An ASKAP Survey for Variables and Slow Transients

Tara Murphy Sydney Institute for Astronomy School of Information Technologies **The University of Sydney**

19th April 2011

ASKAP: Australian SKA Pathfinder

- The main strengths of ASKAP are:
 - 1 its fast survey speed in both line and continuum,
 - its excellent u-v coverage,
 - 3 its southern hemisphere location,
 - 4 its radio quiet site.

- ASKAP is a world class survey instrument
- The technical specifications are:

Number of dishes	36
Dish diameter (m)	12
Dish area (sq m)	113
Total collecting area (sq m)	4072
Aperture efficiency	0.8
System temperature (K)	50
Field-of-view (deg2)	30
Frequency range (MHz)	700–1800
Bandwidth (MHz)	300
Maximum channels	16384
Maximum baseline (km)	6

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ →

Location of ASKAP

Murphy

VAST @ ThunderKAT Workshop

19th April 2011

The first six antennas are under construction

Image Ref: Simon Johnston, CSIRO http://www.ska.gov.au

Murphy

VAST @ ThunderKAT Workshop

19th April 2011

The VAST collaboration

ASKAP

THE UNIVERSITY OF

SYDNEY

Murphy

· Collaboration with diverse scientific interests

VAST

00000000

Hayley Bignall¹, Geoffrey Bower², Joshua Bloom², Jess Broderick³, *Edwin Budding⁴, Robert Cameron⁵, David Champion⁶, Shami Chatterjee⁷, *Stéphane Corbel⁸, James Cordes⁷, David Coward⁹, *Steve Croft², James Curran¹⁰, Avinash Deshpande¹¹, George Djorgovski¹², Richard Dodson⁹, Philip Edwards¹³, Simon Ellingsen¹⁴, Alan Fekete¹⁰, Rob Fender³, Dale Frail¹⁵, Bryan Gaensler¹⁰, Duncan Galloway¹⁶, Matthew Graham¹², Anne Green¹⁰, Lincoln Greenhill¹⁷, *Paul Hancock¹⁰, George Hobbs¹³, Richard Hunstead¹⁰, *Scott Hyman¹⁸, Simon Johnston¹³, Glenn Jones¹², *Atish Kamble¹⁹, David Kaplan¹⁹, Aris Karastergiou²⁰, *Slava Kitaeff²¹, Michael Kramer⁶, *Casey Law², Joseph Lazio^{23,36}, Jim Lovell¹⁴, Jean-Pierre Macquart¹, Ashish Mahaba¹¹, Walid Majid²³, Maura McLaughlin²⁴, Andrew Melatos²⁵, Tara Murphy¹⁰, Ray Norris¹³, *Roopesh Ojha²², Steve Ord¹⁷, Sabyasachi Pal⁹, Michele Pestalozzi³⁵, Andrea Possenti²⁷, Peter Quin⁹, Nanda Rea²⁸, Cormac Reynolds¹, Roger Romani⁶, Stuart Ryder²⁹, Elaine Sadle¹⁰, Brian Schmidt³⁰, Bruce Slee¹³, Ingrid Stairs³¹, Ben Stappers³², Lister Staveley-Smith⁹, Jamie Stevens¹³, *David Thompson²³, Steven Tingay¹, Ulf Torkelsson²⁶, Tasso Tzioumis¹³, Marten van Kerkwijk³³, *Kiri Wagstaff²³, Mark Walker³⁴, Randall Wayh¹, Linqing Wen⁹, Matthew Whiting¹³, *Peter Williams², Roy Williams¹²

Blind Surveys

• Science goals have technical challenges in common

- Finding transient and variable sources
- Classifying and identifying sources
- Triggering follow-up observations
- http://www.physics.usyd.edu.au/sifa/vast

VAST @ ThunderKAT Workshop

- PI: Tara Murphy, Shami Chatterjee
- WG 1: Simulations, Calibration and Imaging (Randall Wayth)
- WG 2: Source Finding (Tara Murphy)
- WG 3: Survey Strategy (Shami Chatterjee)
- WG 4: BETA Planning (Simon Johnston)
- WG 5: Data Format and Access (Hayley Bignall)
- WG 6: Transient Detection Pipeline (David Kaplan)
- WG 7: Ongoing Science (Duncan Galloway)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

VAST

000000000

Explosions

ASKAP

THE UNIVERSITY OF

• e.g. supernovae, Gamma-Ray bursts, orphan afterglows

Blind Surveys

Propagation

• e.g. Extreme Scattering Events, intra-day variables

8 Accretion

• e.g. neutron stars, black holes, quasars, X-ray binaries

4 Magnetospheric

• e.g. magnetars, flare stars, planetary variability

6 Unknown

Murphy

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Explosions: the search for orphan afterglows

VAST

000000000

· Highly beamed emission means most GRBs are undetected

Blind Surveys

Approach

· Afterglow can be detected in radio days to months later

Murphy

THE UNIVERSITY OF

VAST @ ThunderKAT Workshop

19th April 2011

Explosions: an unbiased census of supernovae

0000000000

VAST

• Radio SNe probe the CSM and stellar mass outflow history

Blind Surveys

Approach

We can detect new SNe that are obscured by dust

Weiler et al. 2002, ARA&A, 40, 387

THE UNIVERSITY OF

VAST @ ThunderKAT Workshop

< □ > < 同 > < 回 > < 回 >

Propagation: the origin of extreme scattering events

Blind Surveys

• We will be able to characterise ESEs in real-time

VAST

000000000

Map out dense neutral gas clouds in our Galaxy

Murphy

THE UNIVERSITY OF

VAST @ ThunderKAT Workshop

19th April 2011

Propagation: investigating interstellar scintillation

• What is the cause of IDV intermittency?

VAST

0000000000

· Could provide a direct detection of baryons in the IGM

Blind Surveys

Approach

THE UNIVERSITY OF

SYDNEY

VAST @ ThunderKAT Workshop

19th April 2011

Accretion and Magnetism: microquasars

- Understanding the accretion disk/jet connection
- Flare from V4641 Sgr

Hjellming et al. 2000, ApJ, 544, 977 → < = > < = > = ~

Murphy

VAST @ ThunderKAT Workshop

19th April 2011

 Metwavestry of SYDNEY
 ASKAP
 VAST
 Blind Surveys
 Approach
 Challenges
 14

 0000
 0000000
 000000
 0000
 000
 00
 00
 14

Exploring the unknown...

Image ref: Kaplan, Chatterjee, adapted from Cordes

VAST @ ThunderKAT Workshop

-

• • • • • • • • • • •

Murphy

Limits on transient snapshot rates (c. 2007)

Bower et al. 2007, ApJ, 666, 346

VAST @ ThunderKAT Workshop

Bell et al. 2011, MNRAS, in press, arXiv:1103.0511

Murphy

VAST @ ThunderKAT Workshop

19th April 2011

(日) (同) (日) (日)

Results from Molonglo: blind archival search

VAST

- + 843 MHz, $\sim 3\,000~\text{deg}^2,$ to 5 mJy, many epochs
- \sim 30 000 lightcurves \implies 53 highly variable, 15 transient

Blind Surveys

000000

Approach

Bannister et al. 2011, MNRAS, 412, 634

Murphy

THE UNIVERSITY OF

YDNEY

ASKAP

VAST @ ThunderKAT Workshop

19th April 2011

Results from the ATA: PiGSS and ATATS

VAST

- PiGSS 3.1 GHz, 10000 deg², to 1 mJy, 2 epochs
- ATATS 1.4 GHz, 690 deg², to 20 mJy, 12 epochs

Blind Surveys

000000

Approach

THE UNIVERSITY OF

ASKAP

VAST @ ThunderKAT Workshop

Results from the VLA: automated archival search

00000000 000000

• Chatterjee, Kaplan et al. VLA archival search

VAST

Blind Surveys

Approach

THE UNIVERSITY OF

ASKAP

1

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

+ \sim 30 deg 2 field at 154 MHz with \sim 65 epochs

Murphy

- 1 Survey entire sky at regular intervals
 - · Go shallow but wide in search of 'rare and bright' sources
 - Better sky coverage, less coverage of different timescales
- 2 Survey targeted fields at some hierarchy of time intervals
 - · Go deep in search of 'common and faint' sources
 - Better coverage of timescales, less sky coverage
- **3** Piggyback on other major ASKAP surveys
 - Make most of all telescope time, including source monitoring
 - Can be done completely in software

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- 4 Regular monitoring of known target sources
 - Aim for detailed characterisation of light curves
 - Can be done completely in software

- G Triggered observations
 - ASKAP is not likely to be best instrument for follow-up
 - Could include self-triggers

- 6 Archival searches for longer timescales (and fainter sources)
 - Allows more sophisticated search techniques
 - Done offline using long term archive

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

VAST Survey Proposal

	VAST-Wide	VAST-Deep		VAST-GP
Observing time (hrs)	4380	3200	400	600
Survey area (deg sq)	10 000	10 000	30	750
Time per field	40 s	1 hr	1 hr	16 min
Repeat	daily	7 times	daily	64 times
Observing freq (MHz)	1150–1450	1150–1450	1150–1450	1150–1450
Bandwidth (MHz)	300	300	300	300
RMS sensitivity	0.5 mJy/bm	50 μ Jy/bm 0.2		0.1 mJy/bm
Field of view (sq deg)	30	30	30	30
Angular resolution	10" (Maximum possible)			
Spectral resolution	\sim 10 MHz			
Time resolution	5 seconds (Maximum possible)			
Polarisation products	IQUV	IQUV	IQUV	IQUV

3

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

The VAST transient detection pipeline

VAST data rates

1 Transients database

- Measured properties of all transients
- $\sim 200~{\rm GB}$ per year

2 Lightcurve database

- Measured properties of all sources detected
- \sim 10 TB per year
- Image database
 - 5-second image cubes
 - 50 TB to 50 PB depending on available space

(日) (同) (日) (日)

Challenges for the VAST Design Study

1 Developing a detection pipeline that works in real time

Blind Surveys

2 Developing reliable source-finding software

VAST

- 3 Designing an optimal survey strategy
- 4 Automatic classification of lightcurves
- **5** Multiwavelength identification and triggering
- 6 Effective RFI removal

ASKAP

Insuring the diverse science goals of VAST can be met!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

26

Challenges

Murphy

THE UNIVERSITY OF