The eclipsing AM CVn star, SDSS J0926+3624

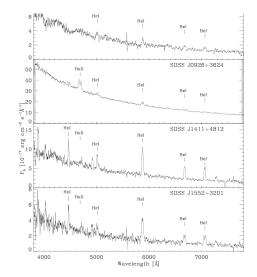
Tom Marsh

Department of Physics, University of Warwick

Co-ls: Vik Dhillon, Stu Littlefair, Paul Groot, Pasi Hakala, Gijs Nelemans, Gavin Ramsay, Gijs Roelofs, Danny Steeghs

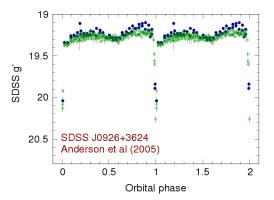
Tom Marsh, University of Warwick

Slide 1 / 29

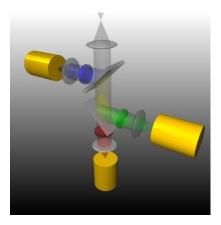

Outline

- $1. \ \mbox{The discovery of SDSS J0926}{+}3624$
- 2. ULTRACAM observations:
 - Phenomenology: superhumps and QPOs
 - Eclipses, parameters.
 - Testing Patterson's ϵ -q relation
 - Timing
- 3. Conclusions

∢ ≣ ≯

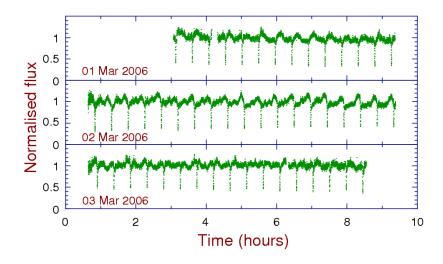

The discovery of SDSS0926+3624

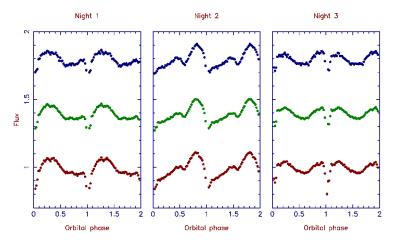
- Anderson et al (2005) discovered 4 new AM CVn stars in the SDSS.
- SDSS J0926+3624 is eclipsing, the first and currently the only eclipsing AM CVn known.
- P = 28 minutes
- g' = 19.3 out of eclipse with eclipses lasting ~ 1 minute.


The discovery of SDSS0926+3624

- Anderson et al (2005) discovered 4 new AM CVn stars in the SDSS.
- SDSS J0926+3624 is eclipsing, the first and currently the only eclipsing AM CVn known.
- P = 28 minutes
- g' = 19.3 out of eclipse with eclipses lasting ~ 1 minute.

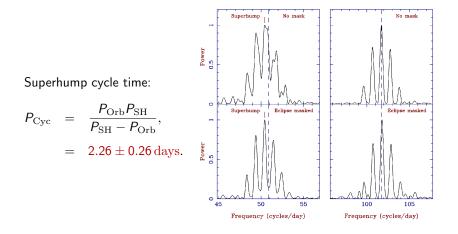
< ≣⇒


ULTRACAM: a high-speed CCD photometer

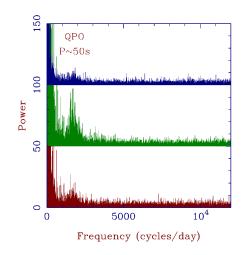

at Cass on the 4.2m WHT

SDSS0926+3624 with 4.2m WHT & ULTRACAM

< 注→


Superhumps – I.

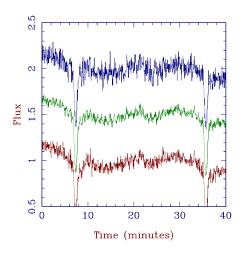
Gross changes of the light curve from night-to-night caused by superhumps, a changing, tidal distortion of the outer disc that occurs for $q = M_2/M_1 < 0.3$ (Whitehurst 1987).


< ∃→

Superhumps – II.

QPO

No high frequency oscillations, but a QPO with a period around 50 seconds.

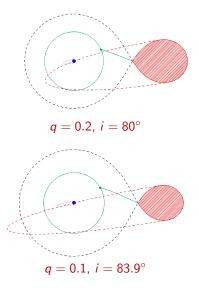


< ≣⇒

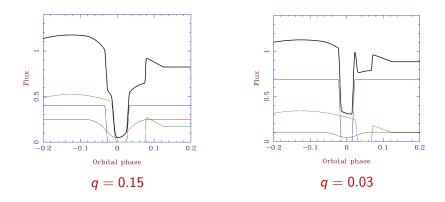
QPO

No high frequency oscillations, but a QPO with a period around 50 seconds.

Peak-to-peak amplitude up to $\sim 10\%$

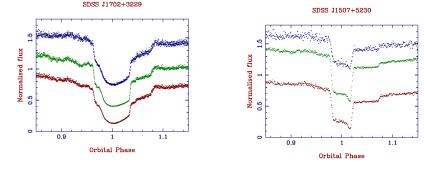

Eclipse analysis in CVs

Stream dynamics and Roche geometry \Rightarrow the orbital inclination *i* and the mass ratio $q = M_2/M_1$


Accretor's eclipse gives R_1/a .

M-*R* relation and Kepler's 3^{rd} law $\Rightarrow M_1$ and M_2 .

Smak (1979); Cook & Warner (1984); Wood et al (1986)

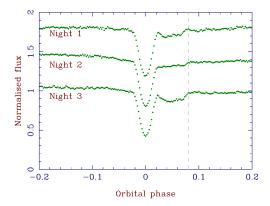


Example models

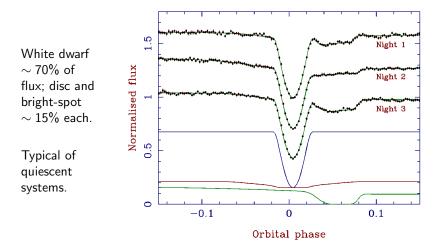
< ≣⇒

Example data, courtesy Stu Littlefair

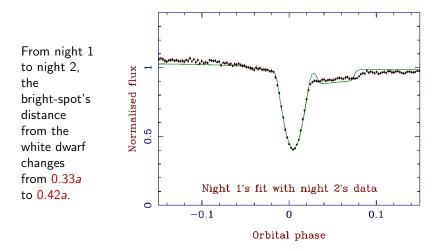
 $P = 144 \min, q = 0.215$

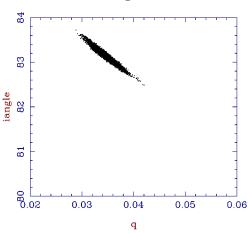

 $P = 67 \min, q = 0.05$

Tom Marsh, University of Warwick

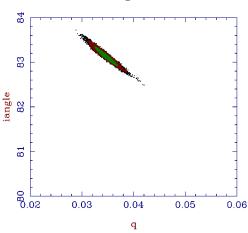

SDSS0926, mean data, night-by-night

In SDSS0926, the bright-spot starts its eclipse after the white dwarf has come out of eclipse. *q* is clearly small.


Disc radius variable from night-to-night (tidal instability of outer disc).

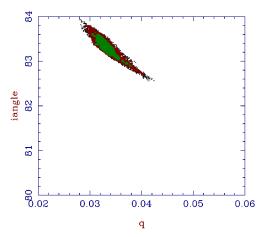

Light curve fits

Distorted outer disc

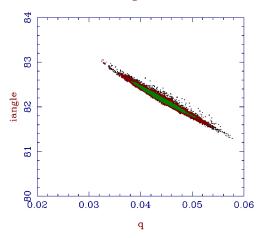


∢ 臣 ♪

Many parameter fits; uncertainties best derived using Markov Chain Monte Carlo (MCMC method, not equivalent to the "Monte Carlo" method).

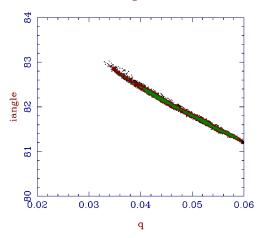

Night 3

Night 3

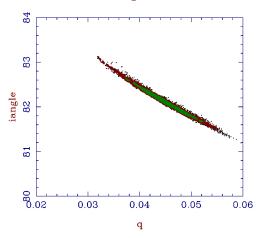

Many parameter fits; uncertainties best derived using Markov Chain Monte Carlo (MCMC method, not equivalent to the "Monte Carlo" method).

∢ 臣 ♪

Many parameter fits; uncertainties best derived using Markov Chain Monte Carlo (MCMC method, not equivalent to the "Monte Carlo" method).

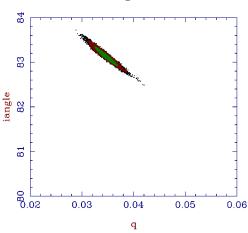

Night 1

Night 2


Many parameter fits; uncertainties best derived using Markov Chain Monte Carlo (MCMC method, not equivalent to the "Monte Carlo" method).

∢ 臣 ♪

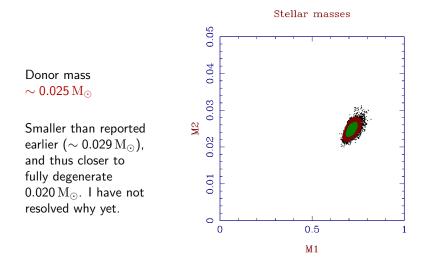
Night 2


Many parameter fits; uncertainties best derived using Markov Chain Monte Carlo (MCMC method, not equivalent to the "Monte Carlo" method).

Night 2

Many parameter fits; uncertainties best derived using Markov Chain Monte Carlo (MCMC method, not equivalent to the "Monte Carlo" method).

∢ 臣 ♪

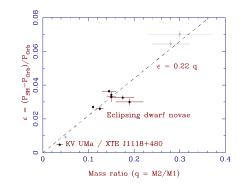


Night 3

Many parameter fits; uncertainties best derived using Markov Chain Monte Carlo (MCMC method, not equivalent to the "Monte Carlo" method).

∢ 臣 ♪

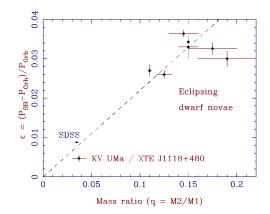
Component masses



< ∃→

Patterson's ϵ -q relation for superhumps

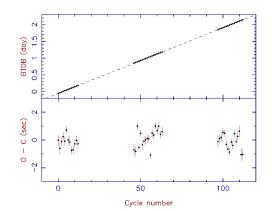
Whitehurst (1987): at small $q = M_2/M_1$, outer disk distorts and precesses \rightarrow superhumps.


Patterson (2001) presented evidence for an empirical relation between $\epsilon = (P_{\rm SH} - P_{\rm orb})/P_{\rm orb}$ and q.

Potentially simple way to measure q in AM CVn stars, but poorly constrained at very small q.

Patterson's ϵ -q relation for superhumps

SDSS0926 lies within $\sim 15\%$ of Patterson's (2001) relation and is by far the most secure calibrator at small q


Timing

Mean eclipse time over 3 nights has RMS uncertainty $\approx 0.2 \text{ sec.}$

Time delay due to GWR-driven orbital evolution over 10 years \sim 5 sec.

 \Rightarrow predicted evolution will be detectable within \sim 5 years.

Any enhancement from magnetic braking should be obvious.

Conclusions

- The first eclipsing AM CVn star, SDSS 0926+3624, does not disappoint and has already the most secure parameters of any AM CVn star.
- 2. Patterson's (2001) ϵ -q relation survives SDSS0926 remarkably unscathed.
- Future observations can (a) map out the shape of a superhumping disc, (b) firm up the parameters, (c) directly measure the period evolution, and (d) test whether magnetic braking operates in AM CVn stars.
- 4. An eclipsing system in hand is worth ten in the fynbos; let's find some more!