

International Centre for Radio Astronomy Research

EVLA software developments

James Miller-Jones ICRAR – Curtin University

james.miller-jones@curtin.edu.au

Drawing on material from D. Petry, S. Myers and A.

Richards

Curtin University

THE UNIVERSITY OF WESTERN AUSTRALIA

- The EVLA: new capabilities and challenges
- EVLA software developments: CASA
 - Philosophy and architecture
 - Look and feel
 - Data reduction pathways
- New algorithms and development

The Expanded Very Large Array

Upgrading the existing VLA with 21st century technology

- Operation at any frequency from 1-50 GHz
- Up to 8GHz bandwidth per polarization
- Improvement in continuum sensitivity by a factor 5-20 (rms noise 2-6 µJy in 1h)
- New WIDAR correlator
- Frequency resolution 0.2 Hz 2 MHz
- Between 16,384 and 4,194,304 spectral channels
- Dynamic range >10⁶
- Dynamically scheduled observing
- Automatic processing to produce default images
- Estimated completion date 2012
- First science data taken 2010 March 2nd

Image courtesy of NRAO/AUI

EVLA: New challenges

Enhanced bandwidth

- RFI flagging
- Frequency-dependent source spectra
- Frequency-dependent primary beams

Enhanced sensitivity

- Sources visible further down the primary beam
- Source confusion important at low frequencies
- Previously unimportant effects noticeable

Data volumes

- Data transfer becomes an issue
- Increased processing power required
- Manual inspection difficult or impossible

Requires pipelining capabilities

- AIPS (POPS, ParselTongue)
- CASA

Common Astronomy Software Applications

CASA: the EVLA data analysis package

- Refocussed (and funded) in 2003 from AIPS++
- Implements the Measurement Equation
- C++ with Python wrappers and an iPython interface
- Works with Measurement Sets (MSs)
- In public release since Dec 2009
 - Linux (RHEL)
 - Mac OS X
- Two parts:
 - casacore (general utilities, infrastructure)
 - casa non-core (user interface, high-level analysis routines, viewers)

Common Astronomy Software Applications

http://casa.nrao.edu

CASA Architecture

FEATURES:

1. A data structure

Tables, Calibration tables, Images, MS 2. Data import/export facilities

SDM to MS, MS to UVFITS, FITS to Image 3. Data access, display, editing tools

Table browser, Viewer, Plotter

4. Science analysis tools (tasks)

C++ classes for calibration and imaging 5. High-level analysis procedures

Special procedures for tasks, e.g. CLEAN

6. Programmable command-line interface with scripting

Python/IPython

7. Documentation

Cookbook, web guides and tutorials

The Measurement Equation

 $V_{ij} = J_{ij} \vec{V}_{ij}^{IDEAL}$

Hamaker, Bregman & Sault (1996)

 $\vec{V}_{ij} = M_{ij}B_{ij}G_{ij}D_{ij}E_{ij}P_{ij}T_{ij}\vec{V}_{ij}^{IDEAL}$

- Ideal visibilities on each baseline corrupted by a sequence of effects
- Factor these effects into 4x4 matrices
- Use observations of calibrators to solve for these:
 - M_{ii} = baseline-based correlator errors
 - B_{ij} = bandpass
 - G_{ij} = electronic gain due to signal path between feed and correlator
 - D_{ii} = instrumental polarization
 - *E_{ij}* = effects introduced by telescope optics (elevation etc.)
 - P_{ij} = parallactic angle
 - T_{ij} = tropospheric effects (e.g. opacity)
- Solution of linear equations via χ^2 minimization

The Measurement Set

Accessible directories of tables

- Developed by Cornwell, Kemball & Wieringa between 1996 and 2000
- Designed to store visibility and single-dish data
- Supports any setup of radio telescopes
- Supports data processing using Measurement Equation
- Storage in tables

• MAIN

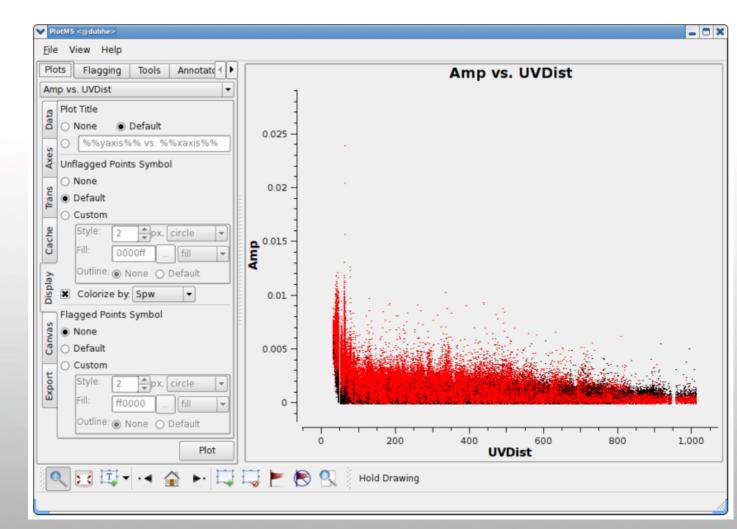
- Original visibility data
- One row per integration per baseline per spectral window
- MODEL
 - FT of model image or calibrator flux density
- CORRECTED
 - Copy of visibilities with applied calibration tables
- Flag tables
- Extra administrative tables
- Size triples when you begin processing

Command-line interface

- Run in the shell
- Command-line with scripting
- iPython
- Task interface (similar to AIPS, MIRIAD)
- Expandable menus
- Validation checking
- Tab completion
- Auto-paretheses
- Access to shell commands (!)
- Command-line numbering
- History
- execfile for script execution

I una il-sis (Casa - sha	- 11	Kanaala		
IPy jlazio/CASA - She				
Session Edit View	Boo	okmarks Settings	Help	
CASA <16>: inp flag	,dat	a		
<pre>> inp(flag</pre>				
# flagdata :: All				based on selections
vis	=	'3c391_ctm_mosa	ic_10	s_spw0.ms' # Name of file to flag
flagbackup	-	True	#	Automatically back up the state of
	_		#	flags before the run?
node		'manualflag'	#	Mode (manualflag,shadow,quack,summary
			#	,autoflag,rfi)
autocorr	=	False		Flag autocorrelations
unflag	-	False		Unflag the data specified
clipexpr	=			Expression to clip on
clipminmax	-	[]		Range to use for clipping
clipcolumn	-	'DATA'		Data column to use for clipping
clipoutside	=	True		Clip outside the range, or within it
channelavg		False	#	Average over channels
spw	=		#	spectral-window/frequency/channel
field	-		#	Field names or field index numbers:
			#	''==>all, field='0~2,3C286'
selectdata	-	True	#	More data selection parameters
			#	(antenna, timerange etc)
antenna	=		#	antenna/baselines: ''==>all, antenna
			#	= '3,VA04'
timerange	=		#	time range: ''==>all,
			#	timerange='09:14:0~09:54:0'
correlation	-			Select data based on correlation
scan	=	11		scan numbers: ''==>all
feed	-			multi-feed numbers: Not yet
			#	implemented
array	-			(sub)array numbers: ''==>all
uvrange	-			uv range: ''==>all; uvrange =
			#	'0~100klambda', default units=meters
async	-	False	#	If true the taskname must be started
			#	using flagdata()
CASA <17>:				el la
Shell				

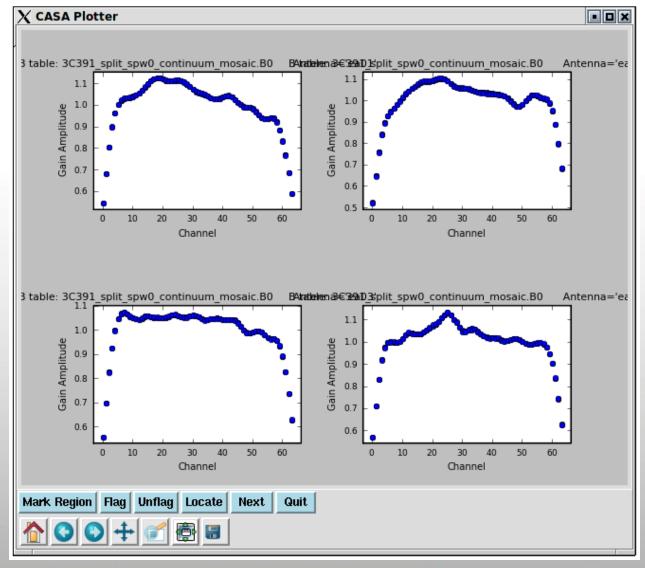
Logger


- Monitoring
- Debugging
- Automatic output to log file
- Results of task
 execution

ile <u>E</u> dit <u>Y</u> iew			
🗕 🖶 🖶 🗒 🕺 📈	Search Mess	age:	Filter: Time V
ime	Priority C	krigin	Message
2010-04-23 12:04:03	INFO P	lotms:::	##### Begin Task: plotms #####
2010-04-23 12:04:03	INFO		plotms::::casa
2010-04-23 12:04:04	INFO		plotms::::casa
2010-04-23 12:04:04	INFO P	lotms:::	##### End Task: plotms #####
2010-04-23 12:04:04	INFO P	lotms:::	***************************************
2010-04-23 12:08:11			plotxy::::casa
2010-04-23 12:08:11	INFO P	lotxy:::	
2010-04-23 12:08:11	INFO P	lotxy:::	##### Begin Task: plotxy #####
2010-04-23 12:08:11			plotxy::::casa
2010-04-23 12:08:11	INFO P	lotxy::t.	Switching to GUI mode. All current plots will be reset.
2010-04-23 12:08:11	INFO P	lotxy:::	Adding scratch columns, if necessary.
2010-04-23 12:08:11	INFO C	alibrate	Opening MS: ah847_1-k-selected-flagged-calibd.ms for calibration.
2010-04-23 12:08:11	INFO C	alibrate	Initializing nominal selection to the whole MS.
2010-04-23 12:08:12	INFO		Data to be selected from matches the following:
2010-04-23 12:08:12	INFO +		Baselines: *ALL pairs of* VA01, VA02, VA03, VA04, VA05, VA06, VA07, VA08,
2010-04-23 12:08:12	INFO +		Fields: *ALL* 12190+47182, 12191+48299, 1331+305
2010-04-23 12:08:12	INFO +		Spectral Windows: *ALL* ··
2010-04-23 12:08:12	INFO +		SPW 0: *ALL Channels* 1 to 1 with a step of 1
2010-04-23 12:08:12	INFO +		SPW 1: *ALL Channels* 1 to 1 with a step of 1
2010-04-23 12:08:12	INFO +		Correlations:
2010-04-23 12:08:12	INFO +		Corr. ID 0 · RR, RL, LR, LL
2010-04-23 12:08:12	INFO +		Corr. ID 1 - *NONE*
2010-04-23 12:08:12	INFO +		Time Range *ALL* 2004/5/22/01:06:05 to 2004/5/22/03:32:25
2010-04-23 12:08:12	INFO +		Scan Numbers: *ALL* 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
2010-04-23 12:08:12	INFO +		UVRanges: *ALL*
2010-04-23 12:08:12	INFO		Preparing data
2010-04-23 12:08:21	INFO		Now get the data
2010-04-23 12:08:23	INFO		Done Processing data
2010-04-23 12:08:24	INFO		Now get the data
2010-04-23 12:08:25	INFO		Done Processing data
2010-04-23 12:08:26	INFO		plotxy::::casa
2010-04-23 12:08:26	INFO P	lotxy:::	###### End Task: plotxy ######
2010-04-23 12-08-26	TNRO P	lotword	***************************************

Plotting

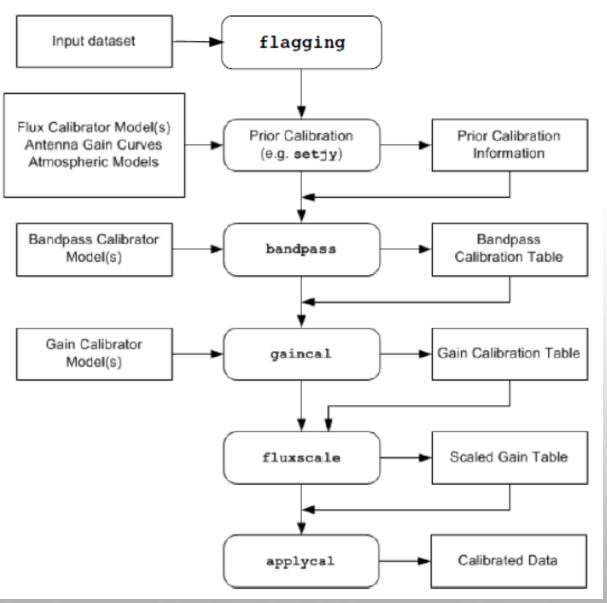
- Visibility data
- Range of variables
- Averaging
- Color-coding
- Interactive
 flagging
- Qt-based
- Uses generic plotting class which uses Qwt



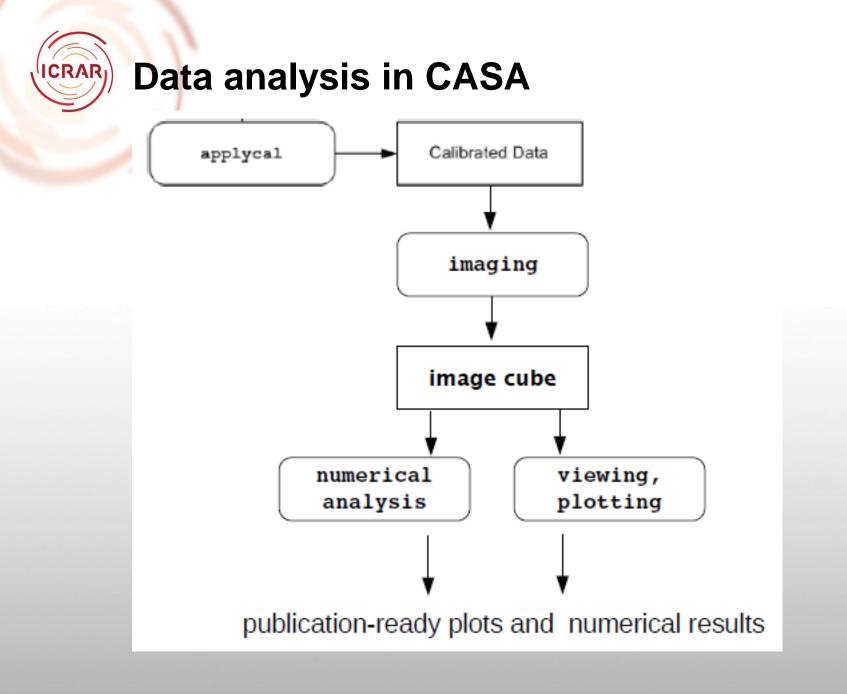
| Master Title

Plotting of tables

- Inspection of calibration tables
- Control over variables
- Iteration
- Subplot support


Imaging and display

- Viewer
 - Uses Qt widget set
 - Rendering based on pgplot
 - Step through images planes (frequencies, polarizations)
 - Support for ds9 region files
 - Box settings (clean/image analysis)
 - Zoom/contrast enhancements
 - Overlays



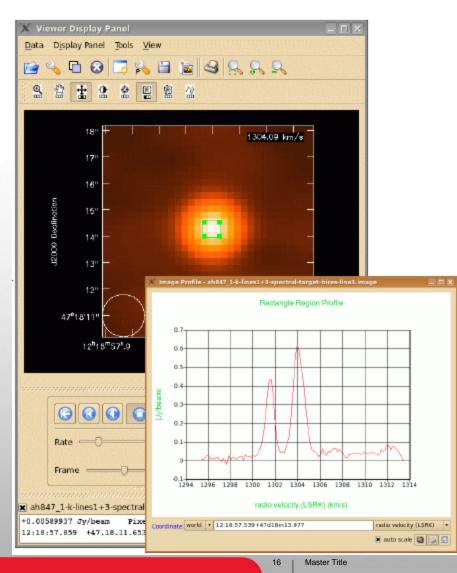
Data analysis in CASA

Master Title

execfile

- Flexible use:
 - Task-based command line interface
 - Python function calls
- Scripts written as a sequence of function calls
- Run with execfile

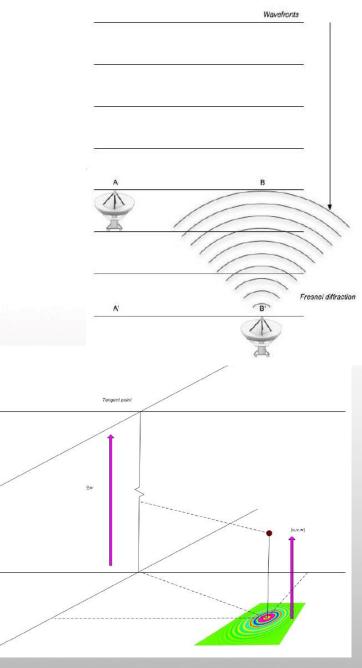
setjy(vis='3c391_ctm_mosaic_10s_spw0.ms',field='J1331+3030', modimage='/home/casa/data/nrao/VLA/CalModels/3C286_C.im', standard='Perley-Taylor 99', fluxdensity=-1)


gaincal(vis='3c391_ctm_mosaic_10s_spw0.ms', caltable='3c391_ctm_mosaic_10s_spw0.G0', field='J1331+3030', refant='ea21', spw='0:27~36', calmode='p', solint='int', minsnr=5, solnorm=T, gaintable=['3c391_ctm_mosaic_10s_spw0.antpos'])

bandpass(vis='3c391_ctm_mosaic_10s_spw0.ms',caltable='3c391_ctm_mosaic_10s_spw0.B0',fi eld='J1331+3030',spw='',refant='ea21',solnorm=True,combine='scan', solint='inf',bandtype='B', gaintable=['3c391_ctm_mosaic_10s_spw0.antpos','3c391_ctm_mosaic_10s_spw0.G0'])

Key imaging algorithms and functionality

- Full polarization handling
- Spectral line cubes
- Large scale structure: Mosaicking and joint deconvolution
- Diffuse emission: Multi-scale CLEAN
- Wide field imaging: *w*-projection and outlier fields
- Multi-frequency synthesis (Sault-Wieringa algorithm)
- (*To come:*) Direction-dependent primary beam correction



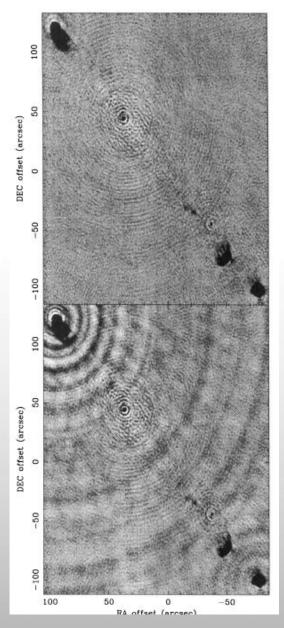
w-projection

- 2D-array has non-coplanar baselines
- Relationship between visibility V(u,v,w) and sky brightness I(I,m) is no longer a 2-D FT

 $V(u,v,w) = \int \int \frac{I(\ell,m)}{\sqrt{1-\ell^2-m^2}} \; e^{-2\pi i [u\ell+vm+w(\sqrt{1-\ell^2-m^2}-1)]} d\ell dm$

- Reproject from (*u*,*v*,*w*) to (*u*,*v*,*w=0*) plane
- Convolution relation between V(u,v,w) and V(u,v,w=0)
- Sample spread over plane with footprint scaling with *w*
- Single visibility now sensitive to a range of spatial frequencies
- Better performance in both speed and error control compared to facetting

Cornwell, Golap & Bhatnagar

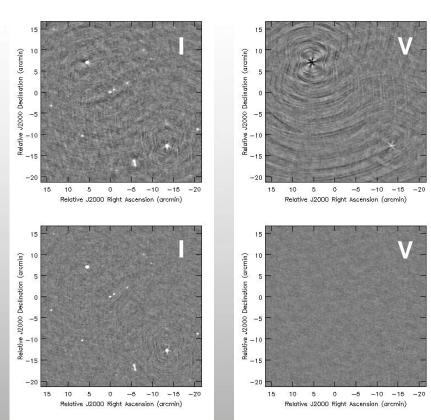

Sault-Wieringa algorithm

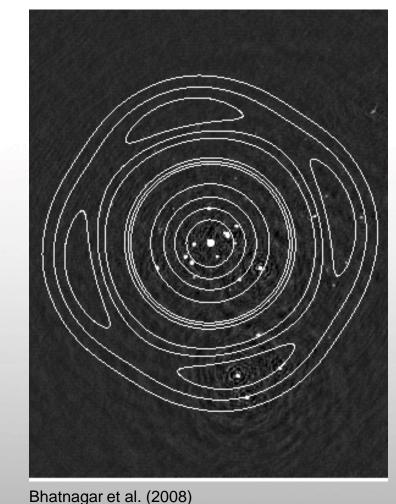
Frequency-dependent fluxes

- Source spectral indices differ across the field
- Frequency-dependent primary beam causes apparently steep spectra near field edges
- Model frequency dependence of sky emission with a Taylor series about a reference frequency

$$I_{\mathrm{D}}(\ell,m) = I(\nu_0)B_0(\ell,m) + \nu_0 \frac{\partial I}{\partial \nu}B_1(\ell,m).$$

- Choose number of Taylor terms
- Make use of full bandwidth without amplitude errors


Sault & Wieringa (1994)



A-projection

Direction-dependent errors with wide bandwidths

- Primary beam rotates on the sky
- Creates low-level direction-dependent errors in the images
- AWProject algorithm corrects for rotating azimuthally asymmetric primary beams with polarization squint

Hardware recommendations

- Imaging is most time-consuming step
- Gridding within imaging dominates processing time
- I/O limited process
- Parallelization still under development
- Dual core processor
- 12-24GB of memory per node
- 2-3 TB hard drive space
- See: http://science.nrao.edu/evla/postproc/hardware.shtml

- The EVLA is already operational
- Its new sensitivity is requiring new processing capabilities and algorithms
- CASA is the designated software package for EVLA data processing
- Based on the Measurement Equation
- Wide range of capabilities
 - Scripting
 - New algorithms
- Development still ongoing

- 1. CASA homepage: http://casa.nrao.edu/
- 2. Casaguides wiki: http://casaguides.nrao.edu