ThunderKAT 2011

Kat-7 2011 Roadmap

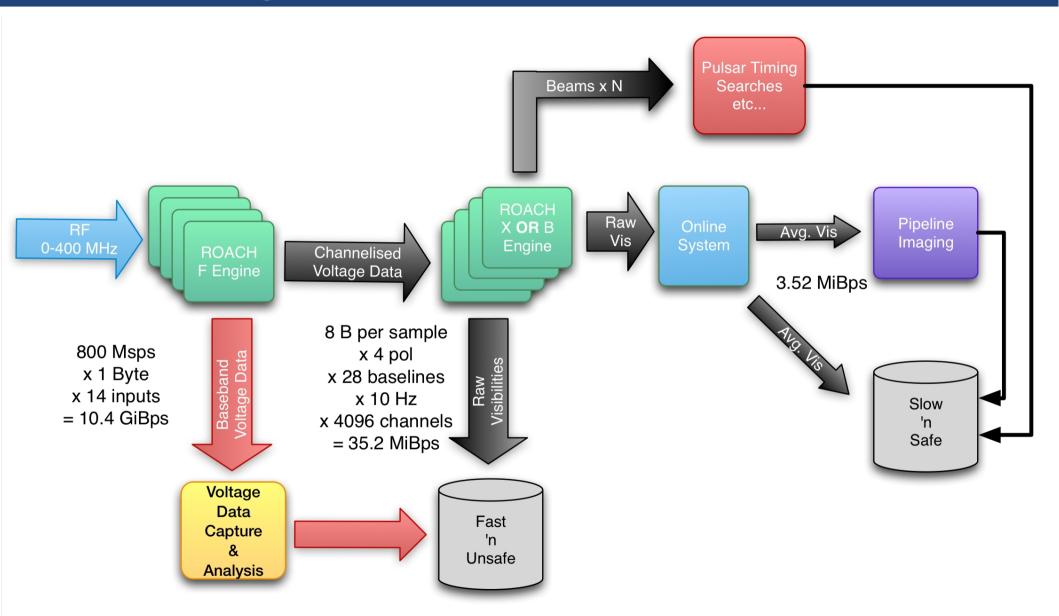
Simon Ratcliffe

SQUARE KILOMETRE ARRAY

Meet the SPT – By Night

- Jasper Keeper of 'The Voice', powerfull enough to bring the oppressive apparatus of state to it's knees.
- Ludwig Known in street fighting circles as 'The Mathematician'
- Tom The man with a chapeau for every occasion.
- Mattieu Counter insurgency and black ops.
- Tshaks Prodigious footballing talent. Secret weapon next time we engage Astron for supremacy.
- Simon Just finished making more people, hence grumpy demeanour and incoherent (synchrotron) thought processes.

Meet the SPT – By Day


- Jasper Chief task is herding the Kat's. In Iulls between management tasks is office DiFX and MeqTree expert.
- Ludwig Algorithm development and general mathematical guru.
- Tom Archive, data storage and general HPC.
- Mattieu Pol cal, layout optimisation and any other tasks that fit into his 'Master Plan'.
- Tshaks RFI, particularly detection and removal of satellite contribution.
- Simon Architecture, HPC, GPU optimisation and outreach activities.

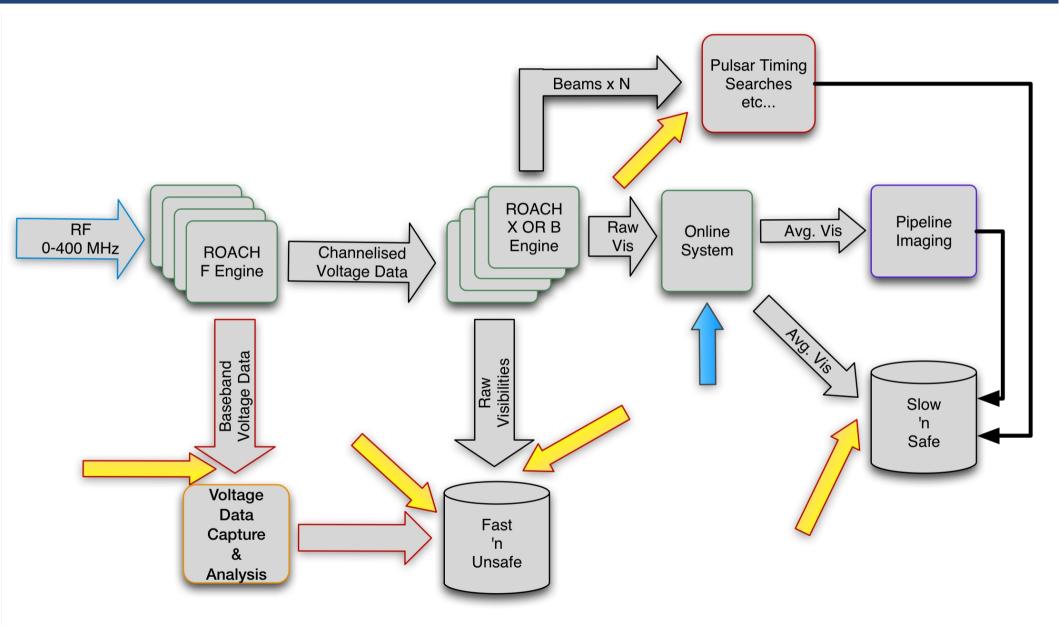
Overview

Online System

Voltage Data

Kat-7 Signal Path

Overview


Online System

Voltage Data

Archive

Wrapup

Kat-7 Signal Path - Spigots (SPEAD)

Overview

Online System

Archive

Wrapup

Online System


- The online system receives raw visibilities from the correlator at a sufficiently high dump rate to facilitate the following (currently 10 Hz):
 - Continuous Tsys calculation
 - RFI Flagging
 - Baseline dependent time averaging (not for K7)
- The resultant visiblities + cal data + flagging are written to disk in the safe & slow archive.
- One or more multicast data streams are produced for downstream consumers such as standard pipeline and 3rd party processors.

Flagging

- On QA Return
 - Bad antenna / polarisation
 - Timing synch
 - Etc...
- · RFI Flagging
 - Critical to avoid costly rerun through data set.
 - Simple thresholding
 - Known sky pollutants (GEO, LEO, DME, etc...)
 - Recursive fading-memory polynomial filters (we have an IBM System-S implementation, porting to GPUs soon)

Overview

Our Basic Building Block

Overview

Voltage Data

Archive

Wrapup

Why GPUs

- A single GPU is a good match for current performance networking and has the I/O to keep up with data from both 10 GbE and QDR infiniband.
- Still riding good performance curves and HPC support is getting better all the time.
- Two major players (Nvidia and ATI) can help with vendor lock in (as long as you stick with OpenCL and not CUDA).
- The ecosystem of tools, particularly debuggers is rapidly improving (see Nvidia Nsight for an example of good these are getting)
- IRQ affinity under linux is helping to support multiple GPUs and NICs per machine.
- New developments (AMD Fusion almost a reality) will bring the GPU ever closer to the CPU memory bus, improving throughput and interoperability.

Overview

Online System

Voltage Data

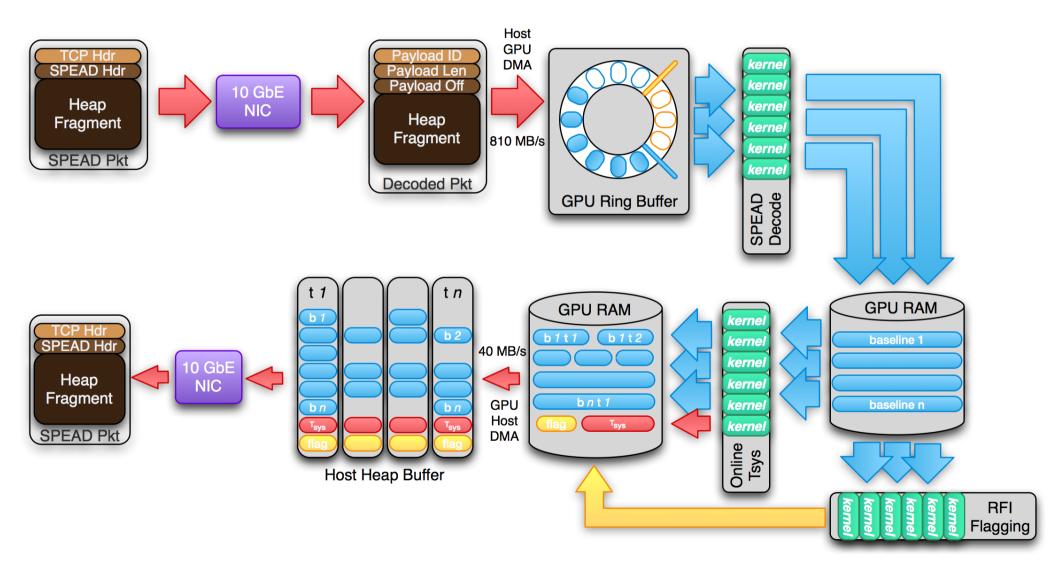
CUDA – Hello World

```
Kernel - Spawned and executed per GPU thread
___global___void VecScale(float *A, const float B)
{
    int idx = (blockIdx.x * blockDim.x + threadIdx.x);
    A[idx] = A[idx] / B;
}
```

CPU code – C with CUDA markup

```
// Invoke kernel
int threadsPerBlock = tpb;
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
VecScale<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
```

Python wrapper – Do things the easy way :)


import numpy as np, meerkapture as mk, withdash=False,

```
mk.gpu_init()
test_vec = np.ones((512,512))
gpu_pointer = mk.gpu_vector_push(test_vec)
mk.gpu_vector_scale(test_vec, 0.5, 256)
return_vec = mk.gpu_vector_pull(test_vec)
```

```
print "Residual:", np.sum(test_vec/0.5 - return_vec)
```

Overview

Online System – On the GPU

Overview

Online System

Voltage Data

The Glue....

Overview

Online System

Voltage Data

SPEAD

- CASPER
- Streaming Protocol for Exchanging Astronomical Data
- Joint development between SKA South Africa and UC Berkeley as part of the CASPER collaboration.
- Designed to handle a wide variety of astronomical data including voltage, visibility, and sensor data.
- Standard output data format for ROACH based correlators.
- Aim is to have a single coherent protocol throughout the entire processing chain (i.e. from digitisation to imaging)

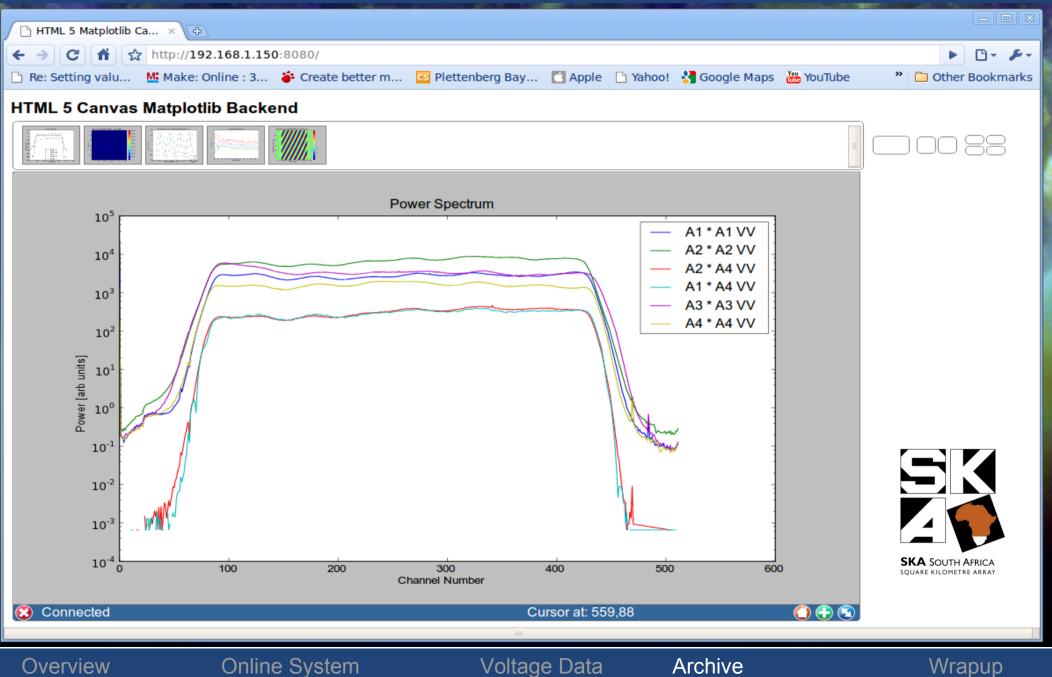
SPEAD

- Specification is currently in revision L, update coming soon (CASPER workshop next week)
- Reference Python implementation available from:

http://github.com/sratcliffe/PySPEAD.git

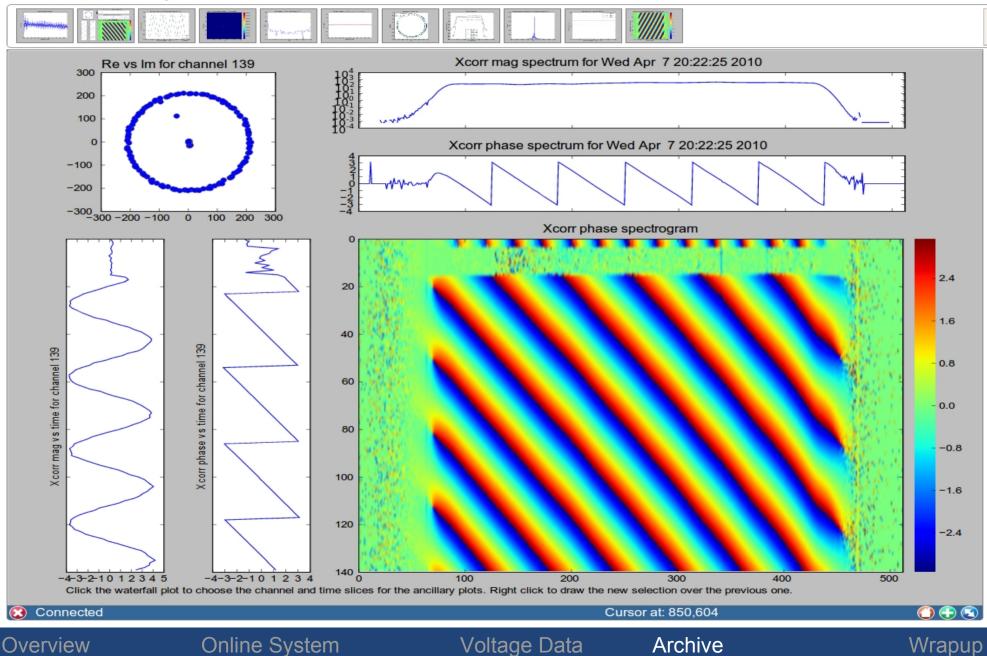
- GPU accelerated en/decode not in the public release yet. Still deciding between CUDA and OpenCL.
- Promises to have a fairly large number of users which always helps !

Online System – Data Formats


- Two standard output flavours: archive and stream.
- Stream output takes form of one or more SPEAD streams which encapsulate vis data, flagging, weights and other meta data.
- End user of SPEAD stream basically sees an evolving dictionary of Numpy arrays containing data for current timestamp.
- Archival format uses HDF5 as underlying file format.
- Currently a superset of both SDM and MSv2 to allow seamless export to either (currently only MS support, SDM if requested).

Overview

Online System – Signal Displays


- Produces reduced rate signal display data for QA and engineering testing.
- Range of matplotlib based displays from power user to read only canned plots.
- Uses internally developed HTML5 backend for Matplotlib to delivery displays remotely.
- PI will have access to select displays from outside the Cape Town office.

KAT-7 Signal Displays

KAT-7 Signal Displays

HTML 5 Canvas Matplotlib Backend

	A0x	Aly	A2x	АЗу	A4x	A5y	Абх	A7y	A8x	A9y	A10x	Ally	A12x	A13y	A14x	A15y
A0x		-0.11	-0.21	-0.03	-0.05	0.03	0.07	-0.05	-0.03	-0.02	-0.08	-0.03	-0.14	-0.10	-0.07	0.15 -
Aly	- 0.87		-0.10	-0.03	-0.03	0.07	-0.02	0.07	0.01	0.10	0.10	-0.05	0.13	0.09	0.05	-0.11-
A2x	1.11	0.94		0.04	-0.09	-0.05	0.01	0.15	-0.06	0.22	-0.18	0.09	0.18	0.12	0.08	0.07 -
АЗу	0.99	1.04	0.84		0.08	-0.18	0.06	0.02	-0.04	0.06	-0.19	0.07	0.02	0.06	0.01	0.04 -
A4x	0.83	0.95	0.92	1.03		0.03	0.06	0.08	-0.07	-0.12	-0.05	0.14	0.09	0.01	0.14	-0.06-
A5y	0.98	0.99	1.03	1.02	0.89		0.11	0.03	-0.09	-0.08	-0.14	-0.12	0.13	-0.07	0.14	0.00 -
Абх	1.04	1.02	0.86	1.02	0.93	0.98		-0.19	0.06	-0.08	0.02	-0.16	-0.10	-0.01	0.14	0.13 -
A7y	1.00	1.07	1.14	0.99	1.00	0.94	0.96		0.08	-0.20	-0.19	-0.09	-0.07	-0.07	-0.20	-0.04-
A8x	1.08	1.06	1.18	0.85	1.05	0.95	1.24	0.93		-0.01	0.00	-0.03	-0.06	0.04	-0.21	-0.07-
A9y	0.91	1.13	1.11	0.94	0.92	1.06	1.25	0.91	1.01		-0.02	-0.21	0.03	-0.09	-0.15	-0.11-
A10x	1.02	0.87	1.12	0.91	0.94	1.05	0.93	1.06	0.81	0.94		0.06	-0.08	-0.03	0.17	-0.08-
Ally	1.05	1.01	0.97	0.95	1.10	0.91	0.99	0.94	0.92	0.93	1.09		0.16	-0.11	0.03	0.15 -
A12x	0.92	0.95	0.93	0.88	1.04	1.12	1.06	0.84	0.97	0.90	1.16	1.09		0.10	-0.10	-0.09-
A13y	1.06	0.84	1.08	1.02	1.03	1.07	0.99	0.92	0.93	0.88	1.13	0.91	0.69		-0.04	0.07 -
A14x	0.91	0.99	0.95	1.18	0.91	1.01	0.95	1.12	0.91	0.88	1.10	1.03	1.18	1.09		0.04 -
A15y	1.02	0.83	0.91	1.10	1.09	0.96	0.86	0.98	1.06	0.89	1.15	1.09	0.95	1.04	1.00	-

Overview

Online System

Voltage Data

Archive

Wrapup

Online System – Simulations 0.1

- Point made earlier about integration of components.
- MeerKAT system engineering approach works to mitigate this very problem.
- With the CAM team we produce simulators for every system component once their thin specification has been produced.
- We refine the simulator with the developers of the component and encourage them to benchmark against it.
- At any time we can launch and test a system with a mix of real and simulated components.

Overview

Online System – ThunderKAT

- For Kat-7 you can choose an integration period for the vis data. Probably practical to support 100ms to 1000s.
- Supporting up to 10 simultaneous integration periods for a variety of users should be fine.
- Simplest would be receiving data directly into Numpy array form in Python. (Perhaps imaging using AIPY ?)
- This would require processing time < integration period.
- Otherwise single integration MS is quite feasible.
- We can immediately provide Python based SPEAD simulation code.
- An entire Kat-7 simulated environment can easily be provided.

Overview

Voltage Data

Voltage Data

- Currently we have a single pol 400 MHz baseband recorder.
- Implementation uses a GPU to perform either PFB or DDC.
- Not power or space efficient.
 1000W PSU

– 10 U

Voltage Data

- RFI (the good kind) out for expanded voltage capture for Kat-7.
- System will record synchronous dual pol baseband data for all 7 antennas.
- Spec is 2 min at full band, with goal of 10.
- 10-20s memory ring buffer will allow some lookback for high time resolution follow up.
- Plenty of GPU cycles spare so triggers could be locally generated (Fly's Eye).

Voltage Data

- Data stored in raw 8-bit form with export to 2-bit VDIF format available.
- Duty cycle between events is of order 10 times the capture duration.
- Software correlation using DiFX will be available.
- For us voltage data has been a whole new ballgame. Simple things such as visualisation have had to be substantially rethought.
- Working on some Python tools for exploring large raw data sets.

Overview

Calibrated visibilities that pass QA will be stored indefinitely !

Holds true for MeerKAT given the shift in timelines.

Overview

Kat-7 Archive - Breakdown

- Slow and safe:
 - •~ 100 TiB
 - 1 Gbps
 - Vis data, meta data, output products
- Fast and safe:
 - •~ 30 TiB
 - 20+ Gbps
- Fast and unsafe:
 - •~ 30 TiB
 - 20+ Gbps

Overview

Online System

Voltage Data

Kat-7 Archive – 1 year at a time

- Visibility Data:
 - 300 days nominal
 - 162.2 TiB
 - 2:1 compression straightforward
- Meta Data:
 - •~8 TiB
- Output Products:
 - Anything involving significant human or cpu cost.
 - •~ 12 TiB

Overview

Kat-7 Archive - Checkout

- Web interface used for searching.
- Small datasets can be downloaded directly in desired format.
- Larger datasets can be staged to specified host machine(s) from the interface.
- Datasets can be split by frequency across nodes so as to do away with a network file system.
- SPEAD stream can be instantiated (includes required metadata)

Kat-7 Archive

- Mirror of safe & slow archive will be available in Cape Town.
- Hope is to host archive at CHPC, which will then couple significant processing capacity to the archive for reprocessing and mining.
- Latency probably of order hours.

Kat-7 Archive - ThunderKAT

- Dedicated space in S&S archive for science data.
- High speed scratch space available via iSCSI mount if required.
- Science data will be replicated to Cape Town archive.
- If space can be found in Europe then a second mirror can be setup.
- Possibility of producing longer cadence images in archive instead of realtime ?

Open Questions

- What kind of calibration is needed. Is basic Tsys weight enough ?
- How would you like the data for Kat-7 and will this change with MeerKAT ? (Streams / Files)
- Does a push to higher rate imaging (say 10 or 100 Hz) buy much ?
- How does RFI flagging feed in ?
- Model for collaboration (perhaps schedule a dreaded 'Busy Week')