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The 3GC Culture Wars

 Two approaches to dealing with DD effects
 The “NRAO School”:

 Represent everything by the A-term
 Correct during imaging (convolutional gridding)
 Solve for pointing offsets
 Sky models are images

 The “ASTRON School”:
 Solve for DD gains towards (clusters of) sources 
 Make component sky models, subtract sources in 

uv-plane while accounting for DD gains
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Why DD Gains

 Cons: non-physical, slow & expensive
 But, DD+MeqTrees have consistently delivered 

the goods with all major pathfinders
 Early LOFAR maps and LOFAR EoR (S. Yatawatta)
 Beautiful ASKAP/BETA maps (I. Heywood)
 JVLA 5M+ DR (M. Mitra earlier)

 Fair bet that we'll still be using them come 
MeerKAT and SKA
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DD Gains Are Like Whiskey

 The smoother the better
 Make everything look more attractive
 If you overindulge, you wake in in the morning 

wondering where your {polarized foregrounds, 
weak sources, science signal} have gotten to
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The One True Way
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The Middle Way

 DR limited by how well we can subtract the 
brighter source population

 thus bigger problem for small dish/WF

 Subtract the first two-three orders of magnitude 
in the uv-plane

 good source modelling and (deconvolution and/or 
Bayesian)

 PB models, pointing solutions, +solvable DD gains

 Image and deconvolve the rest really well
 A-term and/or faceting



O. Smirnov & C. Tasse - Wirtinger Kalman Overdrive  - SPARCS 2015 7

Why Expensive

 Solving for Jones matrices is a non-linear 
optimization problem

 O( (Nant x Ndir)^3 )
 Need faster (and simpler) algorithms

 GPU: often better off with many simple ops over 
fewer complicated ops
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Non-linear Optimization

 Minimizing residuals 
 Most algorithms rely on taking a derivative and 

heading down the gradient
Jacobian
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Accelerating Things

 Major cost is inverting the Hessian

 Scales as N
p
3, so gets prohibitively expensive 

for many directions / many antennas
 Algorithms are iterative, so fast but 

approximate inversion can make a huge 
difference

 Helps if the matrix is sparse (spars-ish)
 Peeling is one such kludge

 Need insights into the structure of the matrix to 
come up with inversion approaches
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Complex Derivatives

 Classical optimization theory deals with functions 
of a real variable

 Complex derivatives are funny things
 Complex conjugate does not have a

complex derivative

 Traditional approach: take
derivatives w.r.t. real and 
imaginary, then you have 2N
real derivatives instead

 complicates the
equations
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Wirtinger Derivatives

 Wirtinger (1922): treat z and z conjugate as two 
independent variables, and formally define:

conveniently:

 Purely formal definition, but allows us to define 
a complex gradient operator that works for 
optimization
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Whence Wirtinger

 Considerably simplifies the equations
 Yields new insights into the Hessian structure
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Revealing Sparsity

 Plot of amplitude of JHJ (contrast exaggerated)
 Wirtinger style reveals sparsity
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An Almost Sparse Matrix

Those blocks 
have a small 
amplitude

Those Blocks 
are (Nd x Nd)
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COHJONES

 Complex Half-Jacobian Optimization for N-
directional Estimation

 Treat off-diagonal blocks as
zero; diagonal blocks are
block-diagonal

 Inversion scales as
Ndir^3 rather than 
(Nant Ndir)^3

 Huge gain in performance
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COHJONES = DD StefCal

 Interestingly, for Ndir=1, CohJones reduces to 
the StefCal algorithm

 ….which was formulated on a completely 
different basis:

 Alternating
direction
implicit (ADI) method

 Turns bilinear equation
into linear

Treat this as solvable

Treat this as constant
(from previous iteration)
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A Family Of Algorithms

 Wirtinger calculus not limited to DD gains, can
be used to simplify different calibration 
problems

 E.g. pointing offsets and beam shapes
 Have extended it to Jones matrix derivatives
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Filters vs. Solvers

 Solvers: given the data, find the (max likelihood) underlying 
instrumental state (Jones matrix, ionosphere, clock delay, pointing 
error, etc.)

 Smoothness/continuity can be imposed via 
solution intervals, weighted solutions, etc.

True underlying 
instrumental state

Solver output

Jones Matrix
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Filters vs. Solvers

 Filter: given current estimate of instrumental state, 
and new data, compute new instrumental state

True underlying 
instrumental state

Solver output

Jones 
Matrix
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Non-linear Kalman Filters

h

Process domain: 
Dim=102-104

- Ionosphere
- Clock
- Beam 
- Sky
- etc.

Data“predicted” 
Data 

h(xt, Pt)

xt

Pt

x
t+1

P
t+1

K

Jacobian
(i.e. Wirtinger 

calculus)



O. Smirnov & C. Tasse - Wirtinger Kalman Overdrive  - SPARCS 2015 21

Iterative vs. Recursive

 Solvers are iterative
 Start with best guess (e.g. previous state), iterate to 

convergence

 Filter is recursive, single step
 New state = F( previous state, new data )

 Kalman filter is Bayesian, maximizes

Prior is previous statePosterior is new state

New data
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Does It Work?

 Implemented by Cyril Tasse (Obs Paris 
Meudon, ex SKA SA) as the KAFCA algorithm

 “Kalman Filters for Calibration”
 Can track clock offsets, TECs, DD Jones 

matrices
 Proven with LOFAR data
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LOFAR Bootes Field
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Bootes II
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Bootes III
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Bootes IV
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Bootes V



O. Smirnov & C. Tasse - Wirtinger Kalman Overdrive  - SPARCS 2015 28

Filter Advantages

 Single-pass vs. iterative
KAFCA  >> COHJONES >> Peeling!

 Stable w.r.t. bad data
 Can start thinking about streaming calibration

 Still need a good sky model though...

 But, imagine a pipeline where you track the 
calibration solutions online, subtract brightest 
sources, and average down the data...
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Applying DDEs

 Once the bright sources have been subtracted, 
how to apply solutions to the rest of the field?

 The New Way: 
 A-projection: convolutional gridding + FFT, integrated 

with deconvolution

 Old School: faceting
 Image multiple facets, correct per facet

 A-projection shown to be more efficient in terms of 
pure FLOPS
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But...

 Convolutional gridding not easy to implement on 
GPUs (well)

 Memory bandwidth often the bottleneck in GPU code

 Hierarchical memory (small fast vs large slow) is 
the current trend in HPC 

 This changes the landscape in terms of algorithmic 
efficiency (no longer enough to just count FLOPS)

 More computationally expensive algorithms may 
exhibit cheaper memory access patterns

 So, we're hedging our bets by reviving faceting
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DDFacet (a baby imager)

Direction i

Direction j

(1) Produces a single tengential 
plane ! (no « noise jumps » thanks 
to the kalman filter, and facetting 
mode)



O. Smirnov & C. Tasse - Wirtinger Kalman
 Overdrive  - SPARCS 2015

32

(1) Produces a single tengential 
plane ! (no « noise jumps » thanks 
to the kalman filter, and facetting 
mode)

(2) Does full polarisation DDE 
correction

(3) Baseline Dependent Averaging
     90 % of the data can be       
     compressed

BUT
(4) Need to interpolate DDE (if 
drawn from Voronoi tesselation)

DDFacet (a baby imager)
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Baseline-Dependent Averaging

 Shorter baselines move much slower than longer 
ones

 And there's more of them (especially in core-
heavy layouts)

 BDA (longer averaging on shorter baselines) is 
being explored as a means of data compression, 
esp. for SKA1

 Degree of (BD)A limited by field of view
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BDA & Faceting

 Can average very little for wide fields
 But, a facet's FoV is tiny

 Can average much more aggressively
 On-the-fly, since visibilities must be phase-rotated 

to facet centre 

 Averaging is much cheaper than gridding
 DDFacet: BDA on the fly saves >90% of 

gridding operations
 Impact on DR not clear (tested on wide/shallow 

LOFAR data for now)
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Hedging Our Bets

 Benna Hugo (UCT) developing a GPU-based 
facet imager

 Iniyan Natarajan (UCT) developing pyImager, a 
generalization of A-projection to arbitrary beam 
patterns

 Clearly completely different computational and 
DR trade-offs
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Conclusions

 Wirtinger calculus is easy and fun
 Kalman filters are a viable approach to (DI and 

DD) calibration
 May enable (or simplify) streaming calibration

 Maybe time to remember faceting again
 Prospects are good

 JVLA 5M+ image ~real-time processing
 (Much much worse in human time though)

 ...before any of the above is incorporated
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