
RATS: A SEARCH FOR FAINT VARIABLE OBJECTS

Tom Barclay, Armagh Observatory & UCL

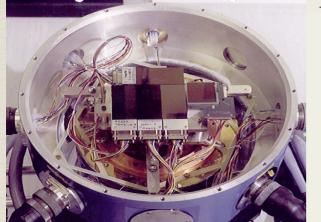
Gavin Ramsay (Armagh Obs), Pasi Hakala, Harry Lehto (Tuorla Observatory), Ralf Napiwotzki (Univ Herts), Gijs Nelemans (Nijmegen), Stephen Potter (SAAO),

What are ultra-compact binaries (aka AM CVn stars)?

- * Accreting binaries with white dwarf primaries and main sequence secondaries have binary orbital periods greater than 80 mins.
- For shorter period systems the secondary must have degenerate or semidegenerate. eg white dwarf
 white dwarf binaries.

What is RATS?

* RApid Temporal Survey - RATS


- * A survey of variability of the faint optical sky
- * Our prime goal is to detect new UCB systems (AM CVn stars). Only the shorter period UCBs show optical variability, P_{orb} < 30 minutes.</p>
- * A complete census of optical variability on timescales of less than 2 hours.

Strategy

* Two strands

We take a series of short exposures (30 sec) of the same field for 2-3 hrs using small-medium class telescopes. Primarily the WFC on the INT. Observations in white light.

Follow-up

To determine the nature of newly discovered objects followup spectroscopy and photometry is required. UCBs show helium lines.

Why this strategy?

* Previous surveys weren't sensitive to periods < 10 mins

- * Faint Sky Variable Survey 10's min & V<23 (Groot et al 2003)
- * SuperWasp a few mins but V-7-15 (Pollacco et al 2006)
- * Our data defines a new parameter space
 - * Sensitive to variations on timescales as short as 2 minutes
 - * Sensitive to sources as faint as V=22

Goals

- * Test the predictions of the Nelemans et al models
- * These models predict -18 UCBs in 40 sq degs coverage with b < 10 degs.
- * Only by increasing the known number of systems can we compare the observed global properties (eg. period, masses, chemical abundance distributions)

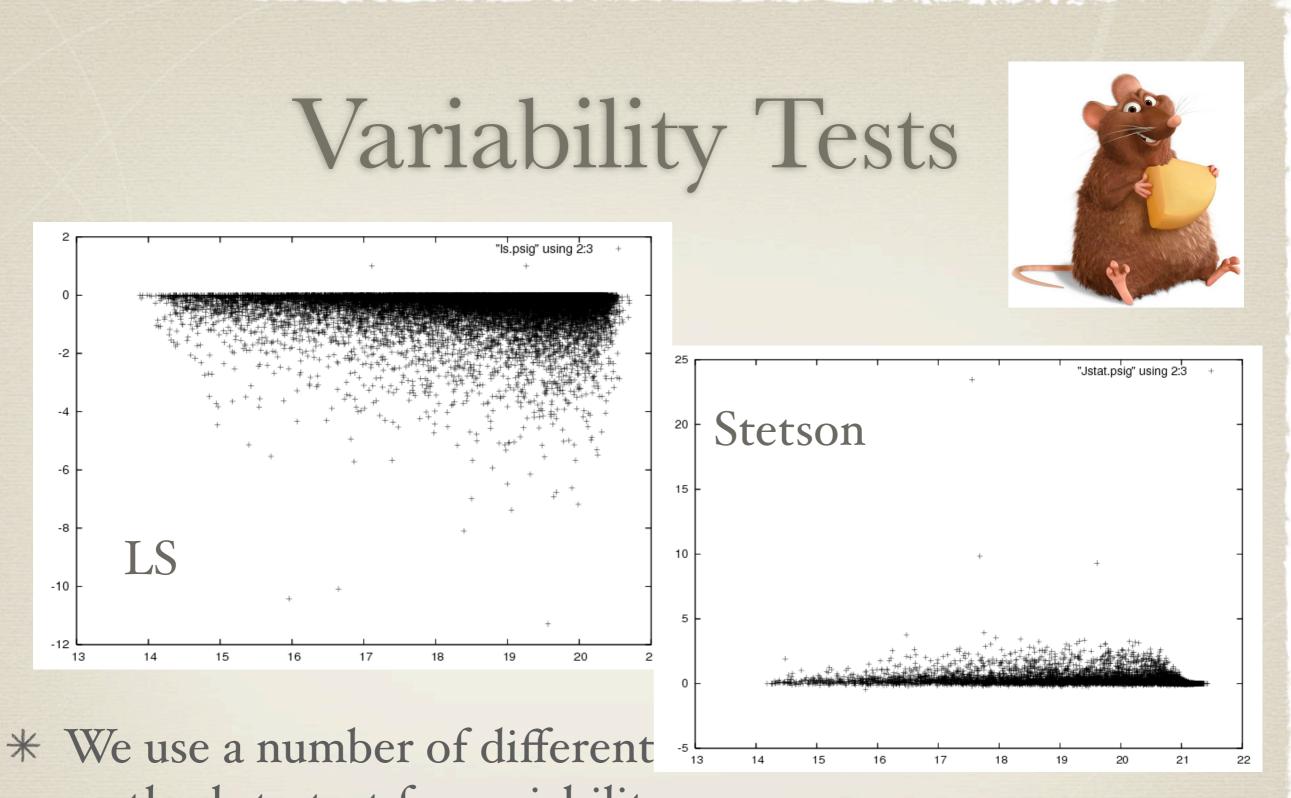
Photometry obtained so far

* 4 INT runs
* INT1 3 sq degs (20<b<30)

* INT2 5 sq degs (0<b<40)

* INT₃ 7 sq degs (b<10)

* INT4 7 sq degs (b<10)



* 1 ESO 2.2m 5 sq deg (20<b<40)

* Total sky coverage of -20 sq. degs b < 10 degs

Data reduction

- * Aperture Photometry for INT1/2 ESO, b>10 degs
- * Difference image analysis.
 - * We use the *Dandia* code (Bramich 2008) developed by Ian Todd.
 - * Subtracted and reference images analysed AC and DC signal.
 - * Relatively fast and essential for crowded fields.

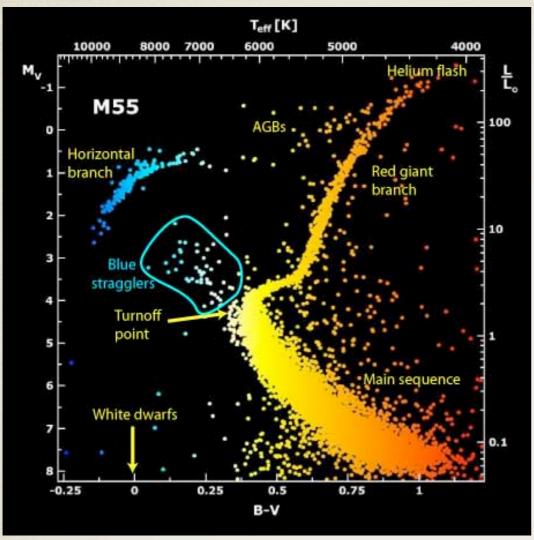
- methods to test for variability.
- * Stetson, false alarm probabilty

Status

- * In the data reduced so far we have -I million stars of which -1000 have been flagged as having periods on timescales shorter than I hour.
- * 10's thousand have periods longer than an hour. Several thousand other variables.
- * INT I Ramsay & Hakala 2005
- * INT2 Reduced, WHT spectra of short period systems
- * ESO Reduced, ESO 3.6m spectra, paper submitted
- * INT₄ Reduced WHT spectra of short period systems
- * INT₃ Reduction ongoing

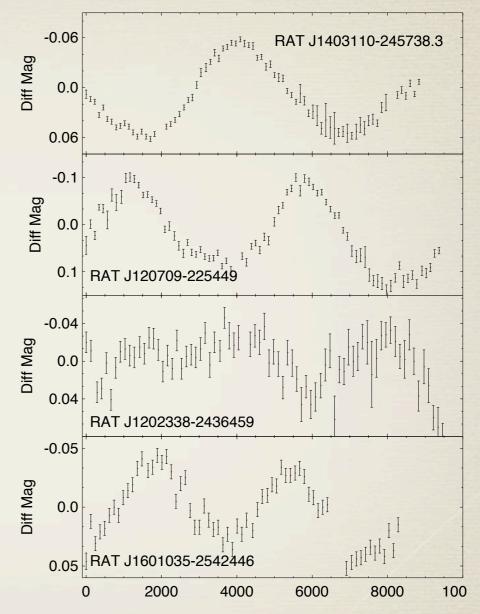
Results so far -UCBs

* No UCB found so far.

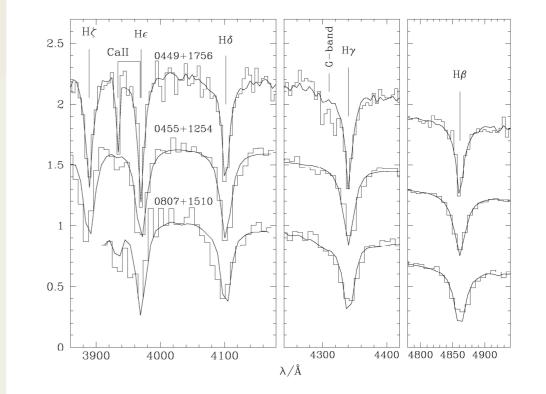

* From INT₄ we expect 2.8 UCBs.

* From ESO + INTI we expect 0.065 UCBs.

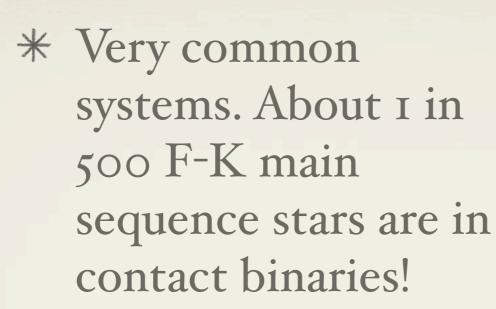
* So far our results are consistent with Nelemans et al.


* Definitive results only once our survey is complete.

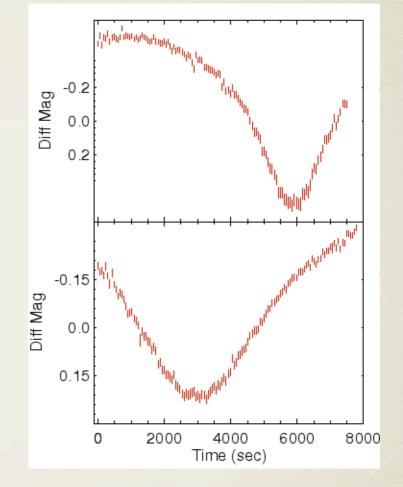
SX Phe stars

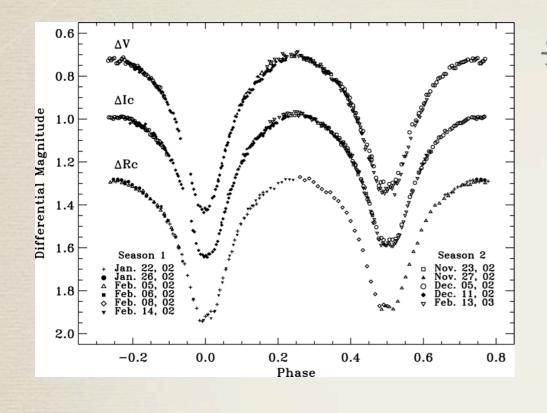

* Dwarf delta Scuti stars, blue stragglers.

- * Formation mechanism not clear.
- * 13 field known in 2001. We are going to find hundreds of these.

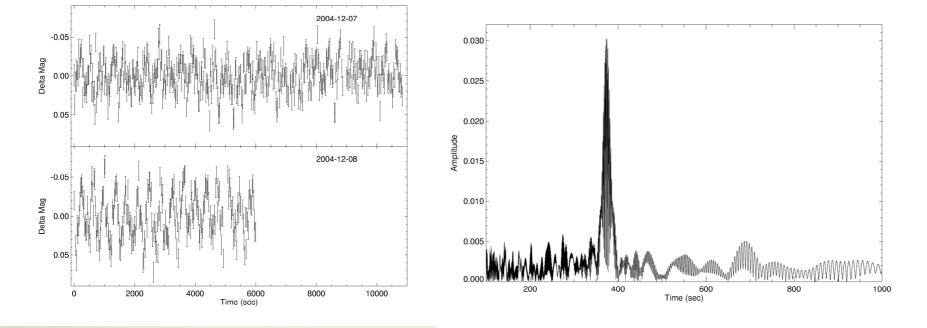


SX Phe stars

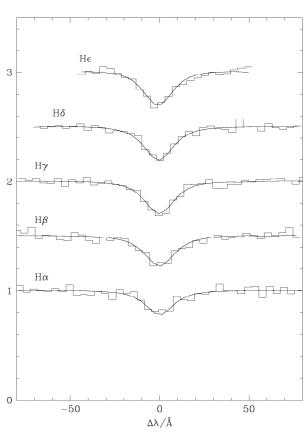

- * Our simulations predict 40000 - 65000 visible in our galaxy brighter than V=22.
- * This number is less per mass compared with globular clusters and Fornax dwarf galaxy.


Contact Binaries

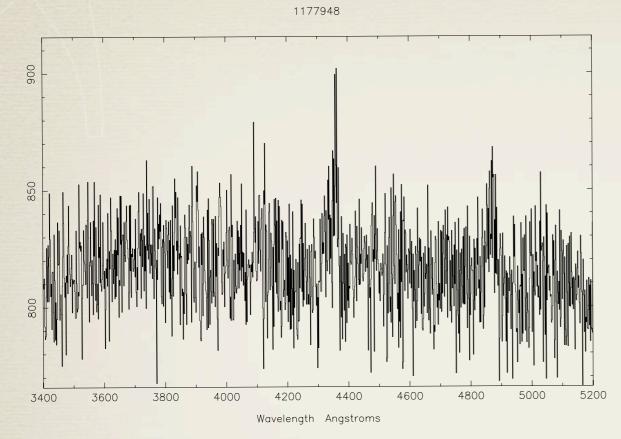
* We have already discovered several thousand candidate contact binaries. We predict around 5000 once our survey is complete.


Modeling CB Lightcurves

* Simulations of light curves show we can determine system parameters (eg, period, inclination, mass ratio) which are surprisingly robust even using incomplete orbital phase light curves.


* Systems which show poor fits are probably eclipsing or partially eclipsing binaries. Aim to get parameter distributions of contact binary as a function of Galactic position.

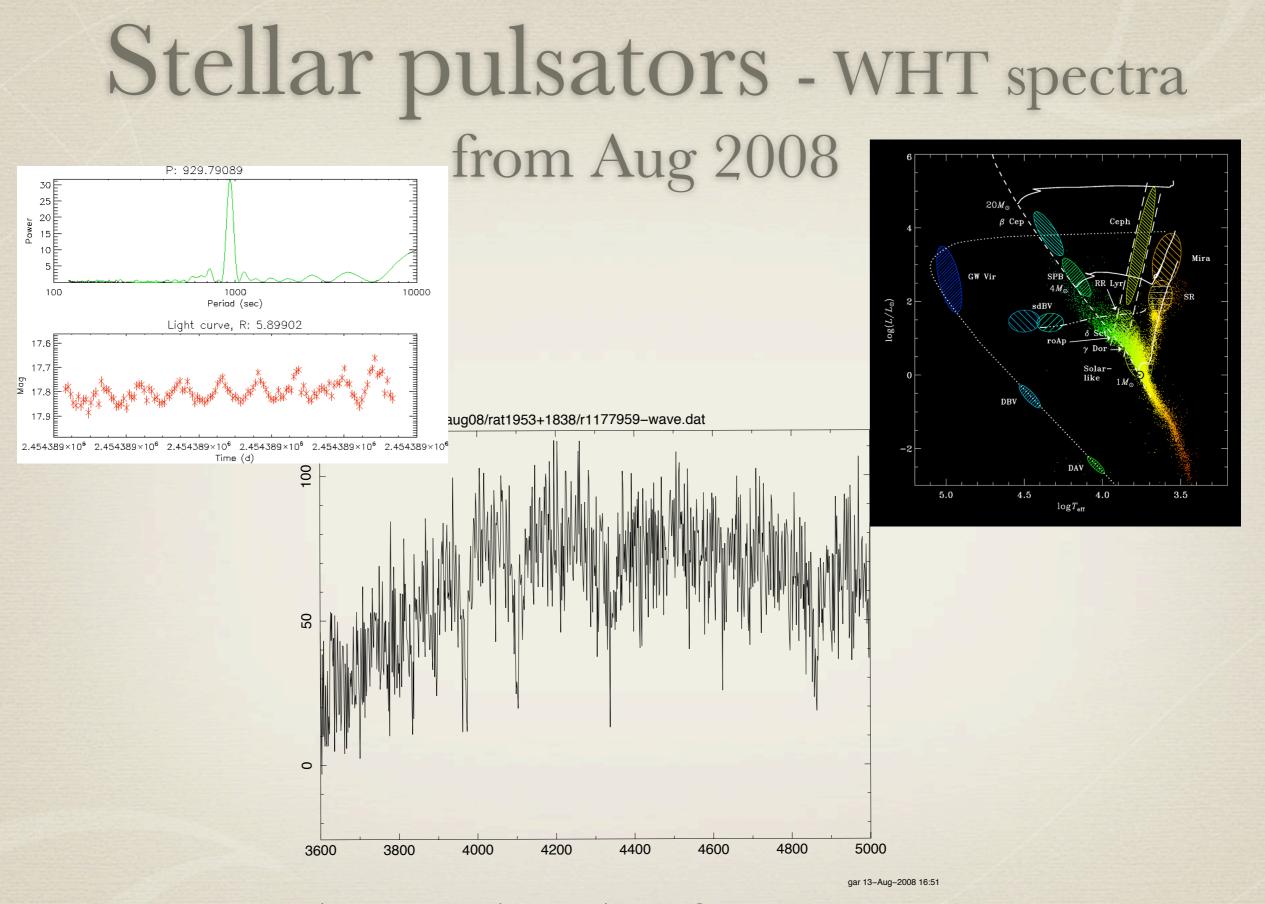
sdB stars - eg 2nd highest amplitude



* Spectral fits: T=29200, log g=5.2

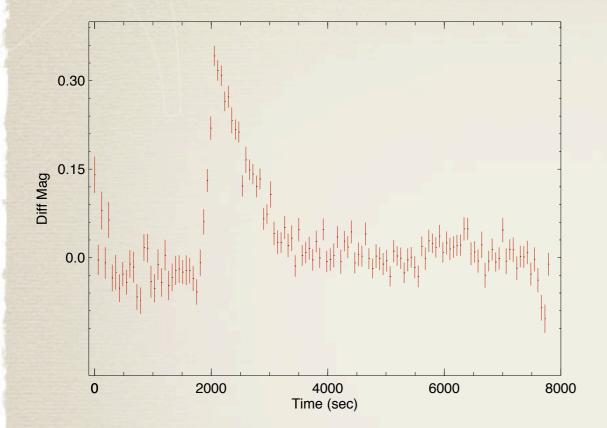
* This places it at the cool end of the sdB instability strip - consistent with its high amplitude modulation.

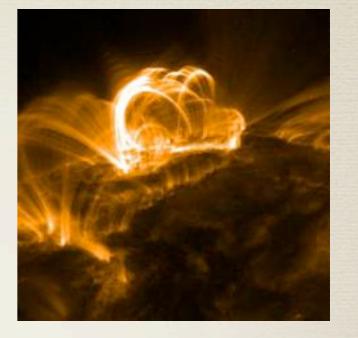
IP candidate - WHT spectra August 2008

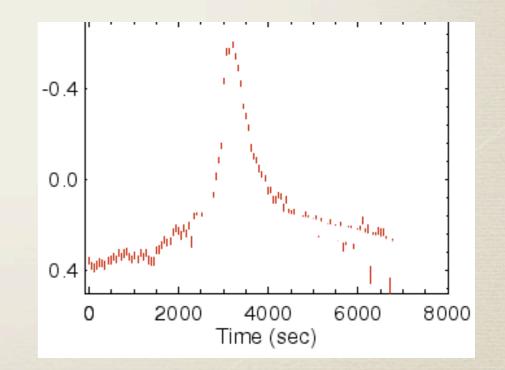

 0^{0} 0^{0

r1177994

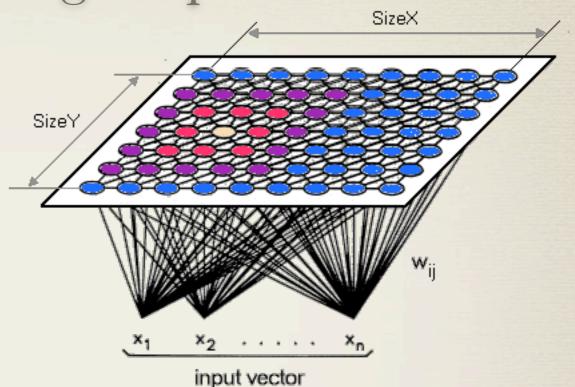
* Our first accreting source discovered!


* Hydrogen emission lines* ROSAT xray source




* ZZ Ceti, pulsating white dwarf

Flare Stars


* Similar to flares on the Sun
* Large range in flare brightness
* Our survey is ideally place to pick these up

Automatic classification Self Organizing Maps

- * We have an enormous data set.
- * Automated way of classifying them.
- * Plot multi-dimensional data onto a 2D map.
- * SuperWasp are doing something similar.

Future Observations

* 10 nights in November 2008 on the INT.

- * 10 nights in the 09A semester bring us close to our desired sky coverage.
- * 2 night follow-up spectroscopy at the end of September on the NOT.
- * 1 night on the WHT in September.

Further Work

- * We expect to complete INT 3 reduction by Oct 2008.
- * Testing for false positives and completeness.
- * Comprehensive space density of UCBs, SX Phe stars, contact binaries etc.
- * Determine the implications for the Omega White survey.

Catalogue

- * In the end expect to have variability information on over 5 million stars close to the galactic plane.
- * This will be release to the public

Thanks

