New synthetic data products for the SKA precursors

Ed Elson SKA postdoctoral fellow drelson.e.c@gmail.com

Astrophysics, Cosmology and Gravity Centre University of Cape Town

PHISCC 2016 - Cape Town

Motivation

- Synthetic data products for next-gen HI galaxy surveys will be useful in many respects:
 - Source-finding algorithms
 - Visualisation methods
 - Source completeness checks
 - Quantify cosmic variance effects

Simulations

- Pipeline converts a catalogue of galaxy parameters into a realistic synthetic HI data cube.
- Obreschkow & Meyer (2014) catalogues:
 - Based on S³-SAX (Obreschkow+, 2009)
 - Physical models tracing evolution of HI and H₂ in +/- 3e7 galaxies.
 - Used as basis for SKA performance calculations.

Obreschkow & Meyer (2014) sims:

Symbol	Unit	Description
ID	_	Unique galaxy identifier in the Munich Semi-Analytic Model "DeLucia2006a"
RA	\deg	Right ascension of galaxy centre
Dec	\deg	Declination of galaxy centre
z	_	Apparent redshift of galaxy centre, including the Doppler component due to peculiar motion relative to the Hubble expansion
i	\deg	Galaxy inclination defined as the smaller angle $(0^{\circ} - 90^{\circ})$ between the line-of-sight and the rotational axis of the galaxy
T	_	Numerical Hubble type $(-60$ for ellipticals, 010 for spirals, 99 for morphologically unresolved objects, mostly dwarfs)
M_*	${ m M}_{\odot}$	Stellar mass
$M_{ m HI}$	${ m M}_{\odot}$	Mass of neutral atomic hydrogen H I, without helium
$M_{ m H_2}$	${ m M}_{\odot}$	Mass of molecular hydrogen H ₂ , without helium
$S_{ m HI}^{ m int}$	$\rm Jykms^{-1}$	Velocity-integrated flux of the redshifted 21 cm H I emission line, with velocity units defined in the galaxy rest-frame
$S_{ m HI}^{ m peak}$	Jy	Peak flux density of the H _I emission line; typically the flux density of the 'horns'
$S_{ m CO}^{ m int}$	$\rm Jykms^{-1}$	Velocity-integrated flux of the redshifted 115.27 GHz 12 CO(1–0) emission line, with velocity units defined in the galaxy rest-frame
$S_{ m CO}^{ m peak}$	Jy	Peak flux density of the $^{12}\mathrm{CO}(10)$ emission line; typically the flux density of the 'horns'
$W_{ m HI}^{50}$	${\rm kms^{-1}}$	Width of the H I emission line, in galaxy rest-frame velocity units, measured at 50% of the peak flux density
$W_{ m HI}^{20}$	${\rm kms^{-1}}$	Width of the H I emission line, in galaxy rest-frame velocity units, measured at 20% of the peak flux density
$r_{ m HI}^{ m edge}$	arcsec	Apparent H I radius along the major axis out to a H I disk surface density of $1{\rm M_{\odot}pc^{-2}}$, corresponding to a face-on column density of $1.25\cdot10^{20}{\rm cm^{-2}}$
$r_{ m HI}^{ m half}$	arcsec	Apparent H _I half-mass radius along the major axis
$M_{ m R}$	mag	Absolute Vega R -band magnitude, corrected for intrinsic dust extinction; 99 if stellar mass and star formation history are insufficiently resolved to compute $M_{\rm R}$
$m_{ m R}$	mag	Apparent Vega R -band magnitude; value 99 if no absolute magnitudes available
$r_{ m e}$	arcsec	Effective radius, here approximated as the radius containing half the stellar mass if the galaxy were viewed face-on

Table 1: Description of the columns of mock catalog in ASCII format.

4

South Pole -90deg

Synthetic HI line data cube based on input galaxy catalogue:

Modelling the HI line emission

- 3D model generated for each galaxy in galaxy catalogue.
- Unique HI mass distribution, rotation curve, incl, PA, etc.
- Fully automated using custom scripts.

M_{HI} & V_{circ} profiles

Template rotation curves: Catinella + (2006)

$$\Sigma_{\rm HI}(R) = \frac{A \exp(-R^2/2h^2)}{1 + \beta \exp(-1.6R^2/2h^2)}$$

$$V_{\rm PE}(R) = V_0 \left(1 - e^{-R/R_{\rm PE}} \right) \left(1 + \frac{\alpha R}{R_{\rm PE}} \right)$$

Polyex model: Giovanelli & Haynes 2002

HI data products

- a) HI total intensity ($M_{HI}=10^{8.16}M_{sun}$)
- b) HI intensity-weighted mean velocity field

c) Major axis pv slice

d) HI global profile (S_{int}=2.66 mJy km/s)

User-specified inputs

Item	Example
RA range	5 deg.
Dec range	5 deg.
z range	0.2 - 0.7
cosmology	h=0.7, Ω_m =0.3, Ω_{\uparrow} =0.7
channel width	100 kHz
pixel scale	1 arcmin
BMAJ	4 arcmin
BMIN	3 arcmin
RMS noise	0.1 mJy/bm

- + optical magnitude cut
- + Sint cut

- HI line cube, (smoothed)
- HI + noise cube
- Catalogue of true galaxy properties
- Means of easily identifying each galaxy in a cube

Application: HI stacking

Unappreciated shortcoming of HI stacking method:

source confusion

Application: HI stacking

Unappreciated shortcoming of HI stacking method:

source confusion

- Galaxy volume density
- Spatial resolution of observations

Application: HI stacking

- Generate noise-free cube with characteristics:
 - sky area: 30 sq deg
 - z = 0.04 0.13
 - 48 234 galaxies (M_{HI} = 2.81e13 M_☉)
 - $\theta = [0, 4, 15]$ arcmin.
- Extract spectra at (3583) galaxies with M* > 10¹0 M_☉
- How badly are our stacks affected by source confusion?

Right Ascension

Right Ascension

co-add: noise-free, un-smoothed

 $< M_{HI} > = 2.08 \times 10^9 M_{\odot}$

co-add: noise-free, 4 arcmin

velocity [Ki

co-add: noise-free, smoothed

Velocity [km/s]

co-add: noise-free, smoothed

 $< M_{HI} > = 8.52 \times 10^9 M_{\odot}$

 $< M_{HI} > = 2.08 \times 10^9 M_{\odot}$

co-add: noise-free, smoothed

~ 6.44 x 10⁹ M_☉ contaminant mass per galaxy

Dec.

Mock Parkes co-add:

 $< M_{HI} > = 2.08 \times 10^9 M_{\odot}$

Typical Parkes co-add:

~ 5.63 x 10¹⁰ M_☉ contaminant mass per galaxy

Typical Parkes co-add:

~ 4.51 x 10⁹ M_☉ contaminant mass per galaxy

Typical Parkes co-add:

$$< M_{HI} > = 6.62 \times 10^9 M_{\odot}$$

$$< M_{HI} > = (6.93 + /- 0.17) \times 10^9 M_{\odot}$$

mock

Delhaize + (2013), 3277 2dFGRS galaxies

High-z mock stacking experiment

- Generate high-z synthetic cube:
 - 0.7 sq deg
 - z = 0.7 0.758
 - 19 922 galaxies (1.03 x 10¹³ M_☉)
 - Spatial resolution $\theta = 20$ arcsec.
 - Extract spectra at (1035) galaxies with M_{*} > 10¹⁰ M_☉

Noise-free LADUMA co-add

Fractional mass contribution from target galaxies: 0.73

Average confused mass: 1.03 x 109 M_☉

 We have the methods & machinery to produce realistic synthetic HI data cubes.

- We have the methods & machinery to produce realistic synthetic HI data cubes.
- Synthetic products will be useful to MeerKAT survey teams.

- We have the methods & machinery to produce realistic synthetic HI data cubes.
- Synthetic products will be useful to MeerKAT survey teams.
- Mock HI stacking experiments show high levels of source confusion in low-z stacking experiments.

- We have the methods & machinery to produce realistic synthetic HI data cubes.
- Synthetic products will be useful to MeerKAT survey teams.
- Mock HI stacking experiments show high levels of source confusion in low-z stacking experiments.
- Are current Ω_{HI} measures too high?
- Source confusion will not dominate LADUMA data, especially if we know how to correct for it.