Stella Novae: Past and Future Decades or

The Mystery of T Pyx

Conference Summary

Feb 8, 2013

Dina Prialnik

At the beginning, we thought that:

We basically understand the Nova mechanism.

As we went along, we learned that:

There are some details that remain to be explained.

* * *

Lord Kelvin, 1900: physics was over, except for two small clouds on the horizon.

These "clouds" turned out to be the clues that led to quantum mechanics and the theory of relativity.

What have we learned?

Review talks

- Michael Shara (overview)
- Steve Shore (spectroscopic evolution)
- Jordi Jose (Multi-D modeling)
- Jennifer Sokoloski (symbiotic systems)
- Laura Chomiuk (transients with SKA)

About the Nova Binary System

- Primary
- WD composition: CO or O-Ne-Mg → O-Ne
- Massive WD in RNe from strong Ne lines (Elena Mason)

- Secondary
- RG not only in some RN systems, but in CN as well (Mike Bode, ...) → New nova classification, according to secondary type (MS, SG, RG) (M. Darnley).
- RG secondary rate higher in M31 than in Galaxy (Steve Williams)

Period

Standard period evolution (reviewed by Chris Knigge) challenged by:

- 2 high mass transfer systems in the period gap (born there?)
- 4 low mass transfer systems at 3-4 hr period (hibernation?)
 (Linda Schmidtobreick)
- RG or SG secondaries (above)

About the Outburst

- Secondary maxima
- Detected in both slow and fast novae (Ulisse Munari)
- Multiple maxima

SSS phase

End of wind phase (Marina Orio, Julian Osborne)

- Variability
- 30-35 sec periodicity (in 2 objects) rotation?

γ − ray

- Visual maximum after 511 keV γ-ray (Margarita Hernanz)
- Novae detected by FERMI
- GeV photons detected (acceleration), but no MeV

Correlations

- MMRD questionable (for M31 not tight, but generally valid)
- UV –X light curves anti-correlated (Greg Schwartz)

About Nova Shells

Mass
 Correlation: t₂ α m_{ejecta} (Greg Schwartz)
 Mass determination from IR (Bob Gehrz)

Still larger than models predict

Shells that form dust are least massive

Composition
 Bright novae – extreme overabundances: CNO, Ne, Mg, Al, Si
 Dust grains similar to those detected in comets

• Structure Generally, Complex, no spherical symmetry (in most) 1901 Nova GK Per: analysis of 282 knots (Tina Liimets):

Wide range of velocities: 13-1005 km/s

Moderate deceleration over 100 yr

Knots exhibit abrupt changes in brightness

Shell becomes circular with time

Dust formation Dust takes longer to form in slower novae (Mike Bode)

From Surveys

Nova rates

15 Galaxies with known nova rates (Allen Shafter)

- Nova frequency: 30-50/year
- No apparent correlation between rate and population age, although theory suggests lower rate in older populations: cooler WD → longer accretion time.
- Rne: 2% 8% (Galaxy: ~ 3%)
- Dust formation

M31 and Galaxy (Mike Bode) → correlations:

- t_{condensation} α t₂
- $t_{IR-max} \alpha t_2$
- Optical light curve: A α t₂
- Decline (SSS phase) M31 78

M31 – 78 Novae (Martin Henze) → more correlations:

- $t_{turn-on}\alpha t_{turn-off}$
- $t_{turn-off} \alpha t_2$
- $t_{turn-off} \alpha 1/T_{BB}$
- $t_{turn-on} \alpha 1/v_{exp}$

From models

Multidimensional

Mixing at the WD boundary (Jordi Jose):

- Convective mixing requires 3D (different from 2D)
- 2D convective overshoot: results similar to 1D on the large scale(Ami Glasner)
- Large-scale inhomogeneity promising!
- Significant enrichment in **all** cases
- Very short-term calculations (time consuming)

HD simulations

3D simulation of RS Oph (Shazrene Mohamed)

3D SyS accretion (Joana Mikolajewska) – rather than RLOF or spherical wind

3D Sys active phase (Dmitri Bisikalo)

Parameter studies

TNR without mixing → (??) SN Type Ia (Sumner Starrfield)

- Objects cannot be CN highly enriched compositions
- Secondary must be prohibitively large (net mass accretion inefficient)
- Eventual He flash may remove most of the mass
 Light curves based on Prialnik & Kovetz grid (Yael Hillman)
- Prediction: UV-X-ray flash preceding the outburst Hands-free MESA code (Pavel Denisenkov)

All models are wrong, but some of them may be useful...

Martin Henze

• RN T Pyx

- Identical light curves for 1966 and 2011 (Aless. Ederoclite), although $t_{acc}(2011) \approx 2 t_{acc}(1966)$
- Low M_{WD} : $0.7 \pm 0.2 M_{\odot}$ contrary to expectation for RN
- Mass transfer rate 1000 times higher than indicated by P=1.83hr (Joe Patterson)
- Ejected mass estimate (6x10⁻⁵ M_☉) >> typical Rne
- Expansion velocity: initially very high, drops abruptly and rises again (Farung Surina) ...

RN RS Oph

Dust features variable for 3 yr after outburst (Mark Rushton) X-ray emitting, bipolar structure (Rodolfo Montez) Not a standard RN – no regular eruptions

HeN V445 Pupis

 Very high expansion velocity: 6720 km/s (Sally Macfarlane), knot velocity even higher: 8450 km/s

Supporting Actors: KT Eri, GK Per, BK Lyn ...

ctors

Best

How have we learned?

Better instruments

- Telescopes
 - Multi-wavelength surveys
 - Large populations surveys
- Computers
 - Multi-dimension
 - Extended parameter studies

What next?

Q0als flowth Eorefetrence derogram

- Confrontation of observational surveys with theoretical parameter studies to work out the details
- Consistent simulation of a nova outburst including the nova shell (3D-simulation)
- ☐ Consistent simulation of the long-term evolution of a nova binary (including primary, secondary and the interaction between them)
- Continuous, panchromatic (from Radio to γ) observation a full nova outburst (from early rise to late decline) in all wavelengths
- More surveys...
- Open questions:
- * What is T Pyx and why didn't it erupt in ~ 1988?
- * Can an accreting WD lead to a SN Type Ia?

Yes!

Prediction of a nova outburst (Mike Shara)

Thanks to the organizers for a

fantastic Scientific Program!