Progenitor models

Reverse evolution

Future work

Formation of double white dwarfs and AM CVn stars

Marc van der Sluys^{1,2}

Frank Verbunt¹, Onno Pols¹ ¹Utrecht University, The Netherlands

Mike Politano³, Chris Deloye², Ron Taam², Bart Willems² ²Northwestern University, Evanston, IL, USA; ³Marquette University, Milwaukee, WI, USA

AM CVn workshop, Cape Town, September 2, 2008

Progenitor models

Reverse evolution

Future work

Outline

Common envelopes

- Observed double white dwarfs
- Common-envelope evolution
- Envelope ejection
- Progenitor models
 - Single-star models

3 Reverse evolution

- Second mass-transfer phase
- Stable first mass-transfer phase
- Envelope ejection as first mass transfer

イロト イポト イヨト イヨト

Common envelopes ●○○○○○ Progenitor models

Reverse evolution

Future work

Observed double white dwarfs

Reverse evolution

Future work

Observed double white dwarfs

System	Porb	aorb	<i>M</i> ₁	M ₂	<i>q</i> ₂	$\Delta \tau$
	(d)	(H_{\odot})	(<i>M</i> ⊙)	(<i>M</i> ⊙)	(M_2/M_1)	(Myr)
WD 0135-052	1.556	5.63	0.52 ± 0.05	0.47 ± 0.05	0.90 ± 0.04	350
WD 0136+768	1.407	4.99	0.37	0.47	1.26 ± 0.03	450
WD 0957–666	0.061	0.58	0.32	0.37	1.13 ± 0.02	325
WD 1101+364	0.145	0.99	0.33	0.29	0.87 ± 0.03	215
PG 1115+116	30.09	46.9	0.7	0.7	0.84 ± 0.21	160
WD 1204+450	1.603	5.74	0.52	0.46	0.87 ± 0.03	80
WD 1349+144	2.209	6.59	0.44	0.44	1.26 ± 0.05	—
HE 1414–0848	0.518	2.93	0.55 ± 0.03	0.71 ± 0.03	1.28 ± 0.03	200
WD 1704+481a	0.145	1.14	0.56 ± 0.07	0.39 ± 0.05	0.70 ± 0.03	-20 ^a
HE 2209–1444	0.277	1.88	0.58 ± 0.08	0.58 ± 0.03	1.00 ± 0.12	500

^a Unclear which white dwarf is older

See references in: Maxted et al., 2002 and Nelemans & Tout, 2005.

3

イロト イロト イヨト

Progenitor models

Reverse evolution

Future work

Common envelope

Average orbital separation:
7 R_☉
Typical progenitor:
M_c ≳ 0.3 M_☉
R_{*} ~ 100 R_☉

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Progenitor models

Reverse evolution

Future work

Common envelope

・ロト ・聞ト ・ヨト ・ヨト

Common envelopes	Progenitor models	Reverse evolution	Future work
000000			

Envelope ejection

- Classical α -common envelope (spiral-in):
 - orbital energy is used to expel envelope (Webbink, 1984):

$$U_{\rm bind} = \alpha_{\rm CE} \left[\frac{G M_{\rm lf} M_2}{2 a_{\rm f}} - \frac{G M_{\rm li} M_2}{2 a_{\rm i}} \right]$$

• α_{CE} is the common-envelope efficiency parameter

- γ -envelope ejection (EE, spiral-in not necessary):
 - envelope ejection with angular-momentum balance (Nelemans et al., 2000):

$$rac{J_{
m i} \ - \ J_{
m f}}{J_{
m i}} \ = \ rac{\gamma_{
m CE}}{M_{
m li}} \ rac{M_{
m li}}{M_{
m li}} \ + \ M_2$$

• $\gamma_{CE} \approx 1.5$ is the efficiency parameter

・ ロ ト ・ 雪 ト ・ 目 ト ・

Reverse evolution

Envelope ejection

Assumption:

- Envelope ejection occurs much faster than nuclear evolution, hence:
 - core mass does not grow during envelope ejection
 - no accretion by companion during envelope ejection

From Eggleton models:

- White-dwarf mass fixes evolutionary state of progenitor
- Giant radius determines orbital period of progenitor
- Envelope binding energy dictates what α_{CE} is needed

STERN

Progenitor models

Reverse evolution

Future work

Progenitor models

Progenitor models

Reverse evolution

Future work

Progenitor models

Progenitor models

Reverse evolution

Future work

Progenitor models

Progenitor models

Reverse evolution

Future work

Evolutionary scenarios

Stable + unstable	Unstable + unstable
MS + MS	MS + MS
↓ Stable M.T. (cons.) ↓	↓ Unstable M.T. (γ -EE) ↓
WD + MS	WD + MS
\downarrow Unstable M.T. (α -CE) \downarrow	\downarrow Unstable M.T. (α, γ -EE) \downarrow
WD + WD	WD + WD

NORTHWESTERN UNIVERSITY

ヘロト 人間 とくほ とくほとう

Progenitor models

Reverse evolution

Future work

Confusogram

Progenitor models

Reverse evolution

Future work

α -CE results

Progenitor models

Reverse evolution

Future work

α -CE results

Progenitor models

Reverse evolution

Future work

Conservative first mass transfer

Progenitor models

Reverse evolution

Future work

Conservative first mass transfer

へのマント (雪マン)

Progenitor models

Reverse evolution

Future work

Conservative mass transfer: M, P

Progenitor models

Reverse evolution

Future work

Conservative mass transfer: $q, \Delta t$

(日)

Reverse evolution

Conclusions

Conservative MT:

- More accurate models change α -CE only slightly
- After stable mass transfer, white-dwarf primaries have too low mass and too long orbital periods
- We can reproduce perhaps 1–4 out of 10 systems, all with $\alpha_{ce} >$ 1.6
- Conservative mass transfer cannot explain the observed double white dwarfs

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Progenitor models

Reverse evolution

Future work

STERN

Angular-momentum balance

• Average specific angular momentum of the system:

$$rac{J_{\mathrm{i}} \ - \ J_{\mathrm{f}}}{J_{\mathrm{i}}} \ = \ \gamma_{\mathrm{s}} \ rac{M_{\mathrm{1i}} \ - \ M_{\mathrm{1f}}}{M_{\mathrm{tot,i}}}$$

Specific angular momentum of the accretor:

$$\frac{J_{\rm i} - J_{\rm f}}{J_{\rm i}} = \gamma_{\rm a} \left[1 - \frac{M_{\rm tot,i}}{M_{\rm tot,f}} \exp\left(\frac{M_{\rm lf} - M_{\rm li}}{M_2}\right)\right]$$

Specific angular momentum of the donor:

$$rac{J_{\mathrm{i}}~-~J_{\mathrm{f}}}{J_{\mathrm{i}}}~=~\gamma_{\mathrm{d}}~rac{M_{\mathrm{li}}~-~M_{\mathrm{lf}}}{M_{\mathrm{tot,f}}}~rac{M_{\mathrm{2i}}}{M_{\mathrm{li}}}$$

Common	envel	lopes

Reverse evolution

Models

Number of progenitor models:

- 10+1 observed systems
- 199 progenitor models in our grid
- 11 variations in observed mass: $-0.05, -0.04, ..., +0.05 M_{\odot}$
- total: $11 \times 11 \times \sum_{n=1}^{198} n \approx 2.4$ million

Filters:

- dynamical MT: $R_* > R_{
 m BGB}$ and $q > q_{
 m crit}$
- age: $\tau_1 < \tau_2 < 13 \, \text{Gyr}$
- EE-parameter: $0.1 < \alpha_{ce}, \gamma < 10$
- Candidate progenitors left: ~ 204000

STERN

Progenitor models

Reverse evolution

Future work

Results for $\gamma_{\rm s} + \alpha_{\rm ce}$

Progenitor models

Reverse evolution

Future work

Results for $\gamma_{\rm d} + \gamma_{\rm a}$

Progenitor models

Reverse evolution

Results: overview

Select systems with:

• $0.8 < \alpha_{ce} < 1.2$

• $1.46 < \gamma_{\rm s} < 1.79$

• $0.9 < \gamma_{a,d} < 1.1$

System	1: $\gamma_{\rm s} \alpha_{\rm ce}$	2: $\gamma_{\rm s}\gamma_{\rm s}$	3: $\gamma_a \alpha_{ce}$	4: $\gamma_a \gamma_a$	5: $\gamma_d \alpha_{ce}$	6: $\gamma_d \gamma_a$	Best:
0135	-	+	+	-	+	+	2,3,5,6
0136	+	+	+	+	+	+	1–6
0957	+	+	-	+	+	+	1,2,4,5,6
1101	+	+	+	-	+	+	1,2,3,5,6
1115	+	+	+	+	+	+	1–6
1204	_	+	+	+	+	+	2–6
1349	+	+	+	+	+	+	1–6
1414	_	+	_	+	_	+	2,4,6
1704a	+	+	_	-	_	-	1,2
1704b	+	+	_	+	+	+	1,2,4,5,6
2209	+	+	-	_	+	+	1,2,5,6 🕋

+: α, γ within range, -: α, γ outside range

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Progenitor models

Reverse evolution Future work

Results: overview

Select systems with:

• $0.8 < \alpha_{ce} < 1.2$

• $1.46 < \gamma_{\rm s} < 1.79$

● 0.9 < $\gamma_{a,d}$ < 1.1

System	1: $\gamma_{\rm s} \alpha_{\rm ce}$	2 : $\gamma_{\rm s}\gamma_{\rm s}$	3: $\gamma_a \alpha_{ce}$	4: $\gamma_a \gamma_a$	5: $\gamma_{\rm d} \alpha_{\rm ce}$	6: $\gamma_d \gamma_a$	Best:		
0135	-/-	+/~	+/~	-/-	+/~	+/~	2,3,5,6		
0136	+/+	+/+	+/~	+/~	+/+	+/+	1,2,5,6		
0957	+/+	+/+	-/-	+/-	+/+	+/+	1,2,5,6		
1101	+/~	+/-	+/-	-/-	+/~	+/~	1,5,6		
1115	+/~	+/+	+/~	+/~	+/+	+/+	2,5,6		
	,	,	,	,	,	,			
1204	-/-	+/-	+/-	+/-	+/-	+/+	6		
1349	+/+	+/+	+/+	+/+	+/+	+/+	1–6		
1414	-/-	+/+	-/-	+/+	-/-	+/+	2,4,6		
1704a	+/-	+/-	-/-	-/-	-/-	-/-	1,2		
1704b	+/-	+/-	-/-	+/-	+/-	+/-	1,2,4,5,6		
2209	+/+	+/+	-/-	-/-	+/~	+/+	1,2,6		
+: α, γ within range: α, γ outside range									

+: α, γ within range, -: α, γ outside range

 $+: \Delta(\Delta t) < 50\%, ~\sim: 50\% < \Delta(\Delta t) < 500\%, ~-: \Delta(\Delta t) > 500\%$

NORTHWESTERN

UNIVERSITY

Progenitor models

Reverse evolution

Future work

Results: example solution

Common	envel	opes

Reverse evolution

Future work

Results: solutions

WD	Mthd.	γ_1	$\gamma_2, \\ \alpha_{\rm ce2}$	$\Delta au/Myr$ obs mdl	M₁i M⊙	$M_{ m 2i}$ $M_{ m \odot}$	$P_{ m i}$ d	P _m d	M₁f M⊙	$M_{ m 2f} M_{ m \odot}$	P _f d
0135	$egin{aligned} & \gamma_{ m d}\gamma_{ m a} \ & \gamma_{ m d}\gamma_{ m a} \end{aligned}$	1.11	0.94	350 118	3.30	2.90	36.28	41.10	0.47	0.42	1.56
0136		0.96	1.05	450 450	1.70	1.59	106.1	371.4	0.37	0.46	1.41
0957		1.00	1.01	325 317	1.98	1.83	26.17	79.26	0.33	0.37	0.06
1101		1.10	0.98	215 322	2.87	2.34	22.02	28.23	0.39	0.34	0.14
1115		0.97	1.04	160 240	5.42	3.42	201.2	1012.	0.89	0.75	30.09
1204	$egin{aligned} & \gamma_{ m d}\gamma_{ m a} \ & \gamma_{ m d}\gamma_{ m a} \ & \gamma_{ m d}\gamma_{ m a} \ & \gamma_{ m d}\alpha_{ m ce} \ & \gamma_{ m d}lpha_{ m ce} \ & \gamma_{ m d}\gamma_{ m a} \end{aligned}$	1.09	0.92	80 100	3.34	2.98	15.47	19.99	0.47	0.41	1.60
1349		0.95	0.98	0 101	1.86	1.81	63.44	241.2	0.35	0.44	2.21
1414		0.95	0.99	200 188	3.51	3.09	70.81	358.3	0.52	0.66	0.52
1704a		1.11	1.13	-20 52	2.06	1.88	40.37	65.66	0.51	0.36	0.14
1704b		1.03	0.15	20 182	1.68	1.65	212.1	478.6	0.41	0.58	0.14
2209		1.04	1.05	500 340	4.15	2.94	98.45	294.3	0.63	0.63	0.28

Reverse evolution

Conclusions

- Conservative mass transfer cannot explain the observed double white dwarfs
- Unstable envelope ejection can do this
- Several EE descriptions can reconstruct observed masses and periods
- $\gamma_s \gamma_s$ and $\gamma_d \gamma_a$ can in addition explain most observed cooling-age differences

э

Reverse evolution

STERN

Future work

Population-synthesis code

- Based on grid of single-star models with Eggleton code
- Models provide *M*_c, *R*, *U*_{bind}
- Stellar wind, tidal coupling included
- Used for modelling binary mergers due to CE spiral-in (Politano et al., 2008)
- Second common-envelope phase implemented to study formation of double white dwarfs
- Need to:
 - include naked helium-star models
 - include more physics, e.g. magnetic braking

Reverse evolution

NORTHWESTERN

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Future work

Purpose:

- Study effect of e.g.:
 - different α/γ -prescriptions
 - wind mass loss
 - angular-momentum loss
- on formation of e.g.:
 - double white dwarfs
 - He star/white dwarf binaries
 - AM CVns
 - CVs