White Dwarf mergers: AM CVn, sdB and R CrB connections

Simon Jeffery Armagh Observatory

many, many colleagues, but principally: Phil Hill, Uli Heber and Hideyuki Saio

White Dwarf mergers: AM CVn, sdB and R CrB connections

- WD-WD binaries and WD-WD mergers
- AM CVn stars
- He+He WD mergers EHe / sdB / sdO stars ?
- CO+He WD mergers EHe / RCrB / SNIa ?
- CO+CO WD mergers ?
- What *actually* happens in a WD merger ?
	- Angular Momentum ?
	- Disk / Envelope / Core ?
	- Hydrodynamics ?
	- Nucleosynthesis ?
- Lies, Damned Lies

Origin of Binary White Dwarfs

Nelemans et al. 2001 A&A 365, 491 (inter alia)

Nelemans et al. 2001 A&A 368, 939

Nelemans et al. 2001 A&A 368, 939

What happens in the unstable zone?

white-dwarf white-dwarf binaries

period distribution: *(Nelemans et al. 2001, Maxted et al. 2002, also Deloye's talk)*

merger timescales: τ_m =10⁷ (*P*/h)^{8/3} µ⁻¹ (*M*/M_o)^{-2/3} yr *(Landau & Lifshitz 1958)*

CO+He merger frequency: ν ∼ 4.4 10-3 yr-1 *(Neleman's et al. 2001)* ν ∼ 2.3 10-3 yr-1 *(Iben et al.)*

white-dwarf merger models: old question!

• He+He \Rightarrow He ignition \Rightarrow HeMS or sdB star \Rightarrow CO WD

(Nomoto & Sugimoto 1977, Nomoto & Hashimoto 1987, Kawai, Saio & Nomoto 1987, 1988, Iben 1990)

• He+CO \Rightarrow RCrB star OR SNIa?

(Webbink 1984, Iben & Tutukov 1984, Iben 1990)

• $CO+CO \Rightarrow C$ ignition \Rightarrow O+Ne+Mg WD OR explosion?

(Hachisu et al. 1986a,b, Kawai, Saio & Nomoto 1987, 1988, Nomoto & Hashimoto 1987, Mochkovitch & Livio 1990, Saio & Nomoto 1998)

- results critically sensitive to WD temperature AND accretion rate
- what do the products look like between merger and endstate?

white dwarf merger models: basic approach

Saio & Jeffery ….

He+He WD mergers

hypothesis

He+He white dwarf formed

orbit decays

less massive WD disrupted when $P_{orb} \sim 4$ minutes

super-Eddington accretion:

forms thick disk?

more massive WD accretes material from disk

⇒model

⇒model

sdB stars

- Four types:
	- sdB+MS (F-G) long-period
	- sdB+MS (M) short-period
	- sdB+WD (He) short-period
	- sdB single
- Four origins:
	- Stable RLOF
	- $-$ CE
	- Stable RLOF + CE
	- HeWD+HeWD merger

Greenstein & Sargent 1974

sdB stars: helium abundance and He+He mergers?

Edelmann et al. 2004, Winter 2006, O'Toole 2008

Helium-rich sdB/O's: He, C, and N abundances

 N_{He} ~ 0.1-0.99

Stroeer et al. 2004, Hirsch et al. 2008

He-sdB's: merger or flasher?

Ahmad et al. 2004, see also Justham et al. ???

He-sdB's: merger or flasher?

Ahmad et al. 2004, see also Justham et al. ???

CO+He WD mergers

CO+He merger: EHes and RCrBs

solid: $0.6M_{\odot}$ CO+He dashed: $0.5M_{\odot}CO+He$

light: accretion heavy: contraction

EHes

Baade radii from pulsating EHes

Extreme Helium Stars R Coronae Borealis Stars Hydrogen-Deficient Carbon Giants

Extreme Helium Stars R Coronae Borealis Stars Hydrogen-Deficient Carbon Giants

The RCrB – EHe – O(He) – WD sequence

- RCrB / HdC
- EHe
- HesdO+
- O(He)

Surface abundances: $H < 1:10⁵$ N (from CNO cycle) C (from 3α process) O (α-capture on 12C) Ne (2α-capture on 14N)

a) Proxies for metallicity (Ni, Mn, Cr, Fe) $\Rightarrow -2 <$ [Fe/H] < 0 b) Overabundant light elements (Mg, Si, S, ...) ??

Pandey, Lambert, Jeffery & Rao 2006, ApJ 638, 454

c) $[N/Fe] \propto [(C+N+O)/Fe]$ OK d) [O/Fe] >> 0 ?? e) [s/Fe] >> 0 AGB intershell ?? f) $[Ne/Fe] >> 0$??

 \sum 0 \bigcirc О \mathbf{O} Ω -1 Ξ $[0] % \begin{center} % \includegraphics[width=\linewidth]{imagesSupplemental_3.png} % \end{center} % \caption { % Our method can be used for the use of the image. % Note that the \emph{Def}(i) and the \emph{Def}(i) are the same as a function of the image. % Note that the \emph{Def}(i) and the \emph{Def}(i) are the same as a function of the image. % Note that the \emph{Def}(i) and the \emph{Def}(i) are the same as a function of the image. % } % \label{fig:Def}(i) and the \emph{Def}(i) are the same as a function of the image. % Note that the \emph{Def}(i) and the \emph{Def}(i) are the same as a function of the image. %$ -1 -1 \Box $\left[{\rm Zr}\right]$ \Box -1 -2 -2 -2.5 -2 -1 $\mathbf 0$ -2 -1 $\mathbf 0$ $[Fe] \centering% \includegraphics[width=1.8\columnwidth]{figures/fig_0a}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{$ $[Fe] \centering% \includegraphics[width=1.8\columnwidth]{figures/fig_0a}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{figures/fig_0b}% \includegraphics[width=1.8\columnwidth]{$

Pandey, Lambert, Jeffery & Rao 2006, ApJ 638, 454

h) Li ??

j) $12C \gg 13C$ substantial 3α processing

g) F 2? Pandey (2007)

i) ¹⁸O \gg ¹⁶O α -capture on N¹⁴ : but when? Clayton et al. (2007)

h) Li ??

j) $12C \gg 13C$ substantial 3α processing

g) F 2? 2. Pandey (2007)

i) ¹⁸O \gg ¹⁶O α -capture on N¹⁴ : but when? Clayton et al. (2007)

The merger process

Angular momentum Disk / Envelope / Core **Hydrodynamics** Nucleosynthesis

What actually happens in a WD merger?

What actually happens in a WD merger?

$t = 0.00 h$

 $P = 6.000 h$ $a = 0.091 R$

SPH Simulations: 0.8+0.6 T *Isern & Guerrero 2002, WD13 Naples*

SPH Simulations: 0.8+0.6 T *Isern & Guerrero 2002, WD13 Naples*

N

evolution of a 0.9+0.6 $\overline{M_{\odot}}$ CO WD

T6 ot t= 1.715 min

 $\begin{smallmatrix}&&0\&&0\x\;[\text{code units}]\end{smallmatrix}$

T6 ot t= 3.430 min

x [code units]

T6 ot t= 5.146 min

 \circ

x [code units]

 -2

 -4

 -15

[code

 -20

 -10

 -10 -5 $^{\circ}$ 500

400

300

200

500

400

300

200

100

500

400

300

200

100

20

10

10

Yoon et al. 2007, *Also Benz et al. 1990ab, Segretain et al. 1997*

Yoon et al. 2007

Yoon et al. 2007:

Clayton et al. 2007: evolution of a CO+He WD merger

Considered a one-zone high-entropy envelope, for two cases ($M_{He} = 0.2$ and $0.4 M_{\odot}$).

Computed temperature, density from 1d hydrodynamic evolution, including nucleosynthesis.

Found dramatic production of 18O.

Phases in a DD merger

- Tidal disruption
- "Disk" formation
- Prompt nucleosynthesis in disk?
- Angular momentum dissipation
- High-entropy envelope forms
- Envelope "accreted" onto primary: $dM_{env}/dt < dM_{end}/dt$

- Helium (carbon) burning starts
- Star expands, but high-S envelope remains
- Outer layers convective
- Accretion continues to completion

Lies, Damned Lies, and ….

Lies, Damned Lies, and …. Statistics

!! Warning !! The statistics are due to Gijs Nelemans The lies are entirely my own All are still under discussion

CO+He mergers: number densities

- 20% of all WD pairs include CO+He WD (Neleman's et al 2001)
- CO+He WD merger rate: v ~ 4.4 10⁻³ yr⁻¹ (Neleman's et al. 2001) (Iben et al. give $2.3 10^{-3}$ yr⁻¹)

• Heating rates between 10 000 and 40 000 K are 10 - 100 K yr⁻¹, or evolution timescales: τ ∼ 300 - 3000 yr

- Merger rate x timescales gives number of EHes (N) in Galaxy between 1.3 and 13
- There are 17 known EHes in this temperature range
- Stars cooler than 10 000 K have $\tau \sim 10^5$ yr, \Rightarrow N = $\sqrt{\tau}$ ~ 30 - 300 cool CO+He merger products

• There are an estimated 200-1000 RCrBs in galaxy (Lawson et al. 1990), although only 33 are known (Alcock et al. estimate 3000 RCrBs)

Observed mass distribution Predicted

5000 4000 3000 2000 1000 $\overline{0}$ 0.5 Ω 1.5 $\overline{2}$

Mass distributions look OK Galactic distribution ?? Observed – bulge and thick disk Predicted – thin disk

Conclusions

- A significant number of DDs merge (a few/galaxy/century)
- He+He WDs \Rightarrow EHe sdO / sdB sequence
- CO+He WDs \Rightarrow RCrB EHe O(He) WD sequence
- Physics of merger is really really interesting – surface abundances require hot mergers
- Predicted birth-rates and mass-distribution compatible with observed numbers

Questions:

- Can observed merger products account for all DDs formed ?
- Are any DDs left over to become stellar AM CVne ?
- What happens to AM CVne when they ignite helium ?