

Tessa Vernstrom, Douglas Scott, & Jasper Wall (UBC) Jim Condon, Bill Cotton, Ed Fomalont, & Ken Kellermann (NRAO/CV)

Rick Perley (NRAO/Soc), Ray Norris (CSIRO)

Background: Source Counts

Background: Source Counts

- Faint counts from high resolution surveys don't agree.
 - More scatter than due to Poisson or clustering
 - Faintest counts from Owen & Morrison 2008 show leveling off rather than downturn

Method: Source Counts

- Direct counting: count sources in survey with S > 5σ
 - Size corrections
 - Fit uncertainties
 - Completeness
 - False detections
 - Clean bias
- Statistical Estimate/model fitting:
 - Confusion analysis
 - \rightarrow not limited by S>5 σ
 - Physical models: Luminosity functions
 - Non-physical models: Power laws, polynomials, Gaussians, etc.

-1.7

-0.8

0.097

0.98

1.9

2.8

3.6

5.4

Method: Confusion

- Confusion = Blending of faint sources in beam
- Image pixel histogram (PDF) from confusion known as P(D)
- σ_c =width of P(D) governed by beam and source count
- Want to know P(D)

Method: Probability of Deflection

- Fitting of Image histogram

 → statistical estimate of source counts as faint as σ_c
- Input:
 - source count model
 - pixel size, beam size
 - instrumental noise
- Mean density of observed flux, x

$$R(x) \ dx = \int_{\Omega} \frac{dN}{dS} \left(\frac{x}{b}\right) b^{-1} \ d\Omega \ dx$$

• P(D) is then:

$$P(D) = \mathcal{F}^{-1} \left[\exp \left(\int_{0}^{\infty} R(x) e^{iwx} dx - \int_{0}^{\infty} R(x) dx - i\mu w - \frac{\sigma_{n}^{2}}{2} w^{2} \right) \right]$$
$$\boldsymbol{\sigma}_{o}^{2} = \boldsymbol{\sigma}_{o}^{2} + \boldsymbol{\sigma}_{n}^{2}$$

• Want $\sigma_c > \sigma_n$

Method: Probability of Deflection

- Node Method (Patanchon, 2009):
 - Fixed node position in Log(S)
 - Fit amplitude of nodes in Log(dN/dS)
 - Interpolate between nodes
 - Use MCMC to find minimum log likelihood
- Example: Simulation data from SKADS S³
 - 1 square degree
 - 1.4 GHz
 - Gaussian noise = 2.1
 μJy/bm

Method: Probability of Deflection

- P(D) does not account for
 - Clustering
 - Source Sizes
- Use simulation to test effect
 - Clustered sources with sizes
 - Clustered point sources
 - Random positions point sources
- Little effect on fitting except at faintest flux densities

VLA P(D): Data & Imaging

18 arcmin

(J)VLA

- Lockman "Owen" Hole
- Time: **50h**
- S Band: 2 4 GHz
- Beam size : 8"
- Array: C configuration
- Noise: **1.08 µJy/bm**

VLA P(D): Results – 1.4GHz

VLA P(D): Results – 1.4GHz

VLA Catalogue: Simulations

- 8" and 2.75" resolutions (VLASS vs SKA Pathfinders)
- OBIT and Aegean
- Simulations:
 - Simple case
 - "Realistic" case
 - Source blending
 - Source sizes
- To Test:
 - Effect of correlation noise
 - Software accuracy
 - Effect of resolution
 - Effect of source size
 - Effect of source blending
- Yields:
 - Parameter uncertainties
 - Completeness correction
 - False detection rate
 - "Flux boosting" correction

VLA Catalogue: Simulations

- 8" and 2.75" resolutions (VLASS vs SKA Pathfinders)
- OBIT and Aegean
- Simulations:
 - Simple case
 - "Realistic" case
 - Source blending
 - Source sizes
- To Test:
 - Effect of correlation noise
 - Software accuracy
 - Effect of resolution
 - Effect of source size
 - Effect of source blending
- Yields:
 - Parameter uncertainties
 - Completeness correction
 - False detection rate
 - "Flux boosting" correction

VLA Catalogue: Results

- Catalogue both resolutions down to 4σ
- Examine:
 - Angular size distribution
 - Source count
 - Spectral index
- ~25 other catalogs to cross match for:
 - Radio spectral index
 - Optical/IR colours
 - Redshifts

VLA Catalogue: Source Count

- Source count
 - Completeness and false detection corrections
 - Calculated in bins of fitted source size
- Very good agreement with P(D)

VLA Catalogue: Source Count

- Source count
 - Completeness and false detection corrections
 - Calculated in bins of fitted source size
- ♦ Must be careful with corrections → very easy to overcorrect at faint end

VLA Catalogue: Source Count

- Source count
 - Completeness and false detection corrections
 - Calculated in bins of fitted source size
- ♦ Must be careful with corrections → very easy to overcorrect at faint end

ATCA LSB: Data & Imaging

ATCA

- 7 pointing mosaic: ELAIS S1
- •
- Array: EW 352
- Time: **12h**
- Beam 150" x 60"
- 16cm Band: 1.1-3.1 GHz
 <1.75 GHz>
- Noise: **<52> μJy/bm**

ATCA LSB: Subtraction

这种方式一般的方式

ATCA LSB: Subtraction

Model un-subtracted faint sources

Excess detected over model of noise + un-subtracted point sources:

76 +\- 23 μJy/bm→ 3σ

ATCA LSB: Results – Counts

ATCA LSB: Clusters

- Cluster radio emission:
 - Giant/mini radio halos
 - radio relics
- Observations limited to bright halos (S > mJy)
- Simulated model from Zandanel et al 2014 – MultiDark cluster catalogue
- Reasonably good fit to our data
- Only goes to z=1

ATCA LSB: Dark Matter

- Dark matter particles in halos synchrotron emission from annihilation/decay
- Fornengo et. al 2011 model:
 - particle mass of 10 GeV assuming decay into leptons
- Gives predicted source count
- Both produce inconsistent fits to data
 - Counts much too high at bright flux densities

Integral Counts

Next Steps: Power Spectrum

- Only upper limits to the unresolved radio background
- Simulations -- SKADS catalogues
 - Point Sources
 - Extended Halos
 - PS+Halos
 - Random Positions
 - Clustered Postions
 - Mosaic
- Simulations to test:
 - Frequency weighting
 - Primary beam
 - uv coverage
 - Noise
 - Mosaicking

Next Steps: Power Spectrum

Random positions point sources

Clustered positions point sources

Next Steps: 2D P(D)

Next Steps: 2D P(D)

- 2D source count at 2 frequencies
- Fit 2D histogram
- Yields additional constraints
- Multiple populations/ luminosity functions+ spectral indices

Conclusions

- P(D) and confusion:
 - Useful technique to estimate and constrain source count and confusion (EMU, MIGHTEE,....)
 - Best when confusion noise > instrumental noise (ASKAP, MeerKat, SKA)
 - Can be used for extended LSB as well \rightarrow clusters, dark matter, cosmic web (EMU, MWA)
 - Requires careful point source subtraction
 - Can fit a wide range of models
 - Can be applied to MF and WF/Mosaic data
 - Need to know beam and noise very well
 - Valid as long as $\Omega_{\text{source}} < \Omega_{\text{beam}}$
 - Does not account for clustering
- Cataloguing for SKA surveys
 - Optimal source finding/fitting routine still a ?
 - Multiple deep resolutions best if possible
 - New imaging algorithms may be better at recovering all scales
 - SKA/Paths will be affected by blending
 - Machine learning/new algorithms for identification and de-blending
 - Need to be careful with source count corrections
 - WB coverage allows for α's
 - Still need to know the source size distribution as function of S (separate populations)
 - May not be as crucial for SKA (more optimal uv coverage)
 - Important to figure these issues out on smaller data sets/simulations now (before large surveys)

Continuing Work

- Radio Angular Power Spectrum ATCA/EMU/ MWA
- High resolution catalog & Angular size distribution –VLA A config 40 mores hours LH
- Low frequency (2D P(D)) 325 MHz GMRT LH– MWA
- Polarisation
- Luminosity function modelling
- SKA Simulations/Data challenge

Conclusions

- Deepest:
 - single pointing 3GHz image
 - arcminute resolution image at ~1.4GHz
 - source count estimates & constraints
- Discrete count:
 - good agreement with most published data
 - Luminosity functions a bit lower in the 1-100 μ Jy range
- Extended count:
 - consistent with model of faint halo structures
 - rules out at least one model of dark matter annihilation
- Background temperatures:
 - Discrete only: 3GHz = 14 mK
 - Discrete only: 1.4 GHz = 120 mK
 - Discrete+ Extended: 1.75 GHz = 80 mK

- Roughly 800 sources catalogued with:
 - Size measurements
 - Spectral Indices
 - Optical and IR colours
- Power Spectrum detection:
 - Poisson level
 - Possible clustering

Method: Confusion

• Confusion = Blending of faint sources in beam

VLA P(D): Node Results

