

Southern African Large Telescope

The Arecibo Concept:

SALT Tracking Principle

Tracker off-centre and pupil partially on primary mirror array. At worst extreme, still a ~7 metre telescope.

With tracker and 11-m pupil centred on primary mirror array and central obstruction (from SAC optics), equivalent to a 8.5 metre telescope.

Pupil is always under-filled and constantly varies with time

- ⇒ photometry is difficult (differential only)
- ⇒ Local (within field) 'standards' (comarison stars) should be defined if 'real' mags/colours are important

Pupil is baffled at exit pupil

• can 're-play' pupil filling function for later calibrations (e.g. flat fields)

SALT characteristics

Annulus of visibility for SALT:

Annulus represents 12.5% of visible sky

Declination range: +10° to -75°

Observation time available = time taken to cross annulus

But tracker only has limited range ⇒

Additional azimuth moves needed to achieve full obs. time

SALT Track Surface

Completed Telescope

- Dome
- Shutter
- Tracker & Payload
 - 2 FIRST-LIGHT INSTRUMENTS
 - ACQUISITION, GUIDANCE & FOCUS CAMERAS
 - CALIBRATION SYSTEM
 - ATMOSPHERIC DISPERSION CORRECTOR
 - MOVING EXIT PUPIL BAFFLE
- Structure
 - TUBE
 - BASE WEDGE
 - MIRROR TRUSS
- Facility Building
 - CAT-WALK FOR TRACKER ACCESS
 - AIR CONDITIONING DUCTS
 - VENTILATION LOUVRES
- **Primary Mirror Array**
 - EDGE SENSORS
 - ACTUATORS

Design innovations for SALT

Because of the valuable lessons learnt from H.E.T., plus a systems engineering approach and improvements made possible by technological advances and sourcing products globally, SALT has benefited and is expected to have the large proved per a many contents.

- •Improved optical design (the Spherical Aberration Corrector) by Darragh O'Donoghue delivering larger field, better image quality.
- ·Larger effective collecting area by increasing pupil size (11-m diameter):
- 15% increase in light collecting power.
- •More efficient protected silver-aluminium multi-layer coatings (LLNL) for mirrors offer much improved blue/UV performances 450 nm).
- •Holistic integrated payload design, increased mass budget (~1000 kg) and use of carbon composites. En a control of the carbon composites.
- Prime focus instruments (e.g. Wisconsin's PFIS) planned from the outset and with larger mass/volume envelope.

 John Medical Prime from the outset and with larger mass/volume envelope.

 John Medical Prime from the outset and with larger mass/volume envelope.

 John Medical Prime from the outset and with larger mass/volume envelope.
- Different primary mirror segment alignment system (e.g. Shack-Hartmann camera) and the use of capacitive edge sensors on the mirror segments will give

more stable, sharper, imples

- •Use of natural ventilation (e.g. louvres) and aggressive attitude to heat sources will lead to better hage quality.
- •Used graphical programming language LabVIEW to do all telescope control (rapid prototyping & development, quick to debug, easy to integrate, good graphics)

Facility Instruments are all mounted on Prime Focus Payload

Payload structure (rotating & non-rotating components) made of carbon composite

Telescope Completion Experience:

SALT took ~1 year longer to build than initially estimated (original project completion date was 17 Dec 04, i.e. <5 years from hiring Project Team to completion of commissioning). Reasons were:

- Difficulty multi-tasking of dependent jobs
 - Intertwined and mutually dependent tasks
- Competition for people/resources/telescope time
 - Highlighted too few people in some critical areas (e.g. engineering and design effort for Payload subsystems)
- Lots of parallel tasks to be done and not always enough people/time to do them
- Systems Engineering a success, but... full acceptance testing not completed before Project Team finished
 - 90% completed, but the hard 10% had to be completed by the SAAO & SALT Operations Team

But, the phased approach of TCS has been a real success

- LabVIEW helped a lot.
- Only ~5 FTE software people at any one time

Reality of Commissioning / Completion

- Underestimate of time to complete complex/first-time systems
 - Including the Prime Focus Payload
 - Science instruments (both took ~1 year longer than CDR estimates)
 - Not enough time for integration and thorough testing

- Two major problems have unfolded:
 - Telescope Image Quality
 - Spectrograph throughput (particularly in the UV)

But, success... SALT "First Light": 1 Sep 2005

- With all segments installed
- With SALTICAM and filter set
- No active optics (edge sensors)
- No guiding or autofocus

47 Tuc: Combined U,V,I (120 sec total)

Lagoon Nebula: 180 sec total (U, V, I)

But....SALT's Image Quality Not to Spec

- Focus gradient
- Rho dependency
- Field dependency of aberrations
- Diagnosing cause has been a long (~2 yr) process

(see SPIE7018-40 for all the gorey details)

- Recent results point to SAC interface problem
 - New interface being designed
- Hope to cure by end 2008

Good images do occur - sometimes!

Good images over a 1.5 -2 arcmin FoV

e.g. good fit with a Moffat function EE50 = 0.85 arcsec

SALT First-Generation Science Instruments

- Instruments chosen to give SALT a wide range of capabilities
- Ensure competitiveness
- Take advantage of SALT design and modus operandii
- Budgeted for 4 "first generation" instruments
- First two completed & installed, third being built
- First two ('first light') instruments:
 - SALTICAM: a UV-VIS CCD camera
 - Robert Stobie Spectrograph (RSS): an imaging spectrograph with many different modes
- Third main instrument is the fibre-fed High Resolution Spectrograph
 - Design completed 2005
 - Construction has begun at Durham University
 - Commissioning due to begin end 2009
 - Fed by the Fibre Instrument Feed (4th instrument, nearly completed)
- RSS Near IR beam is "Gen 1.5", now under development

An efficient "video" (~10 Hz) camera over entire science FoV (8 arcmin).

Efficient in the UV/blue (capable down to atmospheric cutoff at 320nm (sunburn territory!).

Capable of broad and intermediateband imaging and high timeresolution (to ~50 ms) photometry.

Fulfills role as both an acquisition camera and science image. First installed, sans optics, as a commissioning and verification instrument.

SALTICAM enables unique science, particularly UV and fast photometry (~70-50 ms).

SALTICAM in the lab

First Science: Observing magnetic cataclysmic variables with SALT + SALTICAM

Mass Donor

Mass Transfer

Stream

- Strongly magnetic white dwarf inhibits accretion disc formation
- Instead, magnetic field channels accretion directly to magnetic poles of white dwarf
- White dwarf magnetic field is huge: 10-200 Megagauss

Magnetic
White Dwarf
Primary Star

SALTICAM Frame Transfer Mask in Slot Mode

SALT First-Science

An example: a light curve of an eclipsing magnetic CV (Polar) taken with SALTICAM

Observations of Asteroids

- Looking for Near Earth Objects
 - Potential threats!
- Deriving spin periods
- A V = 20.5 asteroid with a 12.76 min spin period (60 sec exposures)

The Robert Stobie Spectrograph (RSS) (built at Wisconsin, Rutgers & SAAO)

An efficient and versatile Imaging Spectrograph

- capable of UV spectroscopy
- high time resolution ablility
- polarimetry capability
- Fabry Perot imaging (many narrow filters)
- multiple object spectroscopy
 - Can observe ~100 objects at once

RSS in lab at Wisconsin (Feb 2005)

Named in memory of Bob Stobie, previous SAAO Director.

RSS installed on SALT (Oct 2005)

Optics

- All-refractive UV optics for high throughput
- At prime focus for UV and full-field access
- NIR upgrade path: simultaneous 3200 $ext{Å}$ 1.7 μ

How VPH Gratings Work

VPH Gratings. From Barden, et al, 2000, PASP

- Created by exposing holograph material ("DiChromated Gelatin") to interference pattern from laser
- Index of refraction of DCG is modulated in space
- Large; inexpensive; custom design; efficient at high groove density

High Efficiency with Volume Phase Holographic Gratings

Resolution vs wavelength for 1.2 arcsec slit

Mechanisms 6-Grating Magazine Polarizing Beamsplitter (slide) 40-Slitmask 2 Fabry-Perot Magazine Etalons (slides) 3 CCD Mosaic Detector Shutter Camera Articulation 0 - 100° 2 Polarimeter Waveplates 20-Filter (slides) Magazine

RSS Performance Tests

- Passed pre-ship & pre-installation testing, excepting:
 - Some camera roll flexure (fixed)
 - Some grating rotation flexure (fixed)

But, not exhaustive mechanism exercising Throughput not directly measured

- Installed on telescope Oct 2005
 - Long-slit mode, start polarimetry comm.
 - F-P tests, MOS tests
 - on-sky throughput tests

Significant throughput underperformance, particularly in the blue (<400 nm)

Interference filter ghosts

Also some problems with slit-mask mechanism

- Took off telescope Nov 2006
 - Removed optics and sent back to US for diagnosis & repair

RSS Throughput Problem

- UV (<400 nm) precipitous drop-off
- Other throughput 'dips'
- Ghost seen in F-P interference filters
 - Image of pupil
 - Worse at ~550 nm

Attributed to poor multi-layer A-R coating on camera field flattener (dewar window), which looked greenish to eye.

Cause of UV drop-off

Cause found by process of elimination

- Laser (375 & 650 nm) and diodes used to measure all major optical components in situ
 - Effect seen in all lens groups with multiplets
 - Assembled lens groups removed & returned to US
 - Disassembled & measured with monochromator
- No coatings or lens materials were in common
 - CaF2, fused silica, NaCl (but uncoated and inside elements)
 - MgF2, Solgel+ MgF2, multi-layers
- Only common factor:
 - Cargille LL5610
 - Extracted samples & measured
 - All showed large UV absorption!
 - Compatibility experiments showed problems with polyurethane & viton
- Repaired using new materials after conducting accelerated testing.
- Performance now looks good.

RSS Long-Slit commissioning:

1. Anatomy of "The Bird": a triple galaxy collision

- A-O images from the VLT
- Spectroscopy from SALT
 - Kinematics point to a 3-galaxy collision

Anatomy of "The Bird": a triple galaxy collision

Anatomy of "The Bird": a triple galaxy collision

2. Galaxy Mergers and Dark Matter Halos: Polar Ring Galaxy: AM 1934-563

- RSS spectroscopy of a Irr/Polar Ring Galaxy
- Kinematics of components differ
- "Solid body" rotation of ring

2. Polar Ring Galaxy: AM 1934-563

- The results show that then polar ring rotates slower than the galaxy at similar distances from the center.
- This indicates that the halo DM is more concentrated toward the galaxy than toward the ring, and does not have a spherical shape or is concentrated toward the polar ring

3. SALT Observation of GRB 060605

SALT Observations ~8 hours After alert

- MSSSO obs. at V ~ 15
- SAAO obs. at V ~ 20

GRB 060605

4. Spectroscopy of a Reflection Nebula

NGC2023: Lines from photoexcitation by FUV photons

RSS Commissioning: MOS laser cut slit-masks

Slit mask cutter

Slit mask cutter software GUI

MOS Test Run Spectra

800 sec. See H β , OIII 4949 & 5007 triplet. Faintest PNe m[OIII] = 23.2

Commissioning RSS Fabry-Perot mode

3 resolution modes:

- low (R = 320-770) 'tuneable filter' (full field)
- medium (R = 1250 1650) bullseye 3.8' 3.3'
- high (R ~ 9,000) bullseye ~1'

High R modes in dual etalon mode Tests began Sep-Oct 2006

NGC 1535: Planetary Nebula in H-alpha

Fabry-Perot Commissioning

NGC 1365

Fabry-Perot Commissioning Observations

Spectropolarimetry Tests

- Began in Oct 2006, just weeks before RSS was removed
- Observed several types of objects
 - Supernovae
 - Star forming regions
 - Reflection nebula
 - Magnetic CVs

SALT High Resolution Spectrograph

SALT will utilize fibre-fed high-resolution spectroscopy of point sources (<2 arcsec) plus background (fibre pairs)

Under construction at Centre for Advanced Instrumentation, Durham University (UK)

- Started in late 2007, completion early 2010
- Based on University of Canterbury CDR level design
- Design is dual beam (370-550 nm & 550 890 nm) white-pupil R4 duplex echelle, with VPHG, giving R = 16,000 to 65,000 (depending on image slicer).
- Single object spectroscopy with single fibre sky subtraction (single fibre) and nod/shuffle.
- Precision radial velocities (to few m/s using lodine cell, simultaneous Th-Ar, or EDI)
- Housed in a vacuum tank (remove large r.v. error due to P,T variations).

Fibre mode	Resolving Power $(\lambda/\delta\lambda)$	Transmission (SPC + SLT + TEL)	
		480nm	650nm
Low	16,000	13.4%	17.4%
Medium	~37,000	9.4%	12.1%
High	~65,000	6.0%	7.7%

A new high precision mode will be implemented Incorporating iodine cell and double scrambler (See 7014-51, Barnes et al.)

SALT High Resolution Spectrograph

FINAL REMARKS

- Telescope & Instrument commissioning ongoing and expected to be concluded in 2009
- Two major technical hurdles have been:
 - 1.) image quality (now diagnosed and about to be solved)
 - 2.) spectrograph throughput (solved)
- Commissioning science has still been possible and on-going SALTICAM science programs, at ~50-75% level
 - · to date 11 papers published several in preparation
- RSS optics expected to be reinstalled in late 2008 and instrument fully tested on ground before reinstalling on telescope in mid-2009
- SALT and its First Generation instrument have diversity of modes and some rare/unique opportunities (some excellent for CVs, etc.)
- RSS Near IR arm is now funded and will be the next instrument installed, after HRS.
- Consortium now considering Second Generation instruments