasi-completion, this provides a universal
Cauchy bifilter; unlike the quasi-completion, this construction is functorial.

1



MSC 06D22 54A20 54D35 54E15 54E55

Keywords: regular Cauchy bifilter, universal bifilter, convergent bifilter,
quasi-complete, quasi-nearness biframe, downset biframe, congruence, nu-
cleus, frame

1 Introduction

Completeness for metric spaces is traditionally presented in terms of conver-
gence of Cauchy sequences, and for uniform spaces in terms of Cauchy filters.
Somewhat more abstractly, a uniform space is complete if and only if it is
closed in every uniform space in which it is embedded, and so isomorphic to
any space in which it is densely embedded. This is the approach to complete-
ness used in the point-free setting, that is, for uniform and nearness frames:
a nearness frame is said to be complete if every strict surjection onto it is an
isomorphism. (See [1], [2] and [6].)

An important aspect of our work in this paper is asymmetry. The fact
that an asymmetric distance function has two natural underlying topologies
leads to the study of bitopological spaces, and, in the point-free setting,
to biframes. Quasi-uniformities and quasi-nearnesses on biframes provide
appropriate structures with which to investigate uniform and nearness ideas
in the asymmetric context.

In [9] a notion of completeness (called “quasi-completeness”) was presented
for quasi-nearness biframes in terms of suitable strict surjections being iso-
morphisms, and a quasi-completion was constructed for any quasi-nearness
biframe.

A primary aim of this paper is to show that quasi-completeness can indeed
be viewed in terms of the convergence of certain filters, namely, the regular
Cauchy bifilters. Bifilters on biframes were first introduced in [13]; they were
presented as filters on the total part, generated by their first and second parts.
They can equally well be thought of as certain characteristic functions to the
2-chain; replacing 2 by an arbitrary biframe T leads to the notion of a T -
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valued bifilter and it is this more general concept of a bifilter that is needed
here. An important tool is an appropriate composition for bifilters, which in
the symmetric case is, of course, a trivial matter.

In [13] we showed that the right adjoint of the join map from the downset
biframe is the “universal” bifilter; loosely speaking, this means that any other
bifilter on the same domain factors via the universal bifilter. Here we show
that the right adjoint of the quasi-completion is the universal regular Cauchy
bifilter and use this to prove the characterization of quasi-completeness men-
tioned above.

It is also of interest to drop the regularity condition and consider Cauchy
bifilters in their own right. We construct the so-called Cauchy filter quo-
tient for a biframe using a quotient of the downset biframe that involves only
the Cauchy, and not the regularity, condition. Like the quasi-completion,
this provides a universal Cauchy bifilter; unlike the quasi-completion, this
construction is functorial. In order to obtain functoriality of the quasi-
completion for certain biframes, we require a notion of having enough regular
Cauchy bifilters. This is discussed in a subsequent paper.

2 Background

See [19], [16], [14], [23] and [18] as references for frame theory; see [3], [4],
[10], [11], [20], [21] and [22] for biframes and related ideas and see [7], [8], [9],
[12], [15] and [17] for information on structured biframes.

Frames and biframes

1. A frame L is a complete lattice in which the distributive law

x ∧
∨

{y : y ∈ Y } =
∨

{x ∧ y : y ∈ Y }

holds for all x ∈ L, Y ⊆ L. A frame map is a set function between
frames which preserves finite meets and arbitrary joins, and thus also
the top (denoted 1) and the bottom (denoted 0) of the frame.
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2. A biframe L is a triple L = (L0, L1, L2) in which L0 is a frame, L1

and L2 are subframes of L0, and L1 ∪ L2 generates L0. We call L0

the total part, L1 the first part and L2 the second part of the biframe
L. A biframe map h : M → L is a frame map from M0 to L0 such
that the image of Mi under h is contained in Li for i = 1, 2. We
call the restriction h|M0 the total part of the map h and h|M1 = h1
and h|M2 = h2 its first and second parts respectively. The resulting
category of biframes and biframe maps is denoted by BiFrm. (In what
follows, we will reserve the subscript i for reference to first and second
parts only.)

3. A biframe map h : M→L is dense if its total part is a dense frame
map, i.e. a = 0 whenever h(a) = 0, for any a ∈ M0. It is onto if its
first and second parts are onto. (h is then onto on the total part.)

4. For a biframe map h : M → L we define the right adjoint of h as the
right adjoint of its total part. There is no a priori reason that r should
map elements of Li to elements of Mi. If r[Li] ⊆Mi for i = 1, 2 we say
that r is part-preserving.

Paircovers and quasi-nearnesses

We now present the basic definitions required for paircovers and quasi-nearness
biframes. See [8] for an introduction to quasi-uniform biframes and [9] for
an introduction to quasi-nearness biframes.

Definition 2.1 Let L = (L0, L1, L2) be a biframe.

1. C ⊆ L1 × L2 is a paircover of L if
∨
{c ∧ c̃ : (c, c̃) ∈ C} = 1.

2. A paircover C of L is strong if, for any (c, c̃) ∈ C, whenever c ∧ c̃ = 0
then c∨ c̃ = 0, that is, (c, c̃) = (0, 0). For an arbitrary paircover C, the
paircover Cr = {(c, c̃) ∈ C : c ∧ c̃ 6= 0} is strong.

3. For any paircovers, C and D of L, we write C 6 D if for any (c, c̃) ∈ C

there is (d, d̃) ∈ D with c 6 d and c̃ 6 d̃ (for which we write (c, c̃) ≤
(d, d̃)). We then say C refines D. We also set C ∧D = {(c∧ d, c̃∧ d̃) :
(c, c̃) ∈ C, (d, d̃) ∈ D} which is also a paircover of L.
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4. For a ∈ L0 and C a paircover of L, we set
C1a =

∨
{c : (c, c̃) ∈ C and c̃ ∧ a 6= 0} and

C2a =
∨
{c̃ : (c, c̃) ∈ C and c ∧ a 6= 0}.

Definition 2.2 Let L = (L0, L1, L2) be a biframe.

1. A non-empty family, UL, of paircovers of L is a quasi-nearness on L if

(a) The family of strong members of UL is a filter-base for UL with
respect to ∧ and 6. (Filter condition)

(b) For each x ∈ Li, x =
∨
{y ∈ Li : for some C ∈ UL,Ciy 6 x},

(i = 1, 2) (Compatibility condition)

2. For x, y ∈ Li we write y⊳i x whenever there exists a C ∈ UL with
Ciy ≤ x. We write (a, b)⊳ (c, d) when a⊳1 c and b⊳2 d. We note that
if y⊳i x then y ≺i x, that is, there is a t ∈ Lk, k 6= i such that y ∧ t = 0
and t ∨ x = 1.

3. The pair (L,UL) is called a quasi-nearness biframe. Members of UL
will be referred to as uniform paircovers.

4. Let (L,UL) and (M,UM) be quasi-nearness biframes. A biframe map
f : (M,UM) → (L,UL) is uniform if for every C ∈ UM , f [C] ∈ UL,
where f [C] = {(f(c), f(c̃)) : (c, c̃) ∈ C}.

5. Quasi-nearness biframes and uniform maps are the objects and arrows
of the category QNearBiFrm.

There is an appropriate notion of star-refinement for paircovers. As may
be expected, a quasi-nearness biframe in which every uniform paircover has
a uniform star-refinement is called a quasi-uniform biframe. In this paper
star-refinements will not be needed.
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Quasi-completeness and quasi-completions

The following appear in [9]:

Definition 2.3 Let h : (M,UM) → (L,UL) be a uniform map between
quasi-nearness biframes and let r be the right adjoint of the total part of h.

1. We call r uniformly-generating if r[D] ∈ UM for each D ∈ UL and
{r[D] : D ∈ UL} generates UM . We remind the reader that r need not
be a biframe map; indeed it is usually not. Note that if r is uniformly-
generating it is also part-preserving. (See Lemma 5.2 in [9].)

2. We say that h is a strict surjection if r is uniformly-generating. Note
that if h is a strict surjection then it is also dense, onto and {h[C] :
C ∈ UM} generates UL. (See Lemmas 5.3 and 5.6 in [9].)

3. (L,UL) is quasi-complete if every strict surjection h : (M,UM) →
(L,UL) is an isomorphism.

4. A quasi-completion of (L,UL) is a strict surjection h : (M,UM) →
(L,UL) where (M,UM) is a quasi-complete quasi-nearness biframe.

In [9] it is further shown that, for any quasi-nearness biframe (L,UL) there
exists a quasi-completion (CL,CUL) and quasi-completion map γ : (CL,CUL) →
(L,UL).

The downset biframe

The construction of the quasi-completion mentioned above depends heavily
on the downset biframe. In this paper we will use the downset biframe again
to construct the so-called “Cauchy quotient” for a biframe.

We assume that the reader is familiar with the frame of downsets of a frame
L, usually denoted by DL. (See for instance [19] for details.) It is well
known that the join map

∨
: DL → L is a frame map and has right adjoint

↓: L→ DL given by ↓x = {y ∈ L : y ≤ x}, for all x ∈ L.
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Definition 2.4 ([9])

1. For a biframe L and i = 1, 2, let

(DL)i = {U ∈ DL0 : U is generated by U ∩ Li},

where we say that U is generated by U ∩ Li if, for all x ∈ U , there is
y ∈ U ∩ Li such that x ≤ y.

2. Then let (DL)0 be the subframe of D(L0) generated by (DL)1 ∪ (DL)2.
Explicitly, any U ∈ (DL)0 can be written as

U =
⋃

{↓x∩ ↓y : x ∈ L1, y ∈ L2, x ∧ y ∈ U}.

This construction makes DL = ((DL)0, (DL)1, (DL)2) a biframe, called
the downset biframe of L.

3. For a biframe map h : L→M and U ∈ (DL)0, define

Dh(U) =
⋃

{↓h(x)∩ ↓h(y) : x ∈ L1, y ∈ L2, x ∧ y ∈ U}

Then Dh : DL→ DM is a biframe map.

4. The join map
∨

: DL→ L is a biframe map which is dense and onto.

5. Let s be the right adjoint of
∨

: DL→ L. Then s(a) =
⋃
{U ∈ (DL)0 :

U ⊆↓a}, for any a ∈ L0. Note that if a ∈ Li for i = 1, 2 then s(a) =↓a
since then ↓a ∈ (DL)0. This makes s part-preserving.

A factorization lemma

The following straightforward result will be useful in what follows.

Definition 2.5 For any biframe map f : L → M , the kernel of f , written
ker(f), is defined as {(a, b) ∈ L0 × L0 : f(a) = f(b)}.
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Lemma 2.6 Suppose that f : L→ M is an onto biframe map and g : L →
N a biframe map such that ker(f) ⊆ ker(g). Then there is a unique biframe
map h : M → N such that hf = g, that is, so that the following diagram
commutes.

N

L M

g

f

∃!h

proof. Consider the two biframe maps f and g as frame maps on total parts.
Since f is onto and ker(f) ⊆ ker(g), by the well-known result for frame maps,
there is a unique frame map h : M0 → N0 such that hf = g. We check that
h is in fact a biframe map: Take x ∈ Mi for i = 1, 2. Since f is onto as a
biframe map, there is y ∈ Li with f(y) = x. Then h(x) = hf(y) = g(y) ∈ Ni,
since g is a biframe map.

3 Congruences describing nuclei on the down-

set biframe

In [9] a quasi-completion was constructed using a nucleus on the downset
biframe that satisfies conditions (N1), (N2) and (N3) of Lemma 3.2 below.
It will be important in what follows to consider the associated congruence,
which we describe in this section.

Lemma 3.1 Let L be a biframe and n any nucleus on (DL)0, the total part
of its downset biframe. The following conditions are equivalent:

1. n(U) ⊆↓(
∨
U) for any U ∈ (DL)0.

2.
∨
n(U) =

∨
U for any U ∈ (DL)0.

8



Moreover, if n satisfies the first condition, then n(↓ a) =↓ a for any ↓ a ∈
(DL)0, and so, in particular, for any a ∈ L1 ∪ L2.

proof. Suppose that U ∈ (DL)0.
(1) ⇒ (2):

∨
n(U) ≤

∨
↓(
∨
U) =

∨
U .

(2) ⇒ (1): n(U) ⊆↓
∨
n(U) =↓(

∨
U).

Now suppose that n satisfies condition 1. For x ∈ L1 ∪ L2, ↓ x ∈ (DL)0,
so n(↓ x) ⊆↓ (

∨
↓ x) =↓ x and so n(↓ x) =↓ x. Moreover, if a ∈ L0 and

↓a ∈ (DL)0 then a = x∧ y for some x ∈ L1, y ∈ L2 (see Lemma 3.11 in [13]).
Then n(↓a) = n(↓(x ∧ y)) = n(↓x∩ ↓y) = n(↓x) ∩ n(↓y) =↓x∩ ↓y =↓a.

We note for the record that the downset ↓(
∨
U) of L0 above is not in general a

member of (DL)0; in fact, the proof above indicates which principal downsets
are in (DL)0.

Lemma 3.2 Let (L,UL) be a quasi-nearness biframe and let n be the small-
est nucleus on (DL)0 satisfying the conditions:

(N1) n(U) ⊆↓(
∨
U) for all U ∈ (DL)0.

(N2) n(
⋃
Ĉs) =↓1 for all C ∈ UL, where Ĉs = {↓c∩ ↓c̃ : (c, c̃) ∈ C}.

(N3) n(ki(a)) =↓a for all a ∈ Li, i = 1, 2, where
ki(a) = {x ∈ L0 : x ≤ y ⊳i a for some y ∈ Li}.

The congruence on (DL)0 corresponding to the nucleus n is generated by
the pairs:
{(
⋃
Ĉs, ↓1) : C ∈ UL} ∪ {(k1(a), ↓a) : a ∈ L1} ∪ {(k2(b), ↓b) : b ∈ L2}.

proof. Let θn denote the congruence corresponding to the nucleus n and let
γ be the congruence generated by the pairs {(

⋃
Ĉs, ↓1) : C ∈ UL}∪{(k1(a), ↓

a) : a ∈ L1} ∪ {(k2(b), ↓ b) : b ∈ L2}. Since n satisfies (N2) and (N3), θn
contains the generating pairs of γ and so γ ⊆ θn.
To show that θn ⊆ γ, we show that n ≤ nγ , where nγ denotes the nucleus
corresponding to γ. It suffices to show that nγ satisfies (N1) to (N3), since
n is the smallest nucleus satisfying these conditions.
(N1): By Lemma 3.1, it suffices to show that

∨
nγ(U) =

∨
U for any U ∈

(DL)0. Let β be the kernel of the join map
∨

: (DL)0 → L0. In fact β
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contains the generating pairs of γ, since the join map identifies all such, so
we have γ ⊆ β. So nγ ≤ nβ . For U ∈ (DL)0,

∨
nγ(U) ≤

∨
nβ(U) =

∨
U , the

latter equality holding since nβ(U) is the largest member of (DL)0 having
the same join as U .
(N2): For C ∈ UL, nγ(

⋃
Ĉs) =↓1.

(N3): For a ∈ Li, i = 1, 2, nγ(ki(a)) = nγ(↓a) =↓a.

The condition (N2) can be thought of as a “Cauchy” condition, and (N3)
as a “regularity” condition. We will also, in this paper, have need for the
quotient of (DL)0 that imposes just the Cauchy condition and (N1); the
relevant nucleus and congruence are given in Lemma 3.3 below.

Lemma 3.3 Let (L,UL) be a quasi-nearness biframe and letm be the small-
est nucleus on (DL)0 satisfying the conditions (N1) and (N2) of Lemma 3.2.
The congruence on (DL)0 corresponding to the nucleus m is generated by

the pairs {(
⋃
Ĉs, ↓1) : C ∈ UL}.

proof.Apply the proof of Lemma 3.2, omitting all reference to the condition
(N3).

4 Composition of bifilters

In [13] we introduced the notion of a bifilter on a biframe: it is a subset of the
given biframe with certain closure properties. This was generalized to the
notion of a T -valued bifilter on a biframe. It is this general form of a bifilter
that we use almost exclusively in this paper, and we recall here the main
facts about such bifilters. We will omit the words “general” and “T -valued”
after giving the definition.

Definition 4.1 1. For biframes L and T , a function ϕ : L0 → T0 is a
general T -valued bifilter on L if:

• ϕ preserves 0,∧ and 1.

• ϕ[Li] ⊆ Ti for i = 1, 2, that is, ϕ is part-preserving.
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• For any a ∈ L0, ϕ(a) =
∨
{ϕ(x ∧ y) : x ∈ L1, y ∈ L2, x ∧ y ≤ a}.

(We say for the last condition that “ ϕ is determined by its action on
first and second parts”. We also speak loosely of a “bifilter ϕ : L→ T”
without causing any confusion.)

2. For a quasi-nearness biframe (L,UL) a bifilter ϕ : L→ T is Cauchy if,
for any C ∈ UL, ϕ[C] is a paircover of T , that is,

∨
{ϕ(c ∧ c̃) : (c, c̃) ∈

C} = 1.

3. For a quasi-nearness biframe (L,UL) a bifilter ϕ : L → T is regular if,
for x ∈ Li, i = 1, 2, ϕ(x) =

∨
{ϕ(z) : z ∈ Li, z⊳i x}.

The definitions above are motivated by the work of Banaschewski, Hong and
Pultr in [5].

Note 4.2

1. We note that, since any bifilter is determined by its action on first and
second parts, it is easy to see that if two bifilters ϕ and ψ agree on first
and second parts, then ϕ = ψ. Similarly, if ϕ(x) ≤ ψ(x) for x ∈ L1∪L2,
then ϕ ≤ ψ.

2. Any biframe map between biframes is a bifilter.

3. Any biframe map (not necessarily uniform) between quasi-nearness
biframes is a regular Cauchy bifilter.

In the setting of frames, the usual function composition of two general filters
is again, trivially, a filter. The situation for bifilters is not so simple. We
now define a composition of bifilters that does indeed produce a bifilter.

Definition 4.3 Suppose that ϕ : L → M and ρ : M → T are bifilters. We
define their composite by

ρ•ϕ (a) =
∨{

ρϕ(x) ∧ ρϕ(y) : x ∈ L1, y ∈ L2, x ∧ y ≤ a
}
.
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We note that the usual function composition will always be denoted by jux-
taposition. The special case where ϕ is a biframe map was treated in [13].

Lemma 4.4 Suppose that ϕ : L → M and ρ : M → T are bifilters. Then
ρ•ϕ : L→ T is a bifilter and ρ•ϕ (x) = ρϕ(x) for any x ∈ L1 ∪ L2.

proof. Note that, for x ∈ L1 ∪ L2, (ρ•ϕ)(x) = ρϕ(x) since ρϕ(x) = ρϕ(x) ∧
1 = ρϕ(x) ∧ ρϕ(1).
It is clear that ρ•ϕ (0) = 0 and ρ•ϕ (1) = 1 and that ρ•ϕ is order-preserving.
For a, b ∈ L0,

ρ•ϕ (a) ∧ ρ•ϕ (b)

=
∨

{ρϕ(s) ∧ ρϕ(t) : s ∈ L1, t ∈ L2, s ∧ t ≤ a}

∧
∨

{ρϕ(u) ∧ ρϕ(v) : u ∈ L1, v ∈ L2, u ∧ v ≤ b}

=
∨

{ρϕ(s ∧ u) ∧ ρϕ(t ∧ v) : s, u ∈ L1, t, v ∈ L2, s ∧ t ≤ a, u ∧ v ≤ b}

≤ ρ•ϕ (a ∧ b)

and since ρ•ϕ is order-preserving, ρ•ϕ (a ∧ b) = ρ•ϕ (a) ∧ ρ•ϕ (b).
Finally, for a ∈ L0,

ρ•ϕ (a) =
∨

{ρ•ϕ (x) ∧ ρ•ϕ (y) : x ∈ L1, y ∈ L2, x ∧ y ≤ a},

so ρ•ϕ is determined by its action on first and second parts.

We now give some simple but frequently used results concerning composition
of bifilters.

Lemma 4.5 Suppose that ϕ : L→M and ρ :M → T are bifilters, with ρ•ϕ

as defined above.

1. If ρ is a biframe map, then ρ•ϕ = ρϕ, since ρ preserves joins.

2. If ϕ is a uniform map between quasi-nearness biframes and ρ is a
Cauchy bifilter, then ρ•ϕ is Cauchy.

3. If ϕ is a Cauchy bifilter on a quasi-nearness biframe L and ρ is a biframe
map, then ρ•ϕ is Cauchy.
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4. If ϕ is a regular bifilter and ρ is a biframe map then ρ•ϕ is regular.

proof. All the proofs are straightforward.

5 Three universal bifilters

We now present, on any given (quasi-nearness) biframe L, three bifilters that
are each universal in a sense to be explained below.

Definition 5.1 Let L be a biframe.
(1) An S-valued bifilter α on L is said to be the universal bifilter on L iff for
any T -valued bifilter ϕ on L there is a unique biframe map ϕ̄ : S → T such
that ϕ̄α = ϕ, that is, the following diagram commutes:

T

L S

ϕ

α

ϕ̄

(2) Similarly, if (L,UL) is a quasi-nearness biframe, an S-valued bifilter α
on (L,UL) is the universal Cauchy bifilter (resp. universal regular Cauchy

bifilter) on (L,UL) iff for any T -valued Cauchy (resp. regular Cauchy) bifilter
ϕ on (L,UL) there is a unique biframe map ϕ̄ : S → T such that ϕ̄α = ϕ.

First universal bifilter: In [13], Proposition 6.8, it was shown that for any
biframe L the right adjoint, s, of the join map

∨
: DL → L is the universal

bifilter on L.

Second universal bifilter: In [9] a quasi-completion γ : (CL,CUL) →
(L,UL) was constructed, for any quasi-nearness biframe (L,UL). Its right

13



adjoint, denoted by σ, will be shown (see Proposition 5.5 in this paper) to
be the universal regular Cauchy bifilter on (L,UL).

In order to provide the third universal bifilter, namely a universal Cauchy bi-
filter for a quasi-nearness biframe (L,UL), we need to construct CFL, which
is the quotient of the downset biframe DL obtained by imposing a “Cauchy”
condition as discussed before Lemma 3.3. Its construction is similar to that
of the quasi-completion provided in [9] (see page 524 there) so we provide
only a definition and a brief summary of its properties.

Let (L,UL) be a quasi-nearness biframe. Let m be the nucleus on (DL)0
defined in Lemma 3.3. We note that m is obtained by taking the meet of all
nuclei on (DL)0 satisfying (N1) and (N2).

Now consider m as the canonical frame map to the quotient frame of fixed
objects of (DL)0 under m, so m : (DL)0 → m((DL)0). This then extends
to a biframe map m : ((DL)0, (DL)1, (DL)2) → (m(DL)0, m(DL)1, m(DL)2)
which we denote by m : DL→ Fixm.

Definition 5.2 We define CFL = Fixm and write (CFL)i = m(DL)i.

Consider the following diagram:

CFL

DL L

m

∨

g

We note the following:

• g is defined as the restriction of the join map to members of CFL.

• g is a dense, onto biframe map.
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• The diagram above commutes, that is, gm =
∨
.

• We define δ to be the right adjoint of g.

• δ preserves (arbitrary) meets, 0 and 1.

• δ(a) =↓a for a ∈ L1 ∪ L2, so δ is part-preserving.

• δ[Li] generates (CFL)i for i = 1, 2.

• δ is determined by its action on first and second parts, as the following
shows:
For a ∈ L0:

δ(a) =
∨

{U ∩ V : U ∈ (CFL)1, V ∈ (CFL)2, U ∩ V ⊆ δ(a)}

=
∨{∨

β

δ(xβ) ∧
∨

γ

δ(yγ) : xβ ∈ L1, yγ ∈ L2, δ(xβ) ⊆ U, δ(yγ) ⊆ V, U ∩ V ⊆ δ(a)
}

=
∨∨

β,γ

{
δ(xβ) ∧ δ(yγ) : xβ ∈ L1, yγ ∈ L2, δ(xβ) ⊆ U, δ(yγ) ⊆ V, U ∩ V ⊆ δ(a)

}

This is of the correct form, since for such xβ and yγ,

xβ ∧ yγ = gδ(xβ ∧ yγ) ≤ gδ(a) = a.

• For C ∈ UL, δ[C] is a paircover of CFL by virtue of (N2).

• From the properties above, it follows that δ is indeed a Cauchy bifilter
on (L,UL).

• We call CFL the Cauchy filter quotient for L.

Third universal bifilter: We will see in Proposition 5.6 that δ : L→ CFL

is the universal Cauchy bifilter on L.

We now turn to the proofs of the fact that σ and δ are indeed universal.

Lemma 5.3 Let h : (M,UM) → (L,UL) be a strict surjection between
quasi-nearness biframes. Its right adjoint, r, is a regular Cauchy bifilter.
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proof.We recall the relevant properties of r from [9]:

• Since r is a right adjoint, it preserves (arbitrary) meets and 1.

• Since h is dense, r preserves 0.

• r is part-preserving ([9], Lemma 5.2)

• For x ∈ Li, i = 1, 2, r(x) =
∨
{r(z) : z ∈ Li, z ⊳i x}. ([9], Lemma 5.9)

• For C ∈ UL, r[C] ∈ UM and so r[C] is certainly a paircover of M .

• For a ∈ L0, r(a) =
∨
{r(x) ∧ r(y) : x ∈ L1, y ∈ L2, x ∧ y ≤ a} by an

argument similar to the one shown for δ earlier.

Corollary 5.4 For any quasi-nearness biframe (L,UL), the right adjoint,
σ, of the quasi-completion γ : (CL,CUL) → (L,UL) is a regular Cauchy
bifilter.

proof. The previous lemma applies because γ is a strict surjection.

Proposition 5.5 For any quasi-nearness biframe (L,UL), σ : L → CL is
the universal regular Cauchy bifilter on (L,UL).

proof. By the previous corollary, σ is a regular Cauchy bifilter. It remains
to show universality.

First we note that, from the construction of γ : CL → L, we have that
γn =

∨
, where

∨
: DL → L and n is the nucleus used in defining CL, that

is, the nucleus n defined in Lemma 3.2. Letting t be the right adjoint of n,
we obtain tσ = s and so σ = n(tσ) = ns.

Let ϕ : L → T be a regular Cauchy bifilter on (L,UL). Since s : L → DL is
a universal bifilter ([13] Proposition 6.8), there exists a unique biframe map
ϕ̄ : DL → T such that ϕ̄s = ϕ. Explicitly, ϕ̄(U) =

∨
{ϕ(x) : x ∈ U}, for all

U ∈ (DL)0.

In the diagram below, we seek a biframe map ϕ̃ : CL→ T such that ϕ̃σ = ϕ:

16



T

L CL

DLϕ

σ

ϕ̄

ns

ϕ̃

We use Lemma 2.6. To apply this, we use the fact that n is an onto biframe
map, and must check that the kernel of n is contained in the kernel of ϕ̄. To
that end, we calculate the following:
For a ∈ Li,

ϕ̄(ki(a)) =
∨

{ϕ(x) : x ∈ ki(a)}

=
∨

{ϕ(z) : z ∈ Li, z ⊳i a}

= ϕ(a)

= ϕ̄(s(a))

= ϕ̄(↓a)

The third equality uses the regularity condition of ϕ, while the last equality
uses the fact that s(a) =↓a for a ∈ Li, i = 1, 2.

For C ∈ UL,

ϕ̄(
⋃

Ĉs) =
∨

{ϕ(x) : x ∈
⋃

Ĉs}

=
∨

{ϕ(c) ∧ ϕ(c̃) : (c, c̃) ∈ C}

= 1

= ϕ̄(↓1)

The third equality uses the Cauchy condition of ϕ.

So the kernel of ϕ̄ contains the generating pairs of the kernel of n (see Lemma
3.2), and so ker(n) ⊆ ker(ϕ̄).
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By Lemma 2.6, there exists a biframe map ϕ̃ : CL → T such that ϕ̃n = ϕ̄.
Then

ϕ̃σ = ϕ̃(ns) = ϕ̄s = ϕ,

as required. We note that ϕ̃ is the unique such map, because σ[L] generates
CL.

Proposition 5.6 For any quasi-nearness biframe (L,UL), δ : L → CFL is
the universal Cauchy bifilter on (L,UL).

proof.A proof similar to that of Proposition 5.5 applies: replace the nucleus
n bym (see Lemma 3.3) and omit all reference to regularity and the condition
(N3).

6 Completeness and convergence

Quasi-completeness for quasi-nearness biframes is defined in terms of certain
strict surjections being isomorphisms (see Definition 2.3). This is the point-
free analogue of the well-known fact that a complete uniform space is closed
in every uniform space in which it is embedded. In this section we estab-
lish the appealing result that quasi-completeness can in fact be regarded in
terms of the convergence of certain Cauchy bifilters, namely the regular ones.
Moreover, to test for quasi-completeness, one need only check whether or not
the universal regular Cauchy bifilter σ converges.

Definition 6.1 A bifilter ϕ : L → T converges if there is a biframe map
h : L→ T with h ≤ ϕ.

A justification for the definition of convergence is as follows: In a bispace, a
bifilter F converges to a point x if Nx ⊆ F , where Nx is the set of neigh-
bourhoods of x in the join topology. (This latter is indeed a bifilter.) In the
point-free setting, a bifilter F , consisting of elements of the given biframe
L, converges if there is a completely prime filter, P , with P ⊆ F . (In this
setting, a bifilter P on L is completely prime if P , viewed as a filter on L0, is
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completely prime.) Such a completely prime filter P gives rise via its charac-
teristic function to a biframe map ϕP : L→ 2. One then sees that ϕP ≤ ϕF

(where ϕF is the characteristic function of F ) which motivates our definition
for convergence of general bifilters. This discussion is presented with more
details in [13].

Theorem 6.2 Let (L,UL) be a quasi-nearness biframe. The following con-
ditions are equivalent:

1. (L,UL) is quasi-complete.

2. Every regular Cauchy bifilter on (L,UL) converges.

3. The universal regular Cauchy bifilter σ : L→ CL converges.

proof. (1) ⇒ (2): Let ϕ : (L,UL) → T be a regular Cauchy bifilter on
(L,UL). By the universality of σ, there is a unique biframe map ϕ̃ : CL→ T

with ϕ̃σ = ϕ. Since (L,UL) is quasi-complete, its quasi-completion γ is an
isomorphism, and hence so is σ. Then ϕ̃σ is a biframe map and ϕ̃σ = ϕ, so
certainly ϕ̃σ ≤ ϕ, as required.
(2) ⇒ (3): Clear.
(3) ⇒ (1): Suppose that there exists a biframe map h : L→ CL with h ≤ σ.
Then f = γh is a biframe map. For a ∈ L0, f(a) = γ(h(a)) ≤ γσ(a) = a.
For a ∈ Li, take x ⊳i a. Then x≺i a, so there exists t ∈ Lk (k 6= i) with
x ∧ t = 0, t ∨ a = 1. Now x ∧ f(t) ≤ x ∧ t by the calculation above, so
x ∧ f(t) = 0. However, f(t) ∨ f(a) = 1, so x≺i f(a), and so x ≤ f(a). But
a =

∨
{x ∈ Li : x ⊳i a}, so we obtain a ≤ f(a). This means that f agrees

with the identity map on L1 ∪ L2, so γh = f = id.
Then γhγ = γ, and since γ is monic (all biframes in question being regular)
this gives hγ = id. So γ is a biframe isomorphism. This means, of course,
that σ is its inverse. Now since σ generates the quasi-nearness on CL it is
also a uniform map, hence a uniform isomorphism. Thus (L,UL) is quasi-
complete.

Theorem 6.2 has an analogue for Cauchy bifilters, which we present below.

Theorem 6.3 Let (L,UL) be a quasi-nearness biframe. The following con-
ditions are equivalent:
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1. The map g : CFL→ L is a biframe isomorphism.

2. Every Cauchy bifilter on (L,UL) converges.

3. The universal Cauchy bifilter δ : L→ CFL converges.

proof. The proof of the previous proposition can be used, with Cauchy
bifilters replacing regular Cauchy bifilters, g replacing γ, δ replacing σ and
CFL replacing CL.

7 Questions of functoriality

In this section we compare the Cauchy filter quotient, CFL, and the quasi-
completion, CL, for a quasi-nearness biframe (L,UL). Consider the following
biframe diagram:

DL CFL

CL

L
m

n
τ

δ
g

γ

σ

∨

Here τ is the biframe quotient that corresponds to imposing the condition
(N3): to be specific, τ is the unique biframe map such that τm = n, given
by Lemma 2.6.
We note further that:

• γτ = g because (γτ)m = γn =
∨

= gm and m is onto.

• If λ is the right adjoint of τ , τδ = σ because λσ = δ, so σ = τ(λσ) = τδ.
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Proposition 7.1 The Cauchy filter quotient construction, CF , provides a
functor from QNearBiFrm to BiFrm.

proof. We have already considered CFL as a quotient of (DL)0 as in Def-
inition 5.2. This will provide the action of CF on objects. It remains to
consider the action of CF on arrows:
Let h : (M,UM) → (L,UL) be a uniform map between quasi-nearness
biframes. Consider the following diagram:

DL

DM CFM

CFL L

M

Dh

mM

mL

h

gM

gL

The outer rectangle commutes because gm =
∨

and
∨

is a natural transfor-
mation from D to the identity functor.
We apply Lemma 2.6 to get a biframe map from CFM to CFL as follows:
ker(mM) has generating pairs {(

⋃
Ĉs, ↓1) : C ∈ UM}. For any such C we

have:

mLDh(
⋃

Ĉs) = mLDh(
⋃

{↓c∩ ↓c̃ : (c, c̃) ∈ C})

= mL(
⋃

{↓h(c)∩ ↓h(c̃) : (c, c̃) ∈ C}

= mL(
⋃

ĥ[C]
s

)

= ↓1

= mLDh(↓1)

The fourth equality uses the fact that h is a uniform map. Now Lemma 2.6
applies, since mM is onto. This gives a unique biframe map CFh : CFM →
CFL such that (CFh)mM = mL(Dh).
Then gL(CFh)mM = gLmL(Dh) = hgMmM and so gL(CFh) = hgM since
mM is onto.

In conclusion, the uniform map h : (M,UM) → (L,UL) is sent by CF to the
biframe map CFh : CFM → CFL in such a way that the diagram below
commutes:
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CFL

CFM M

L

CFh

gM

gL

h

It is easy to check that CF preserves identities and composition.

Concluding Remarks:

The fact that CF can be regarded as a functor from the category of quasi-
nearness biframes to biframes poses the obvious question whether C, the
quasi-completion, has similar functorial properties. The obvious modification
of the proof for CF cannot be used, as the map in this new argument would
not identify the appropriate generating pairs needed by the factorization
lemma. In fact, it is already known in the setting of nearness frames that
the completion is not functorial (see Proposition 3.4 in [5]) so the quasi-
completion cannot be functorial either.

In [5], the notion of a nearness frame having “enough regular Cauchy filters”
(abbreviated by “erc”) proved useful in examining the functoriality question.
Specifically, in Proposition 2.8 it is shown that, for erc nearness frames,
completion is a functor into the category of erc nearness frames and frame
homomorphisms. In a subsequent paper we will provide a similar such notion
for quasi-nearness biframes and exhibit quasi-completion as a functor.
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