Transients and High Resolution

South Africa

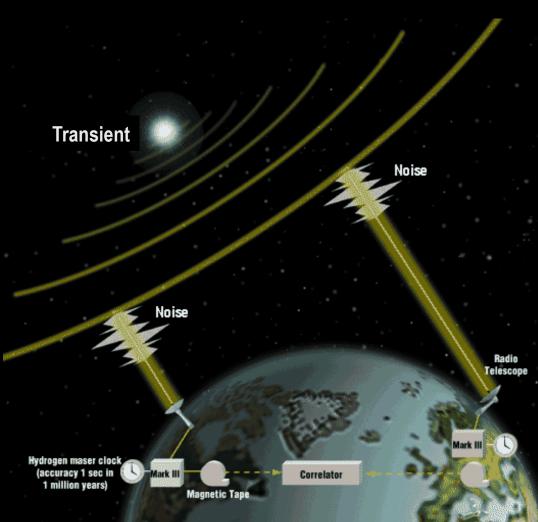
Kata

HartRAO

Lesotho

VLB

Namibia


HartRAO

Michael Bietenholz Hartebeesthoek Radio Observatory

Al ... Marker Markers

Swaziland

Very Long Baseline Interferometry

→ Resolution of ~1 milli-arcsec at 8.4 GHz or λ = 4cm

> 1 milli-arcsec ~ width of a human hair at 20 km

Image: NASA & the Geodetic Institute, Bonn

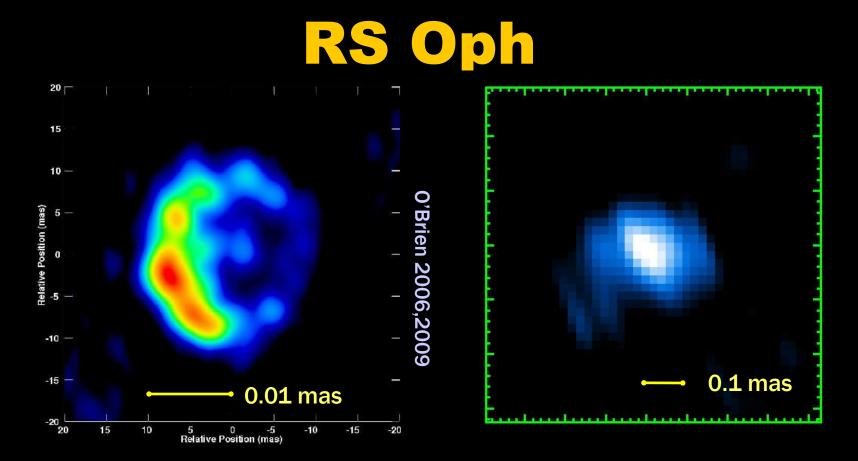
Network status as per 2008-05-02. Image created by Paul Boven

-boven@jive.nl>. Satellite image: Blue Marble Next Generation, courtesy of Nasa Visible Earth (visible

earth.nasa.gov).

Image: Paul Boven

Why VLBI for Transients?

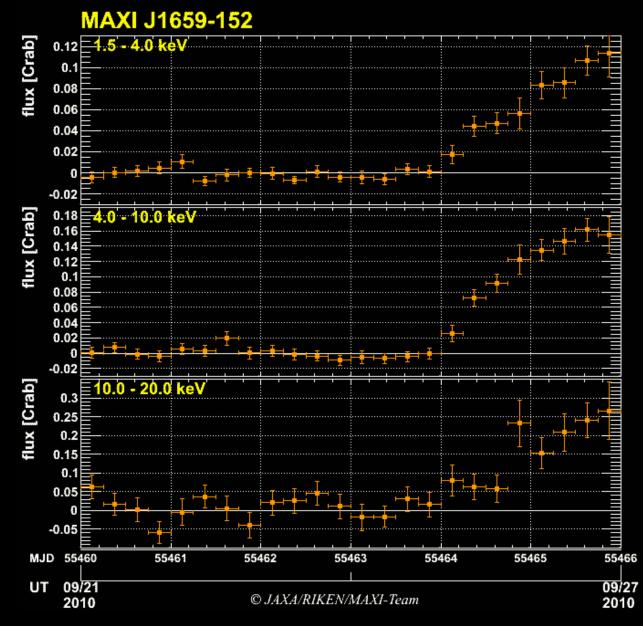

Speed	Distance	Typical for	Angular velocity
20 km/s	10 kpc	Star	0.4 mas/yr
5000 km/s	10 kpc	Nova, CV	2 mas/week
C	10 kpc	Relativistic	0.7 mas/hour
20000 km/s	10 Mpc	Supernova	0.4 mas/yr
С	100 Mpc	Relativistic	0.6 mas/yr

Background: Hartebeesthoek Radio Observatory; Thomas Abbot

Stellar VLBI: IM Pegasi

- RS Cvn active binary star; primary K2 III, 1.8 Msol, secondary ~1 Msol; binary period ~25 days; 96 pc
- Chromospherically active radio emission: very variable <1 mJy to
- Observed as a reference source for the NASA/Stanford Gravity Probe B
- VLBI astrometry allows orbit determination as well as constraining emission mechanisms for active stars

Shapiro, Bartel, Bietenholz et al in prep

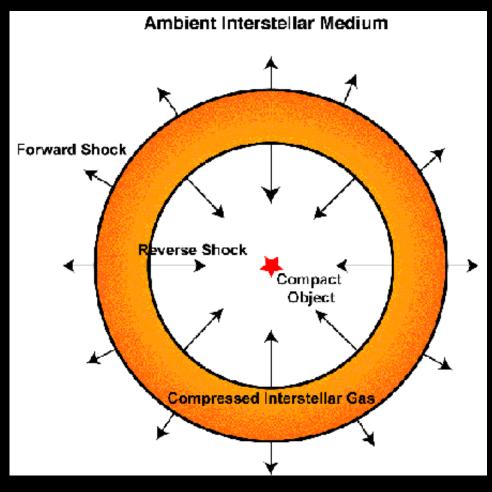


VLBA image, 14 days after outburst, 5 GHz

Merlin image: 86 days after outburst, 6 GHz

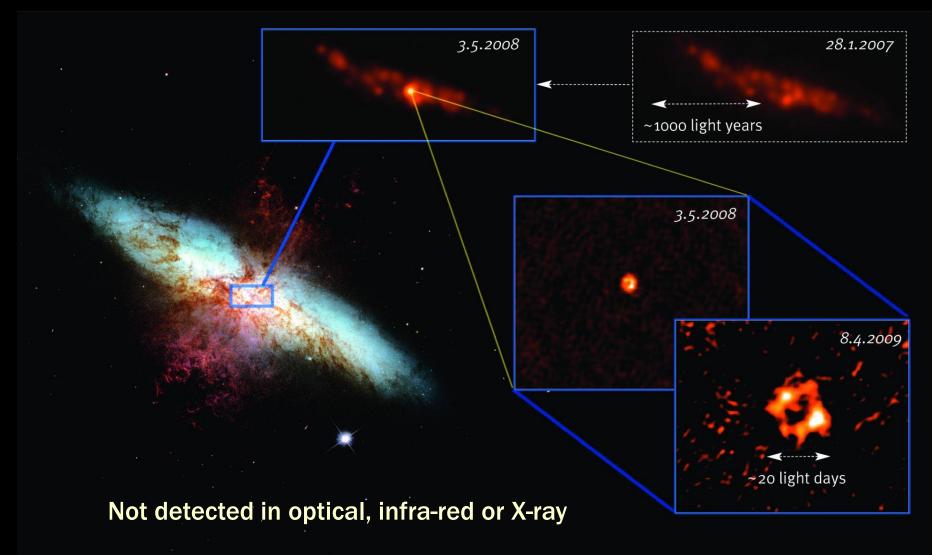
RS Ophiuci – recurrent nova with a white dwarf orbiting red giant; outbursts every 10-20 yrs.; radio flares; ejection speeds – ~5000 km/s. Asymmetric structure in red giant wind. Type la supernova progenitor?

MAXI J1659-152

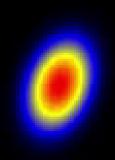

- SWIFT/BAT trigger
- XRB
- A new blackhole candidate
- Possible 2.5hr period: very short

Outside GCN AUCs Other Mat OS: Dashboard Widge: Follow ATel on <u>Twitter</u>	The Astronomic's Telegram for reporting and conversing on new astronomical definitations Post a New Telegram Search Information Mirror Software Telegram Index Register To Post Email and RSS Subscriptions Forget your password? Present Time: 17 Oct 2010; 9:04 UT		RSS XML Top XML Supernovae XML Transients XML SGRs XML Gamma Ray Bursts XML Comets
<u>111-8</u>	[<u>Previous</u> <u>Next</u>]	2927	soft-intermediate state of
EVN e-VLBI detections of MAXI J1659-152			MAXI J1659-152 RXTE dips yield better orbital period
	<u>aqi (IIVE), A.J. van der Horst (NASA/MSFC/ORAU),J.</u> Hertfordshire),G.B. Taylor (Univ. New Mexico), C. <u>V/MFSC),M.A. Garrett (Astron), R.A.M.J Wijers (Univ.</u> E. Ramirez-Ruiz (Univ. Santa Cruz),E. Kuulkers <u>N. Gehrels (NASA/GSFC),P.M. Woods (Corvid)</u> on 5 Oct 2010; 17:31 UT	2918 2912	shortest period black-hole binary?
	d Certification: Zsolt Paragi (zparagi@jive.nl) lack Holes, Neutron Stars, Transients el #: <mark>2918</mark>	2906 2900	MAXI J1659-152
al. 2010, GCN # <u>112</u> detections (de Ugar	J1659-152 (Negoro et al. 2010, ATel # <u>2873</u> ; Mangano et <u>96</u>) following its sub-millimeter and centimeter radio te Postigo et al. 2010, GCN # <u>11304</u> ; van der Horst et al. with the European VLBI Network (EVN) in real-time	2890 2888	INTEGRAL shows MAXI [1659-152 further declines in hard X-rays INTEGRAL TOO observations of MAXI [1659-152]
e-VLBI mode on 30 The participating te (MkII), Hartebeesth data at a rate of ~1	September 2010, from 13:30 to 18:30 UT at 4.9 GHz. lescopes were Cambridge, Effelsberg, Jodrell Bank oek, Medicina, Onsala, Torun and Westerbork sending 024 Mbps to the EVN Data Processor at JIVE. The target	2887 2884	<u>XMM-Newton</u> <u>observations of MAXI</u> <u>[1659-152</u> Optical variability in MAXI [1659-152]
which is apparently calibrator. MAXI J16	ed to the nearby source J1707-1415 (2.2 degrees away) in outburst and serves as a very good compact 559-152 was detected at RA(J2000) 16 59 01,67709, 98 7324 (unwertainly about 1 mag) in correspondent with the	2881 2880	MAXI J1659-152 is a BH candidate AGLE upper limits above 100 MaX constraints that

Pulsars

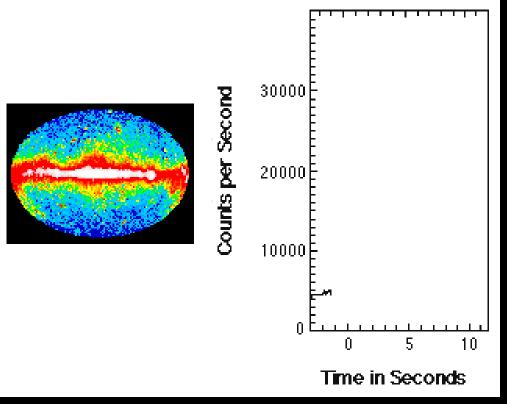

- Pulsars are also a key part of MeerKAT science case. VLBI measurements are crucial in providing parallax distances and proper motions for pulsars
- Pulsar astrometry is also the best means for tying together celestial and terrestrial reference frames.

Core-Collapse Supernova


- Only core-collapse SNe (Type II & Type I b/c) have been seen in radio
- Shocks accelerate particles and amplify magnetic fields
 → synchrotron emission
- Radio emission is due to interaction with circumstellar medium, usually the wind of the progenitor before it died
- Radio-bright SNe are relatively rare: ~40 supernovae (all core-collapse) have been detected in radio (> 1 mJy), and >100 have upper limits (e.g., Weiler et al.) Most are at <30 Mpc

SN 2008iz in M82

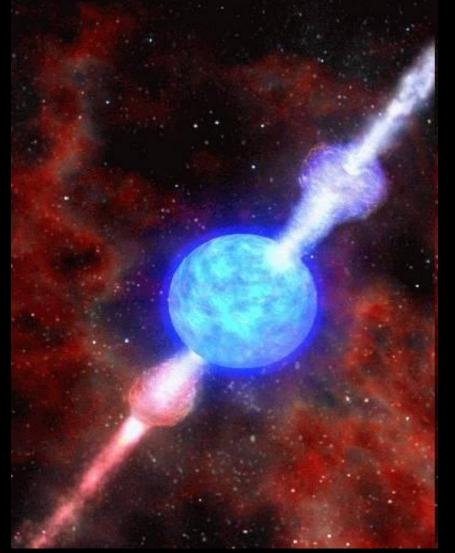
Brunthaler et al 2010



VLBI Images: 1987 to 2005 (and continuing...)

----- 1 mas

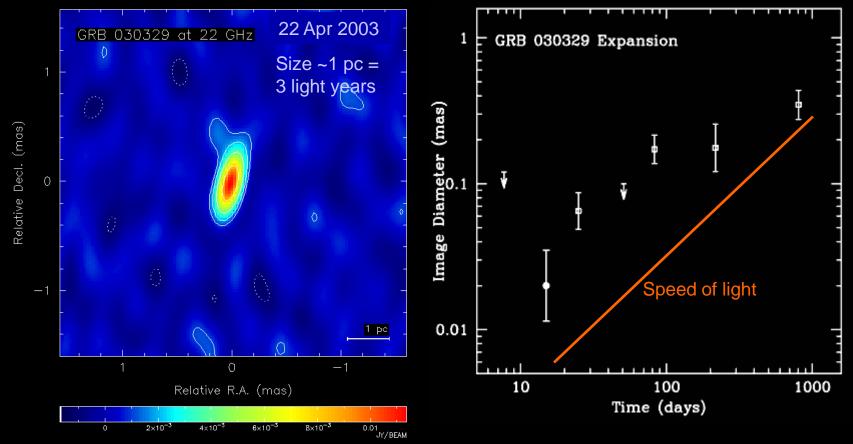
Bietenholz et al 2010


Animation of a Gamma Ray Burst

Left-hand panel shows *the whole sky* in gamma-rays, with the plane of our Galaxy running horizontally across the middle

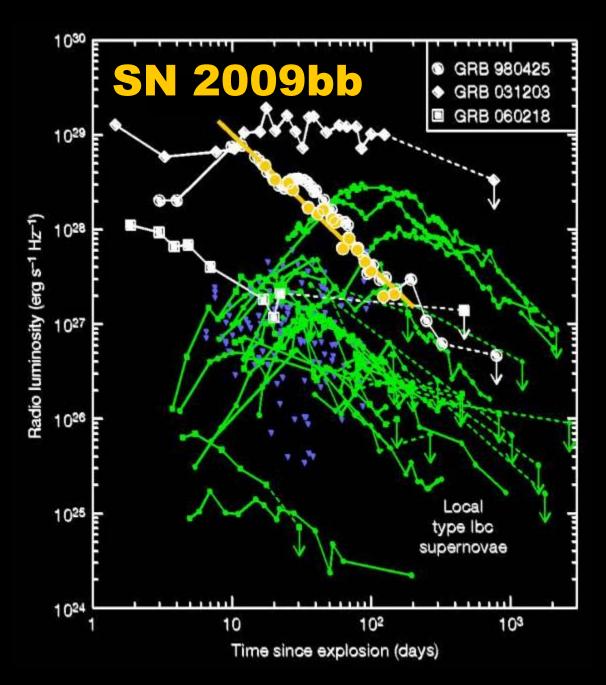
Animation: Nasa

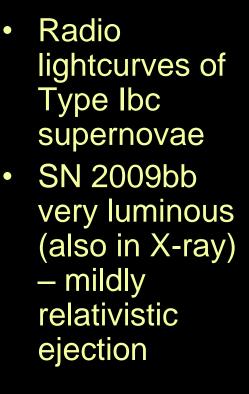
GRBs and Supernovae



- GRB 980425 = Supernova 1998bw
- Only! 40 Mpc
- Type I bc supernovae

 stars that have lost much of their envelope through stellar winds
- Several other nearby GRBs have now been associated with Type lbc supernovae


Artist's impression of a Gamma Ray Burst. Image: Dan Berry, Skyworks Digital, USA


Relativistic Expansion: GRB 030329 (SN 2003dh)

VLBI Expansion Measurements: by Taylor et al. & Pihlstrom et al. show clear deceleration, with transition to non-relativistic regime at $t \sim 1$ yr


Taylor et al, 2004, 2005; Pihlstrom et al. 2007

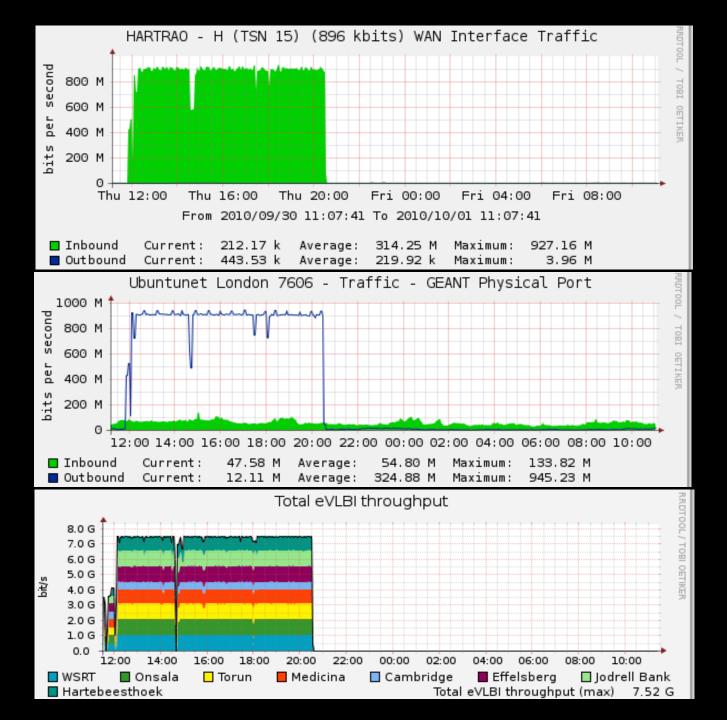
Soderberg et al 2009

SN 2009bb VLB

Type I b/c supernova, 40 Mpc high X-ray & radio luminosity suggest relativistic ejecta; VLBI observations at t=85 d constrain size to < 0.64 mas, and apparent expansion to <1.74c (Bietenholz et al 2010). Note poor uv-coverage available due to southern declination of -40°

SNe Observed with VLB

Name	Туре	Host galaxy	Distance (Mpc)	Peak (mJy at 8 GHz)	Reference
Several SN/SNR	?	M82	3.2		Beswick et al 2006
Several SN/SNR	?	Arp 299	40		Neff et al 2004
Several SN/SNR	?	Arp 220	77		Lonsdale et al 2006
SN1978K	II	NGC 1313	4	>100?	Smith et al 2007.
SN1979C	II	M100	16	6	Bartel & Bietenholz 2008
SN1980K	II	NGC6946	6	2	Bartel 1985
SN1986J	II	NGC891	10	100	Bietenholz et al 2004
SN1987A	II	LMC	0.05	80	Jauncey, Gaensler, Manchester
SN1993J	II	M81	4	100	Bietenholz, Bartel, Marcaide
SN1994I	lc	M51	8	20	Bietenholz & Bartel, unpublished
SN1996cr	II	Circinus	3.6	~100	Bauer et al 2008.
SN2001em	lb/c	NGC 7112	80	4	Bietenholz, Paragi, Schinzel
SN2001gd	II	NGC 5033	13	4	Pérez-Torres et al 2008
SN2003L	lb/c	NGC 3506	92	3	Soderberg et al 2005
SN2004et	II	NGC 6946	6	2	Martí-Vidal et al 2007
SN2007gr	lb/c	NGC 1058	10	<~ 1	Paragi et al 2007
SN2008D	lb/c	NGC 2770	27	3	Soderberg et al , Bietenholz et al
SN2008ax	Ilb	NGC 4490	8	4	Martí-Vidal et al 2008
SN2008ix	?	M82	4	50	Brunthaler et al 2010
SN2009bb	lb/c	NGC 3278	40	30	Bietenholz et al, 2010


Current Status of VLBI in Africa: HartRAO

Picture: Thomas Abbott

THE OLD BEARING

Current Status of VLBI in Africa: HartRAO

- HartRAO 26-m dish is fully operational again – bearing has been replaced
- Regularly taking part in VLBI sessions with EVN and LBA (1.7 - 22 GHz)
- Monthly e-VLBI sessions with EVN at 1 Gbps
- XDM, a 15-m composite dish, will take over some geodetic observations

Progress towards VLBI with MeerKAT:

- First VLBI fringes have been obtained between HartRAO and one KAT-7 antenna: ~900 km, 3C 273, 1.7 GHz
- VLBI observations with KAT-7 phased-array should be possible by the end of 2011
- VLBI-friendly VDIF format → DiFX correlator
- 10 Gbps connection coming later this year, e-VLBI first quarter next year.

HartRAO – MeerKAT Baseline 🛇

Zimbabwe

Lesotho

aziland

HartRAO

Bassas da India Europa I<u>sland</u>

O2010 Google

Eye alt 1746.71 km 🔘

© 2010 Europa Technologies © 2010 Cnes/Spot Image US Dept of State Geographer Data SIO, NOAA, U.S. Navy, NGA, GEBCO

29°00'03.41" S 24°40'43.89" E elev 1203 m

South Africa

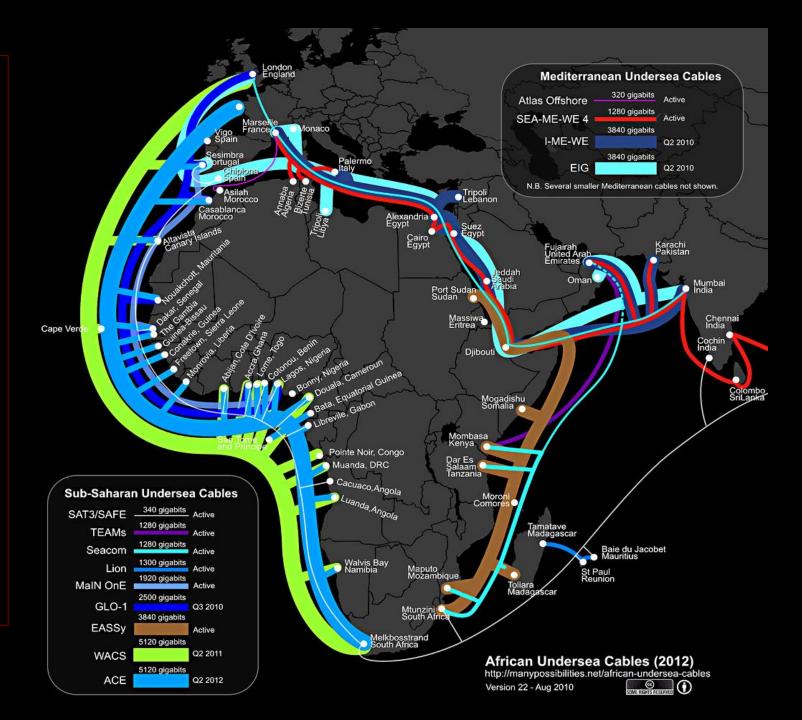
Kat-7

~900 km

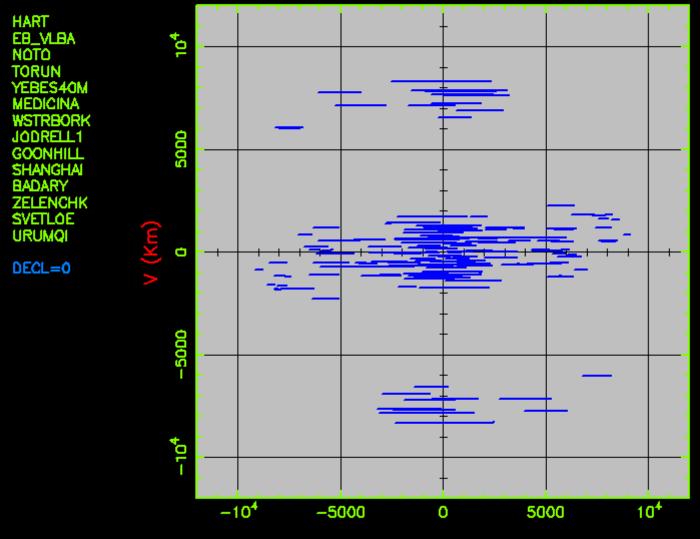
J. Horrell, S. Ratcliffe, L. Schwardt

Re-use of Satellite Ground Stations for Radio Astronomy

- There are a considerable number of satellite ground stations in Africa
- Fully steerable 20 32 m dishes
- Surfaces accurate enough for use at least 10 GHz
- These stations are rapidly becoming redundant due to the proliferation of undersea optical fibre links, which have much higher bandwidth
- There is therefore a possibility to re-use some of these stations for radio astronomy, particularly for VLBI

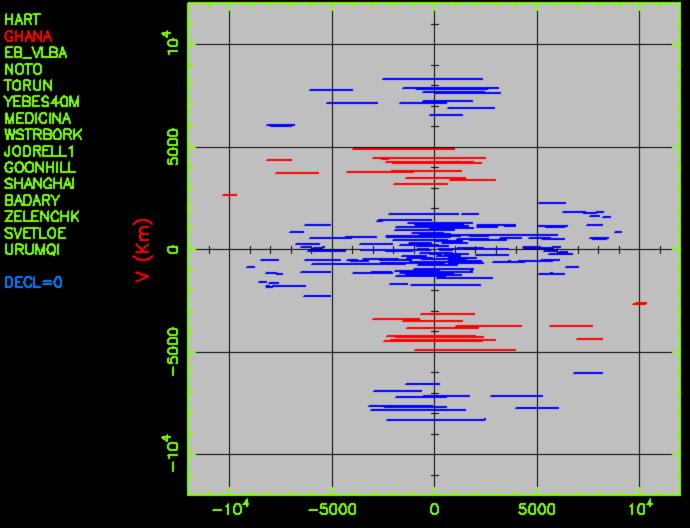


African VLBI Network: Satellite Earth Stations in Africa


Image IBCAO © 2010 Cnes/Spot Image Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Google Earth

P 1

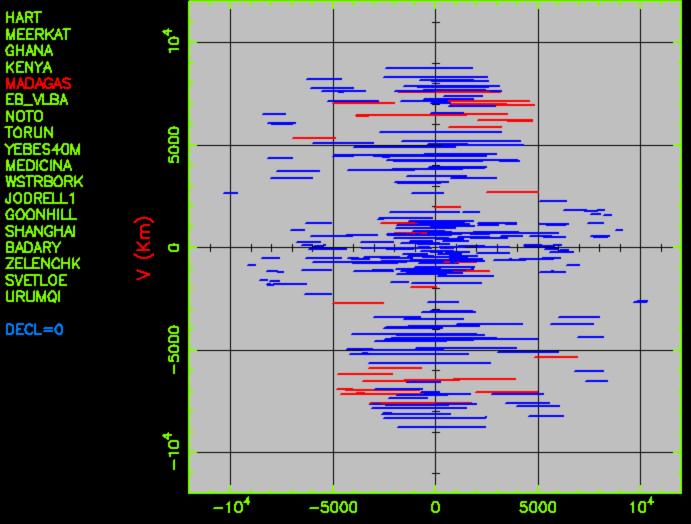


UV Coverage for Africa

U (Km)

UV Coverage for Africa

UV Coverage for Africa


HART 104 5000 (Km) Ð 5000 104 -10^{4} 104 -50000 5000

MEERKAT GHANA EB_VLBA NOTO TORUN YEBES40M MEDICINA WSTRBORK JODRELL1 GOONHILL SHANGHAI BADARY ZELENCHK SVETLOE

DECL=0

U (Km)

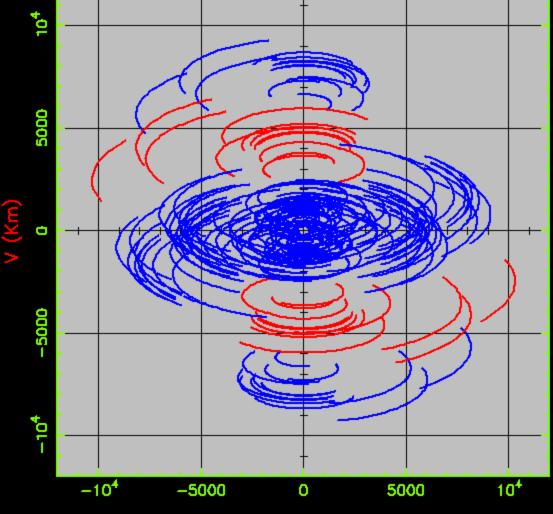
UV Coverage for Africa

U (Km)

UV Coverage for Africa

U (Km)

HART **S** 5000 E E Ð 5000 104 -104 104 -50000 5000

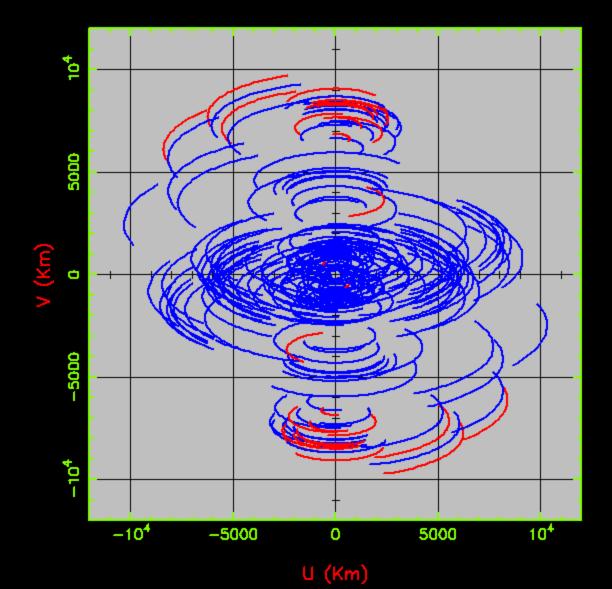

EB_VLBA NOTO TORUN YEBES40M MEDICINA **WSTRBORK** JODRELL1 GOONHILL SHANGHAI BADARY ZELENCHK SVETLOE URUMQI

DECL=+20

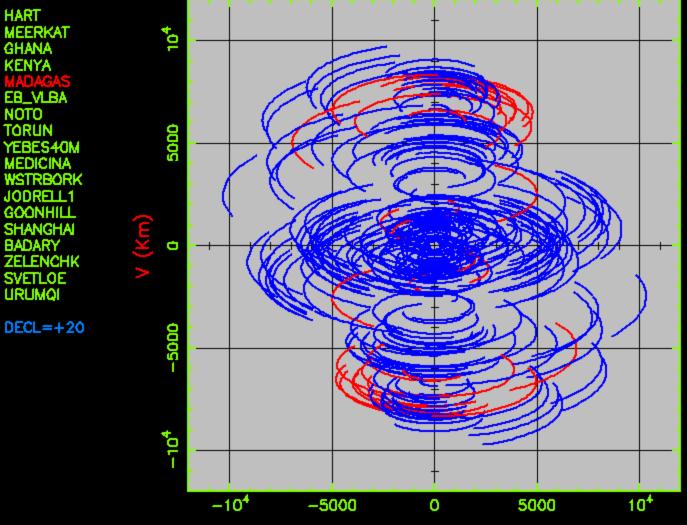
UV Coverage for Africa

HART GHANA EB_VLBA NOTO TORUN YEBES40M MEDICINA WSTRBORK JODRELL1 GOONHILL SHANGHAI BADARY ZELENCHK SVETLOE URUMQI

DECL=+20

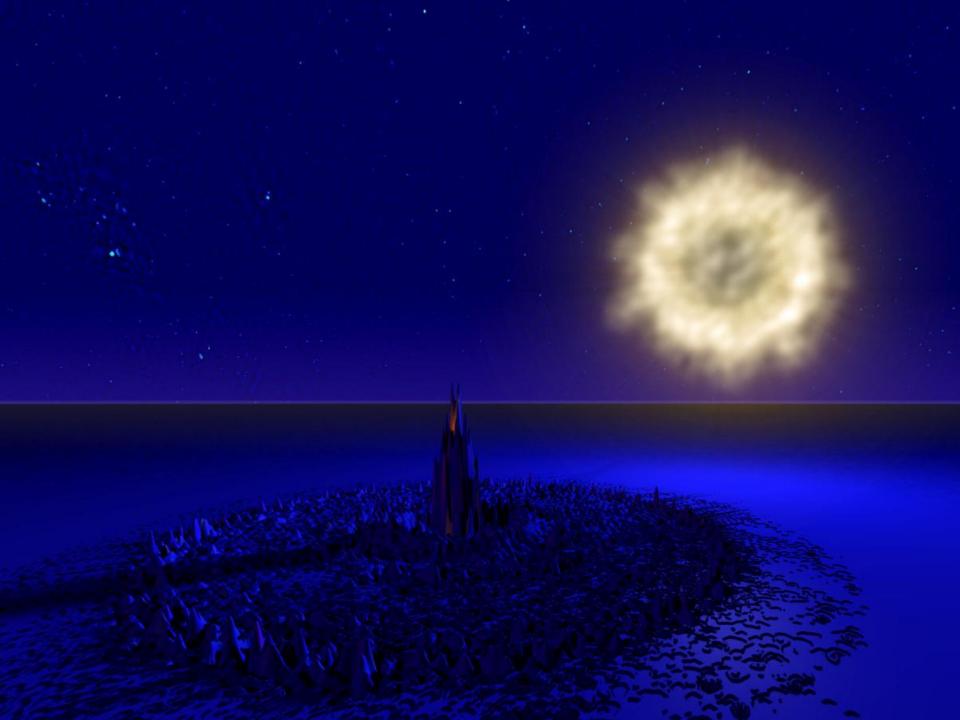


U (Km)


UV Coverage for Africa

HART MEERKAT GHANA EB_VLBA NOTO TORUN YEBES40M MEDICINA WSTRBORK JODRELL1 GOONHILL SHANGHAI BADARY ZELENCHK SVETLOE URUMQI

DECL=+20


UV Coverage for Africa

MEERKAT GHANA KENYA MADAGAS EB_VLBA NOTO TORUN YEBES40M MEDICINA **WSTRBORK** JODRELL1 GOONHILL SHANGHAI BADARY ZELENCHK SVETLOE URUMQI

DECL=+20

U (Km)

