

ATCA XXL-S: Survey Description and Initial Results

International Centre for Radio Astronomy Research

Minh Huynh (ICRAR/University of Western Australia)

With

Andrew Butler (ICRAR/UWA) Vernesa Smolcic, Jacinta Delhaize (Uni. Of Zagreb), Marco Bondi, Paolo Ciliegi (INAF, Bologna)

Radio surveys of galaxy evolution

Radio is a sensitive tracer of both SF and AGN activity, unaffected by dust

Radio-loud AGN dominate above 1 mJy

```
Significant population of low
luminosity AGN, even at S < 0.1
mJy
```

Radio surveys are the best way to detect 'radiatively-inefficient' or radio-mode AGN

Radio AGN Classes

Property	HERGs	LERGs	
Accretion rate	1-10% Eddington	<1% Eddington	
Accretion material	Cold gas	Hot gas	
AGN Radiation	X-ray, UV, optical, infrared, and radio signatures of AGN possible	High-excitation optical lines are missing, radio AGN signatures only	
Radio Luminosity	More powerful, L _{1.4GHz} >~ 10 ²⁶ W/Hz	Less powerful, L _{1.4GHz} < ~10 ²⁶ W/Hz	
Host galaxies	Lower M _{stellar} , lower M _{BH} , bluer colours, associated with SF	Higher M _{stellar} , higher M _{BH} , redder colours	
Feedback Mechanism	Quasar driven winds and/or kinetic energy from jets	Kinetic energy from jets	

e.g. Best et al. 2005, 2012; Hardcastle et al. 2007

XMM Extragalactic Survey (XXL)

- The largest XMM programme ever, totalling 6.9 Ms (PI: M. Pierre)
- 2 x 25 sq deg fields with deep XMM data
- f >~5 x 10⁻¹⁵ erg /s /cm² in [0.2 2] keV band

Main goals

- Clusters: cosmology, scaling relations
- AGN: study galaxy evolution with a large sample of AGN
- Expect ~30,000 Xray AGN, 100s of Xray-selected clusters

XXL-North (XXL-N)

4

XXL-S Multiwavelength Data

Survey / Telescope	Wavelength Regime	Filters & Depths	% of XXL-S
Spitzer South Pole	Mid-Infrared	$3.6 \mu m = 0.4 \mu Jy$	100%
Telescope Deep Field (SSDF)		$4.5\mu m$ = $0.84\mu Jy$	
Wide-field Infrared	Mid-Infrared	$W1(3.4\mu m)=0.08 mJy$	100%
Survey Explorer (WISE)	$W2(4.6\mu m) = 0.11 mJy$		
		$W3(12\mu m)=1 mJy$	
		$W4(22\mu m)=6 mJy$	
Vista Hemisphere Survey (VHS)	Near Infrared	$J_{AB}=21.2, Ks_{AB}=19.8$	100%
Dark Energy Survey (DES)	Optical	g=26.1, r=25.6	100%
		i=25.8, z=25.3	
Blanco Cosmology Survey (BCS)	Optical	g=23.9, r=24.0	<50%
		i=23.6, z=22.1	
XMM-Newton	X-ray	0.3-0.5 keV = 10 ks	100%
		0.5-2 keV = 10 ks	
		$2.0\text{-}4.5~\mathrm{keV}=10~\mathrm{ks}$	
Australian Astronomical	~3000	N/A	${\sim}510\%$ of
Telescope (AAT)	optical redshifts		3000 sources

ATCA XXL-S Pilot Survey Observations

- Pilot observations in Sep-Nov 2012 of central ~6 sq deg of XXL-S
- 49 hours in 6km and 1.5km configurations
- Central frequency: 2.1 GHz (2 GHz bandwidth)
- 81 pointings
- ~50 µJy/beam rms, ~4.5 arcsec resolution

Australia Telescope Compact Array in Narrabri, NSW, Australia

 Pointings reduced separately and combined in image plane

Wide-field wide-band imaging is not trivial

- 2 GHz bandwidth is challenging to image
 - Delta freq /freq ~ 1
 - Primary beam, synthesized beam and source flux density all vary with frequency
- Only 6 ATCA antennas
 - Selfcal improvement to gains will scale as (N 1), N = number of baselines
 - ATCA vs VLA: 15 baselines vs 351 baselines.

ATCA XXL-S Wide-field Wide-band Imaging

- Scheme 1: Full-band reduction (e.g. Huynh et al. 2012)
 - Multi-frequency synthesis
 - Invert full 2 GHz band, mfclean, restor with mean beam of all pointings
 - 2 iterations of phase selfcal
 - Linmos (bw=2,10) uses ten frequency-averaged primary beams to handle PB correction
- Scheme 2: Sub-band reduction (e.g. Condon et al. 2012)
 - Multi-frequency synthesis
 - Split into 8 x 256 MHz sub-bands, but lowest sub-band discarded due to RFI
 - Sub-bands imaged with robust weighting factor to roughly match beams
 - 2 iterations of phase selfcal
 - Restor with mean beam for all 7 x 81 = 567 pointings
 - Linmos (bw=0.256,10) uses ten frequency-averaged primary beams to handle PB correction

Performed both to check for systematics, and to derive spectral indices

ATCA XXL-S Pilot Survey Image

Sub-band reduction:

- ~50 µJy/beam rms
- 4.7 x 4.2 arcsec beam
- ~6 sq deg
- Contains 1389 radio sources (>5σ), of which 77 are multiple component

XXL Paper XI: Smolcic et al. submitted

ATCA XXL-S Pilot Survey Results

XXL Paper XI: Smolcic et al. submitted

- Sources matched to SUMSS 843 MHz all sky survey
 - S843 MHz > 6 mJy
 - 159 SUMSS sources overlap with pilot survey
- Mean α = -0.78 ± 0.28, ($S \propto \nu^{lpha}$)
- Source counts consistent with 1.4 GHz counts from COSMOS

ATCA XXL-S New Observations

- 240 hours awarded in Nov-Dec 2014 to reach same depth in full 25 sq deg XXL-S to cover rest of XXL-S
- 390 new pointings, 471 pointings total (including pilot observations) for full 25 sq deg XXL-S
- Both 6km and 1.5 km configurations
- Hexagonal ATCA mosaicing pattern
- Central frequency: 2.1 GHz (1.1 3.1 GHz band)
- Goal of ~45 µJy rms, ~5 arcsec resolution
- Expect > 7000 radio sources (>5 σ)

ATCA XXL-S New Observations

Preliminary Full Mosaic: Full-band reduction

Typical Region of the Preliminary Mosaic

14

Some interesting sources

Preliminary Full Mosaic Noise Properties

- Noise distribution peaks at 36 µJy/beam
- Median noise of 40 µJy/beam
- Tail to higher values at edges of mosaic due to primary beam correction and artefacts around bright sources

How ATCA XXL-S Compares

Based on Fig 1 of Norris et al. 2011

- 3700 sources extracted in inner 16 sq deg (> 6σ)
- Expect > 7000 sources (> 5σ) in final catalogue of 25 sq deg region
- Sources matched to SUMSS 843 MHz all sky survey
 - S843 MHz > 6 mJy
 - 335 SUMSS sources overlap with preliminary list of sources
- Median lpha = -0.72, ($S \propto
 u^lpha$)

ATCA XXL-S Planned Work

- Improve full-band reduction by subtracting artefacts ("peeling") from bright ~1 Jy level sources (almost done)
- Sub-band reduction
- Source extraction, v1.0 of catalogue
- Match to optical/MIR/Xray data in field
- AGN vs SF and LERG vs HERG classification
- Credit: ESA/NASA, AVO project

- SCIENCE !
 - Radio luminosity functions
 - Evolution of radio AGN, esp. LERG vs HERG evolution
 - Feedback from radio AGN
 - Radio galaxies hosts and environments, FRIs vs FRIIs and hybrids?
 - Clusters radio haloes and radio relics?

Example of Peeling Improvement

- Bright off-center sources need to be 'peeled' to remove artefacts
- Progress on this underway, final images will be of better quality than the preliminary mosaic.

Before Peeling

After Peeling

Summary

- Deep (<0.1 mJy rms) wide-area radio surveys are essential for understanding AGN
- Now have preliminary mosaic
 - Central freq of 2.1 GHz, (2 GHz bandwidth)
 - ~40 μJy rms over full XXL-S, 25 sq deg
 - ~5 arcsec resolution
- Ongoing imaging work in sub-bands, to compare with preliminary full-band reduction
- Will provide a sample of >7000 radio sources (of which >5000 radio AGN)