Polarization Surveys

Russ Taylor University of Cape Town And University of the Western Cape

Core questions addressed by Polarization Surveys

- Magnetism and galaxy evolution
 - When and how did coherent magnetic fields emerge in galaxies?
 - What is their relationship to and role in the (regulation of?) star formation history of the universe?
 - Role in global energetics and interactions with intergalactic environment

Detection and characterization of the magnetic cosmic web

- Can it be detected?
- How did cosmic-scale fields arise?
- What are its properties and how does it relate to large scale structure of matter?
- Magnetic Evolution of AGN over cosmic time
 - Relation to cosmic history of star formation, black hole evolution, environment,
 - What is the flux density fractional polarization relationship telling us?

Deep imaging of µJy polarized radio sources will be key

Pre-SKA Wide-area GHz Radio Polarization surveys Current and planned

Telescope	Project	Sensitivity (1 σ)	Sky coverage (sq deg)	completion
VLA	NVSS	300 µJy	33,000	1998
Arecibo	GALFACTS	90 µJy	12,700	2015
ASKAP-12	Wide-cont	40 µJy	1,000	2017
ASKAP	POSSUM	10 µJy	33,000	2018
VLA	VLASS	68 µJy	33,000	2019

GALFACTS: I, Q, U

250 MHz bandwidth (1275 – 1525) 8192 channels 4' resolution

Radio Source Populations

Pre-SKA Deep GHz Radio Polarization Surveys

Telescope	Project	Sensitivity (1 σ)	Sky coverage (sq deg)	Resolution	Completion
GMRT	EN-1 uDPF	3 μJy*	1.2	5″	2013
VLA	EN-1 uDPF	1.5 μJγ*	0.3	2″	2015
GMRT	SERVS Deep	2 µJy*	10	5″	2018
MeerKAT	MIGHTEE	1 μJy	(35)	8″	2018
MeerKAT	LADUMA	0.1 uJy	1	8″	2018
VLA	VDCS	1.5 uJy	10	1″	2019?

* Equivalent 1.4 GHz based on average spectral index of -0.8 Note that deep polarization also means deep total intensity

Effelsberg polarisation survey of disk local galaxies Stil, Krause, Mitchell, Beck & Taylor (2009)

Magnetism and Galaxy Evolution

Sub-µJy sensitivity deep fields over several square degrees will detect thousands of galaxies in polarization out to redshifts beyond 4.

GMRT/JVLA Deep Polarization Fields

Largest dish arrays in the world upgraded with wide-band correlators (SKA1 Full-Stokes Deep Field Pathfinders)

GMRT software correlator
230 hours of observing 2011/12
0.61 GHz

• 32 MHz bandwidth

JVLA Canadian WIDAR correlator

- 90 hours observing 2011/14
 - 4-6 GHz
 - 60 hours B & C configuration
 - 30 hours A configuration (in process)

GMRT/JVLA Deep Polarization Fields Team

Julie Banfield Sanjay Bhatnagar Jim Condon **David Green** Preshanth Jagannathan Nimisha Kantharia **Roland Kothes Rick Perley** Jeroen Stil **Russ Taylor (PI)** Jasper Wall **Tony Willis**

CSIRO NRAO NRAO **Cambridge University** University of Cape Town / NRAO NCRA Herzberg Institute of Astrophysics NRAO University of Calgary University of Cape Town & the Western Cape University of British Columbia DRAO

GMRT ultra-deep Polarization Field

servs.en1.irac.b1.v01.120909.mosaic.fits

Spitzer Extragalactic Representative Volume Survey (Mauduit et al. 2012, PASP, 124, 714)

612 MHz mosaic image1.3 sq. degrees2800 sourcesrms 10.3 μJy

See presentation by Emmanuel Ocran about what these objects are

Stokes Q P(D) rms = 7.28 μ Jy (3.7 μ Jy @ 1.4 GHz)

Polarized Intensity P(D)

Polarization Stacking in Stokes I flux density

,

9.07e-07

2.93e-06

3.94e-06

4.95e-06

5.96e-06

5 GHz Source Counts Stokes I

9.07e-07 1.91e-06 2.93e-06 3.94e-06 4.95e-06 5.96e-06 6.97e-06 7.99e-06 8.99e-06

1.90e-05 2.79e-05 3.70e-05 4.60e-05 5.50e-06 5.40e-06 7.30e-06 8.21e-06 9.10e-06

5 GHz polarized source counts

ELAIS N1 Taylor et al. 2014

Image Pixel Amplitude distributions

Stokes Q

Gaussian Distribution σ = 1.05 µJy

Rayleigh Distribution for σ = 1.05 µJy

Polarized Intensity

How many galaxies below 1 Jy?

- MeerKAT
 500 galaxies per sq deg
 15,000 galaxies
- RM with 1 rad m⁻¹ precision with average separation of a few arcminutes

Detecting the magnetic cosmic web

 $RM = RM_{object} + RM_{IGM} + RM_{MW}$

1 RM per square degree

Taylor, Stil & Sunstrum (2009)

RM Signature of the Magnetism in the Cosmic Web

Takuya & Rhy (2011)

ultra-deep wide-band (sub-microJy) polarization surveys...

 3rd Generation calibration algorithms need to be implemented and pipelined

- Pointing self-calibration
- Full-stokes direction dependent corrections (A-term)
- Wide-band polarization imaging (multifrequency synthesis and RM synthesis)
 Simultaneous w-term, A-term and mosaicing
- Nature of the microJy Sky
- Statistical approaches to aggregate signals below then noise..

