Understanding the Diversity of Type Ia Supernova Explosions

Philipp Podsiadlowski (Oxford), Paolo Mazzali (MPA/Padova), Pierre Lesaffre (ENS), Zhanwen Han $(Kunning)$, Francisco Förster $(Oxford/Santiago)$

- most Type Ia supernovae (SNe Ia) form ^a one-parameter family of SNe (\rightarrow Phillips relation)
- increasing number of new SNe Ia types (super-Chandra SNe?)
- link between progenitors and explosion models still very uncertain

I. Type Ia Supernovae

- II. The Phillips Relation and Metallicity as the Second Parameter
- III. Linking Progenitor Models to Explosion Models

Thermonuclear Explosions

- occurs in accreting carbon/oxygen white dwarf when it approaches the Chandrasekhar mass
	- \rightarrow carbon ignited under degenerate conditions: nuclear burning raises T, but not P
	- \rightarrow thermonuclear runaway
	- \rightarrow incineration and complete destruction of the star
- energy source is nuclear energy $(10^{51}$ ergs)
- no compact remnant expected
- standardizable candle (Hubble constant, acceleration of Universe?)

but: progenitor evolution not understood

- [⊲] single-degenerate channel: accretion from non-degenerate companion
- [⊲] double-degenerate channel: merger of two CO white dwarfs

SN Ia Host Galaxies

- SNe Ia occur in young and old stellar populations (Branch 1994) \rightarrow range of time delays between progenitor formation and supernova (typical: ¹ Gyr; some, at least several Gyr; comparable integrated numbers)
- SNe Ia in old populations tend to be faint; luminous SNe Ia occur in young populations $(\rightarrow$ age important parameter)
	- \triangleright the faintest SNe Ia (SN 91bg class) avoid galaxies with star formation and spiral galaxies (age $+$ high metallicity?)
	- [⊲] the radial distribution in ellipticals follows the old star distribution (Förster & Schawinski 2008) \rightarrow not expected if formed in ^a recent galaxy merger
- \rightarrow consistent with double-degenerate model and two-population single-degenerate model (supersoft $+$ red-giant channel)

Single-Degenerate Models

• Chandrasekhar white dwarf accreting from ^a companion star (main-sequence star, helium star, subgiant, ^giant)

Problem: requires fine-tuning of accretion rate

- \triangleright accretion rate too low \rightarrow nova $explosions \rightarrow inefficient accretion$
- \triangleright accretion rate too high \rightarrow most mass is lost in a disk wind \rightarrow inefficient accretion

• Pros:

[⊲] potential counterparts: U Sco, RS Oph, TCrB (WDs close to Chandrasekhar mass), sufficient numbers?

• Cons:

[⊲] expect observable hydrogen in nebular ^phase, stripped from companion star (Marietta, et al.) \rightarrow not yet observed in normal SN Ia (tight limits! $0.02 M_{\odot}$)

• Recent:

- [⊲] surviving companion in Tycho supernova remnant (Ruiz-Lapuente et al.)? Needs to be confirmed. Predicted rapid rotation is not observed (Kerzendorf et al. 2008).
- \rhd SN 2006X (Patat et al. 2007): first discovery of circumstellar material \rightarrow supports giant channel for SNe Ia

Patat et al. (2007)

Fig. 1. Time evolution of the Na D₂ component region as a function of elapsed time since Bband maximum light. We corrected the heliocentric velocities to the rest-frame using the host galaxy recession velocity. All spectra have been normalized to their continuum. In each panel, the dotted curve traces the atmospheric absorption spectrum.

Double Degenerate Merger

• merging of two CO white dwarfs with ^a total mass > Chandrasekhar mass

• Problem:

[⊲] this more likely leads to the conversion of the CO WD into an ONeMg WD and e-capture core $\text{collapse} \rightarrow \text{formation of neutron}$ star

• Pros:

 \triangleright merger rate is probably o.k. (few 10^{-3} yr; SPY)

• Recent:

- \triangleright Yoon, PhP, Rosswog (2007): post-merger evolution depends on neutrino cooling \rightarrow conversion into ONeMg WD may sometimes be avoided \rightarrow thermonuclear explosion may be possible
- multiple channels?
- \rightarrow super-Chandrasekhar channel? (Howell et al. 2007)

.

Figure 3. Dynamical evolution of the coalescence of a $0.6 M_{\odot} + 0.9 M_{\odot}$ CO white dwarf binary. Continued from Fig. 2.

Post-Merger Evolution

- immediate post-merger object: low-entropy massive core surrounded by high-entropy envelope and accretion disk
- evolution is controlled by thermal evolution of the envelope \rightarrow determines core-accretion rate
- despite high accretion rate, carbon ignition is avoided because of neutrino losses
- can lead to thermonuclear explosion iff
	- [⊲] carbon ignition is avoided during merging process
	- \triangleright and disk accretion rate after $10^5\,\mathrm{yr}$ is ${\rm less\,\, than\,\, 10^{-5}\, M_{\odot}/yr}$
- Note: explosion occurs $\sim 10^5\,\mathrm{yr}$ after the merger

The Origin of Ultra-Cool Helium White Dwarfs (Justham et al. 2008)

- \bullet ultra-cool white dwarfs $(\rm{T}_{\rm{eff}} < 4000\,\rm{K})$
- \rightarrow implies very low-mass white dwarfs $(\mathrm{cooling\ timescale!}\ \leqslant\!0.3\,\mathrm{M}_\odot)$
	- can only be formed in binaries
	- some may have pulsar companions, most appear to be single (ultra-cool doubles?)
	- most likely origin: surviving companion after ^a SN Ia
	- kinematics: pre-SN period 10 100 d (short end of red-giant island?)

Symbiotic Binaries as SN Ia Progenitors (Hachisu, Kato, Nomoto)

FIGURE 4. The region to produce SNe Ia in the $\log P_0 - M_{d,0}$ plane for five initial white dwarf masses of 0.75 M_{\odot} , 0.8 M_{\odot} , 0.9 M_{\odot} , 1.0 M_{\odot} (heavy solid line), and 1.1 M_{\odot} . The region of $M_{WD,0} = 0.7 M_{\odot}$ almost vanishes for both the WD+MS and WD+RG systems, and the region of $M_{WD,0} = 0.75 M_{\odot}$ vanishes for the WD+RG system. Here, we assume the stripping efficiency of $\eta_{\text{eff}} = 1$. For comparison, we show only the region of $M_{\text{WD,0}} = 1.0 M_{\odot}$ for a much lower efficiency of $\eta_{\text{eff}} = 0.3$ by a dash-dotted line.

Han et al. (1995)

- two islands in $P_{orb} M_2$ diagram where WDs can grow in mass
- red-giant channel: $P_{orb} \sim 100 d, M_2$ as $\overline{\text{low as 1 M}_{\odot}}$
- may explain SNe Ia with long time delays
- Problem: binary population synthesis simulations do not produce many systems in the red-giant island $(10^{-5}\,{\rm yr}^{-1}$ for optimistic assumptions (Han))
	- \triangleright stable $\mathbf{RLOF} \to \mathbf{wide}$ systems with $\rm P_{orb} \gtrsim 10^3\,d$
	- \triangleright CE evolution \rightarrow close systems with $\rm P_{orb} \leqslant 10^2\,\rm d$
	- \rightarrow gap in period distribution for $\mathrm{systems} \; \mathrm{with} \; \mathrm{P_{orb}} \sim 200 - 1000 \, \mathrm{d} \; \mathrm{(e.g.}$ Han, Frankowski)
- importance of RS Oph
- suggests problem with binary evolution model

Hachisu, Kato, Nomoto

Nomoto, Umeda, Hachisu, Kato, Kobayashi, Tsujimoto: SN Ia

Quasi-dynamical mass transfer?

- need ^a different mode of mass transfer (Webbink, Podsiadlowski)
- very non-conservative mass transfer but without significant spiral-in
- also needed to explain the properties of double degenerate binaries (Nelemans), ^υ Sgr, etc.
- transient CE phase or circumbinary disk (Frankowski) ?

Metallicity as ^a second parameter of SN Ia lightcurves (Timmes et al. 2003)

- the lightcurve is powered by the radioactive decay of 56 Ni to 56 Co $\left(\mathrm{t_{1/2}}=\mathrm{6.1}\,\mathrm{d}\right)$
- $\rightarrow \rm \ L_{peak} \propto M_{56Ni}$
	- the lightcurve width is determined by the diffusion time
		- \triangleright depends on the opacity, in particular the total number of iron-group elements (i.e. ^{56}Ni , ^{58}Ni , ^{54}Fe)
		- $\rightarrow \; \rm{t_{width}} \propto M_{iron-group}$
		- \triangleright $^{54}\mathrm{Fe},$ $^{58}\mathrm{Ni}$ are non-radioactive \rightarrow contribute to opacity but not supernova luminosity
- \rightarrow necessary second parameter
	- the relative amount of non-radioactive and radioactive Ni depends on neutron excess and hence on the initial metallicity (Timmes et al. 2003)
	- \bullet variation of $1/3$ to $3\,\rm Z_{\odot}$ gives variation of 0.2 mag

12 The Second SN Ia Parameter: $\binom{54}{1}$ Fe + $\binom{58}{11}$ $\binom{56}{11}$

 (Mazzali and Podsiadlowski 2006)

Podsiadlowski, Mazzali, Lesaffre, Wolf, Förster (2006)

- metallicity *must* be a second parameter that at some level needs to be taken into account
- cosmic metallicity evolution can mimic accelerating Universe
- but: metallicity evolution effects on their own appear not large enough to explain the supernova observations without dark energy (also independent evidence from WMAP, galaxy clustering)
	- it will be difficult to measure the equation of state of dark energy with SNe Ia alone without correcting for metallicity effects

Measuring the Equation of State

FIG. 1: Mapping the expansion history through the supernova magnitude-redshift relation can distinguish the dark energy explanation for the accelerating universe from alternate theories of gravitation, high energy physics, or higher dimensions. All three models take an $\Omega_M = 0.3$, flat universe but differ on the form of the Friedmann expansion equation.

The effect of metallicity evolution

What controls the diversity of SNe Ia?

 $\textbf{dominant post-SN parameter: } \overline{\mathbf{M}}_{\text{Ni56}} \rightarrow$ $\text{ignition density (pre-SN)} \rightarrow \text{initial WD}$ mass, age (progenitor)

other factors:

- \diamond metallicity \rightarrow neutron excess, initial C/O ratio, accretion efficiency
- \diamond the role of rotation? (Yoon $\&$ Langer 2005: super-Chandra WDs)
- \triangleright the progenitor channel (supersoft, red-giant, double degenerate)
- complex problem to link progenitor evolution/properties to explosion properties

The ignition conditions in the supersoft channel (Lesaffre et al. 2006)

- evolve WD till thermonuclear runaway
- take binary evolution models from Han & Ph.P. (2004) (based on Hachisu et al. model for WD accretion)

- Higher M_{WD} : start with higher density and lead to higher ignition density
- Small M_{WD} : thermal diffusion is faster than accretion, all have the same evolution (Branch normal SNe Ia?)
- High density: electron screening effects in the burning rate fix ignition density

• Younger systems start at higher temperature and ignite at smaller density

 10^{10}

• for old age and high initial mass, Coulomb screening effects yield same ignition density

Ignition Conditions: the Central Density

Distribution of ignition densities 1000 2111114 шĒ Number $0.4 - 0.8$ Gur 100 ennamic шē πē \leq 0.4 Gyr H πē œΞ H жĒ > 0.8 Gyr 2.0×10^{9} 2.5×10^{9} 3.0×10^{9} 3.5×10^{9} 4.0×10^{9} 4.5×10^{9} 5.0×10^{1} Densities $(g.cm^{-3})$

- a range of ignition density
- the minimum density corresponds to the ^global thermal equilibrium
- the maximum density corresponds to screening effects on the ignition curve
- bimodal distribution
- young systems ignite at higher density $\rm (density\rightarrow luminosity?)$
- quantitatively incorrect! \rightarrow work in progress

The Final Simmering Phase

- before the final thermonuclear runaway, there is ^a long phase ('simmering' ^phase) of low-level carbon burning, lasting up to ~ 1000 yr
- this can significantly alter the WD structure
	- [⊲] significant neutronization (up to $\Delta \rm X_C$ ~ 0.1 may be burned)
	- \triangleright density profile
	- [⊲] convective velocity profile

Neutrino cooling time: ${\rm t}_{\nu}$ Convective turnover time: $\rm t_c$ $\rm Carbon$ fusion time: $\rm t_f$

- \bullet t_c < t_l < t_f: mild C burning: neutrino cooling gets rids of the energy generated
- $t_c < t_f < t_{\nu}$: C flash: convection sets in, convective core grows rapidly
- $\bullet\;{\rm t_{\rm f}} < {\rm t_{\rm c}} < {\rm t_{\rm \nu}};\;{\rm C\; i$ gnition: thermonuclear runaway

The Convective Urca Process

- at high densities, electron captures enter into play
- neutrino losses due the Urca process $\text{electron capture:}\ \text{M}+\text{e}^-\rightarrow\text{D}+\nu$ beta decay: $\mathrm{D} \rightarrow \mathrm{M} + \mathrm{e}^- + \bar{\nu}$ (M: mother; D: daughter)
- most important pair: $23\text{Na}/23\text{Ne}$ with ${\rm threshold \,\, density}\,\, \rho_{\rm th}=1.7\times 10^9\,{\rm g\,cm^{-3}}$
- most efficient cooling near Urca shell $(\rho \simeq \rho_{\rm th})$
- net heating outside Urca shell
- long history of yet inconclusive investigations

The Convective Urca Process through the Literature (Lesaffre)

A Two-Stream Formalism for the Convective Urca Process (Lesaffre, PhP, Tout 2005)

Input:

- spherical symmetry
- no viscosity
- mixing-length theory for horizontal exchanges

Output:

- correct energy and chemical budget
- differential reactivity
- Ledoux criterion and convective velocities depend on chemistry
- time-dependent model
- handles convective velocity asymmetries (overshooting)
- handles interactions with the mean flow

Preliminary Results

- the final pre-SN WD structure is drastically altered
- inclusion of convective work:
	- [⊲] chemical dependence of the convective luminosity
	- [⊲] chemical dependence of the convective velocity
- Urca reactions slow down convective motions
- \rightarrow smaller convective cores at the time of the explosion?
- significant addition neutronization ? (cf. Stein & Wheeler ²⁰⁰⁶ [2D]; Piro & Bildsten 2007; Chamulak et al. 2007)

Note: extreme numerical problems when the convective core approaches the Urca shell

Future Work (in progress)

- modelling the convective Urca process is essential for modelling the final pre-SN WD structure
- will allow to link the properties of the progenitor to the actual explosion \rightarrow close the loop
- will allow detailed investigation of the diversity of SNe Ia
	- [⊲] metallicity dependence
	- \triangleright initial C/O ratio
	- ⊲ WD accretion rate
	- ⊲ initial WD mass
- provide physical foundation for using SNe Ia as cosmological distance candles

Conclusions

- significant progress on understanding the progenitors, but still no firm conclusions
- need short and long time delays
- most SNe Ia are similar but ^a significant subset shows large diversity
- need for multiple channels?
- metallicity should be ^a second parameter for SN lightcurves