A WSRT mosaic of a nearby rich galaxy cluster.

Mpati Ramatsoku

Marc Verheijen, Reneè Kraan-Korteweg, Gyula Josza, Anja Shröeder, Ed Elson, Tom Jarrett, Wim van Driel, Trish Henning, Erwin de Blok.

RUG/UCT/ASTRON

A blind HI imaging of PPS in the ZoA

WSRT mosaic*:

35 x 12hr pointings, Sep. 0.5° (~0.9 HPBWs), sky area ≈ 9.6 sq.deg.

8 (10 MHz) overlapping IF-bands Vel. \approx 2000 -17000 km/s $\Delta V = 8.25$ km/s \rightarrow R = 16.5 km/s $\Theta = 23$ " x 16" restoring beam.

* Similar to a single AperTIF pointing but covers 22% of its redshift.

Goals.

A mini pilot study for AperTIF surveys.

Data cubes to test data handling algorithms.

- Pipeline reductions.
- Calibrations.
- Source finding and extraction of parameters.

Science:

•Reveal structure behind the Galaxy, Environmental effects on HI properties, TF, Flow fields.

A blind HI imaging of PPS in the ZoA

2186 x 2036 pix, 1717 chans, ~ 30 GB

rms = 0.35 mJy/beam

> 20% spectral noise variation.

MHI^{min 6 σ} = 1.5 x 10⁸ Msun, NHI^{3 σ} = 6.4 x 10¹⁹ cm⁻² ~ 16% spatial noise variation.

Source detection.

- 23" × 16" (high-res) cubes smoothed to 30" × 30" (bs30).
- Smoothed (high res and bs30) to four velocity resolution elements.
 - Hanning smoothing (R2).
 - four channel smoothing (R4).
 - six channel smoothing (R6).
 - eight channel smoothing (R8).

The cube was searched at 8 different angular/velocity resolution combinations.

Accepted if:

8\u03c3x1 velocity resolution element(s)

5σx2 VRE

4σx3 VRE

3_ox₄ VRE

A total of 32 detection sub-masks were added to make a final detection mask.

Source detection.

Many HI detections. (details a few slides later)

Source detection.

Many HI detections. (details a few slides later) + Imaging artifacts

Residual RFI.

Amplitude errors.

Bandpass dip – affects cont. source removal.

Source Finding Application

*More robust source finding techniques needed.

Lessons learned

RFI flagging.

- Automated RFI flagging softwares work okay but still require a lot of human intervention.

Source finding in imperfect very large data cubes is a challenge.

- Imaging artifacts.
- Non-gaussian noise.

Visualisation softwares limited.

- cannot easily view large data cubes.

HI detections

~200 galaxies over the full velocity range - wide range of HI morphologies (log MнI = 8.0 .. 10.3 M☉)

38% spatially resolved

67% stellar counterparts.

Rendering: Davide Punzo

Preliminary results. A (potentially) rich cluster nearby.

Blue points: 90 HI detections Red: 201 not HI from UKIDSS.

 $Mx_{500} = 1.9 \times 10^{14} Msun$

$$Lx_{500} = 9.0 \times 10^{43} \text{ erg/s}$$

74% Lx Coma82% Lx Norma2x Lx Virgo

0.1 – 2.4 keV X-ray ~0.5°.

Leahy & Yin 2000

X ray emission from the hot $ICM \rightarrow elongated$

- Implying a non relaxed core.
- Post-merger signature.

Preliminary results. A (potentially) rich cluster nearby: The outskirts.

Blue points: 90 HI detections Red: 201 not HI from UKIDSS.

Preliminary results.

A (potentially) rich cluster nearby: The central regions.

0.1 – 2.4 keV X-ray ~0.5°.

Blue points: 90 HI detections Red: 201 not HI from UKIDSS.

Summary.

- → Detected ~ 200 galaxies over the entire velocity range observed.
 - Presented in a catalogue + atlas of a recently submitted paper.
- → Automated RFI algorithms work okay, but still requires a lot human interventions.
- → Automated source finding algorithms need to be optimised to work on large and imperfect data cubes.
- → Visualising large data cubes remains a computational challenge.

Future work:

- → Test the automated Apertif data reduction pipeline.
- → Compare source finding results with visual inspections.
- → Continuum mapping.