Recent Progress in Modelling of Accretion Discs in AM CVn Stars

Thorsten Nagel

D.-J. Kusterer, T. Rauch, D. Semionov, K. Werner

Institut für Astronomie und Astrophysik Kepler Center for Astro and Particle Physics Universität Tübingen

Sept. 4th 2008

Outline

- Modelling of NLTE Accretion Discs
- Model grid for AM CVn systems
- Model vs. CE 315
- Accretion Disc Wind First Steps
- Summary

Modelling of NLTE Accretion Discs

Assumptions:

geometrically thin α-disc (Shakura & Sunyaev 1973) axial symmetry

- Divide disc into set of concentric rings
- Each ring: plane-parallel radiating slab
- Calculate detailed vertical structure and synthetic spectrum with AcDc (Accretion Disc code, Nagel et al. 2004)

Modelling of Accretion Discs

hydrostatic equilibrium

(gas and radiation pressure)

radiative equilibrium

(full line blanketing, no convection)

NLTE rate equations

radiation transfer eqs.

(irradiation by primary can be considered)

Modelling of Accretion Discs

- Vertical structure and spectrum for each disc ring
- Integration of all disc ring intensities, rotational broadening
 - \Rightarrow NLTE accretion disc spectra for different inclinations
- disc spectrum can be used as input for our accretion disc wind models

Modelling of Accretion Discs

Input parameters

- mass and radius of central object
- mass accretion rate
- radial extension of accretion disc
- Reynolds number
- chemical abundances $(\rightarrow \text{ donor star})$
- irradiation: temperature/spectrum of central object irradiation angle

Model grid for AM CVn stars

- mass of primary: 0.6, 0.8, 1.0, 1.2 and 1.4 M
- mass accretion rate: 10⁻⁸, 10⁻⁹, 10⁻¹⁰, 10⁻¹¹ M /yr
- variation of C, N, O, Si abundances
- radially extended to the tidal radius (if possible)
- five inclination angles

Sept. 4th 2008

Model grid for AM CVn stars

Institut für Astronomie und Astrophysik

Variation of primary mass

Variation of mass-accretion rate

Variation of chem. abundances

 2^{nd} Int. Workshop on AM CVn Stars 1-5 Sept. 2008 Cape Town, South Africa Eberhard Karls UNIVERSITÄT TÜBINGEN Institut für Astronomie und Astrophysik

Variation of chem. abundances

Variation of inclination

Influence of irradiation by primary

Influence of irradiation by primary

Spectroscopic detection of primary

so far only one directly spectroscopical detection of white dwarf primary (Sion et al. 2006)

in which systems should we look, in which wavelength range ?

Spectroscopic detection of primary

Sept. 4th 2008

Models vs. Observation: CE 315

Models vs. Observation: CE 315

Models vs. Observation: CE 315

- WOMPAT: Wind mOdel in Monte carlo Parallel rAdiative Transfer (D. Kusterer 2008, PhD Thesis)
- parallelized Monte Carlo code
- LTE occupation numbers
- iterative solution of temperature and ionisation structure
- calculated disc spectrum or blackbody as input

Institut für Astronomie und Astrophysik

Summary

- grid of accretion disc models:
 - 0.6 1.4 M_☉
 - $10^{-8} 10^{-11} M_{\odot}/y$
- reproduction of absorption and emission line spectra for high and low state
- irradiation by the primary seems to have almost no effect onto the spectrum

Summary

- spectroscopic detection of primary best possible in UV
- indication of underabundance of Si in CE315 (also no Si found in X-ray [Ramsay et al. 2006] and UV [Gänsicke et al. 2003])
- Monte Carlo based accretion disc wind

