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The 3GC Culture Wars

 Two approaches to dealing with DD effects
 The “NRAO School”:

 Represent everything by the A-term
 Correct during imaging (convolutional gridding)
 Solve for pointing offsets
 Sky models are images

 The “ASTRON School”:
 Solve for DD gains towards (clusters of) sources 
 Make component sky models, subtract sources in 

uv-plane while accounting for DD gains
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Why DD Gains

 Cons: non-physical, slow & expensive
 But, DD+MeqTrees have consistently delivered 

the goods with all major pathfinders
 Early LOFAR maps and LOFAR EoR (S. Yatawatta)
 Beautiful ASKAP/BETA maps (I. Heywood)
 JVLA 5M+ DR (M. Mitra earlier)

 Fair bet that we'll still be using them come 
MeerKAT and SKA
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DD Gains Are Like Whiskey

 The smoother the better
 Make everything look more attractive
 If you overindulge, you wake in in the morning 

wondering where your {polarized foregrounds, 
weak sources, science signal} have gotten to
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The One True Way
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The Middle Way

 DR limited by how well we can subtract the 
brighter source population

 thus bigger problem for small dish/WF

 Subtract the first two-three orders of magnitude 
in the uv-plane

 good source modelling and (deconvolution and/or 
Bayesian)

 PB models, pointing solutions, +solvable DD gains

 Image and deconvolve the rest really well
 A-term and/or faceting
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Why Expensive

 Solving for Jones matrices is a non-linear 
optimization problem

 O( (Nant x Ndir)^3 )
 Need faster (and simpler) algorithms

 GPU: often better off with many simple ops over 
fewer complicated ops
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Non-linear Optimization

 Minimizing residuals 
 Most algorithms rely on taking a derivative and 

heading down the gradient
Jacobian
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Accelerating Things

 Major cost is inverting the Hessian

 Scales as N
p
3, so gets prohibitively expensive 

for many directions / many antennas
 Algorithms are iterative, so fast but 

approximate inversion can make a huge 
difference

 Helps if the matrix is sparse (spars-ish)
 Peeling is one such kludge

 Need insights into the structure of the matrix to 
come up with inversion approaches
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Complex Derivatives

 Classical optimization theory deals with functions 
of a real variable

 Complex derivatives are funny things
 Complex conjugate does not have a

complex derivative

 Traditional approach: take
derivatives w.r.t. real and 
imaginary, then you have 2N
real derivatives instead

 complicates the
equations
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Wirtinger Derivatives

 Wirtinger (1922): treat z and z conjugate as two 
independent variables, and formally define:

conveniently:

 Purely formal definition, but allows us to define 
a complex gradient operator that works for 
optimization



O. Smirnov & C. Tasse - Wirtinger Kalman Overdrive  - SPARCS 2015 12

Whence Wirtinger

 Considerably simplifies the equations
 Yields new insights into the Hessian structure
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Revealing Sparsity

 Plot of amplitude of JHJ (contrast exaggerated)
 Wirtinger style reveals sparsity
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An Almost Sparse Matrix

Those blocks 
have a small 
amplitude

Those Blocks 
are (Nd x Nd)
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COHJONES

 Complex Half-Jacobian Optimization for N-
directional Estimation

 Treat off-diagonal blocks as
zero; diagonal blocks are
block-diagonal

 Inversion scales as
Ndir^3 rather than 
(Nant Ndir)^3

 Huge gain in performance
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COHJONES = DD StefCal

 Interestingly, for Ndir=1, CohJones reduces to 
the StefCal algorithm

 ….which was formulated on a completely 
different basis:

 Alternating
direction
implicit (ADI) method

 Turns bilinear equation
into linear

Treat this as solvable

Treat this as constant
(from previous iteration)
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A Family Of Algorithms

 Wirtinger calculus not limited to DD gains, can
be used to simplify different calibration 
problems

 E.g. pointing offsets and beam shapes
 Have extended it to Jones matrix derivatives
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Filters vs. Solvers

 Solvers: given the data, find the (max likelihood) underlying 
instrumental state (Jones matrix, ionosphere, clock delay, pointing 
error, etc.)

 Smoothness/continuity can be imposed via 
solution intervals, weighted solutions, etc.

True underlying 
instrumental state

Solver output

Jones Matrix
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Filters vs. Solvers

 Filter: given current estimate of instrumental state, 
and new data, compute new instrumental state

True underlying 
instrumental state

Solver output

Jones 
Matrix
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Non-linear Kalman Filters
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Iterative vs. Recursive

 Solvers are iterative
 Start with best guess (e.g. previous state), iterate to 

convergence

 Filter is recursive, single step
 New state = F( previous state, new data )

 Kalman filter is Bayesian, maximizes

Prior is previous statePosterior is new state

New data
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Does It Work?

 Implemented by Cyril Tasse (Obs Paris 
Meudon, ex SKA SA) as the KAFCA algorithm

 “Kalman Filters for Calibration”
 Can track clock offsets, TECs, DD Jones 

matrices
 Proven with LOFAR data
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LOFAR Bootes Field
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Bootes II
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Bootes III
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Bootes IV
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Bootes V
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Filter Advantages

 Single-pass vs. iterative
KAFCA  >> COHJONES >> Peeling!

 Stable w.r.t. bad data
 Can start thinking about streaming calibration

 Still need a good sky model though...

 But, imagine a pipeline where you track the 
calibration solutions online, subtract brightest 
sources, and average down the data...
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Applying DDEs

 Once the bright sources have been subtracted, 
how to apply solutions to the rest of the field?

 The New Way: 
 A-projection: convolutional gridding + FFT, integrated 

with deconvolution

 Old School: faceting
 Image multiple facets, correct per facet

 A-projection shown to be more efficient in terms of 
pure FLOPS
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But...

 Convolutional gridding not easy to implement on 
GPUs (well)

 Memory bandwidth often the bottleneck in GPU code

 Hierarchical memory (small fast vs large slow) is 
the current trend in HPC 

 This changes the landscape in terms of algorithmic 
efficiency (no longer enough to just count FLOPS)

 More computationally expensive algorithms may 
exhibit cheaper memory access patterns

 So, we're hedging our bets by reviving faceting
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DDFacet (a baby imager)

Direction i

Direction j

(1) Produces a single tengential 
plane ! (no « noise jumps » thanks 
to the kalman filter, and facetting 
mode)
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(1) Produces a single tengential 
plane ! (no « noise jumps » thanks 
to the kalman filter, and facetting 
mode)

(2) Does full polarisation DDE 
correction

(3) Baseline Dependent Averaging
     90 % of the data can be       
     compressed

BUT
(4) Need to interpolate DDE (if 
drawn from Voronoi tesselation)

DDFacet (a baby imager)
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Baseline-Dependent Averaging

 Shorter baselines move much slower than longer 
ones

 And there's more of them (especially in core-
heavy layouts)

 BDA (longer averaging on shorter baselines) is 
being explored as a means of data compression, 
esp. for SKA1

 Degree of (BD)A limited by field of view
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BDA & Faceting

 Can average very little for wide fields
 But, a facet's FoV is tiny

 Can average much more aggressively
 On-the-fly, since visibilities must be phase-rotated 

to facet centre 

 Averaging is much cheaper than gridding
 DDFacet: BDA on the fly saves >90% of 

gridding operations
 Impact on DR not clear (tested on wide/shallow 

LOFAR data for now)
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Hedging Our Bets

 Benna Hugo (UCT) developing a GPU-based 
facet imager

 Iniyan Natarajan (UCT) developing pyImager, a 
generalization of A-projection to arbitrary beam 
patterns

 Clearly completely different computational and 
DR trade-offs
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Conclusions

 Wirtinger calculus is easy and fun
 Kalman filters are a viable approach to (DI and 

DD) calibration
 May enable (or simplify) streaming calibration

 Maybe time to remember faceting again
 Prospects are good

 JVLA 5M+ image ~real-time processing
 (Much much worse in human time though)

 ...before any of the above is incorporated
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