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ASKING FOR THE
COURTESY OF THE
AUDIENCE (AND A
BIRTHDAY PRESENT):

Please take note of comments and
questions and intervene at the

end, | will leave time!




From Starrheld et al. 2012: importance of
measuring WD temperature as outburst ends
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=> Translates into an M(WD) vs. T plot



Program of X-ray gratings observations of
luminous novae

* Novae become supersoft X-ray sources around the time the “nova wind”
ends => the shell becomes thin to the very soft X-rays

* The SSS allows to probe hydrogen burning in shell above burning layer:
measure WD abundances, effective gravity, T .« (a proxy for the mass)

« Program started 13 years ago, in full swing for 10 years and greatly
helped by advent of Swift as pathfinder

* 11(12) Galactic novae in outburst, 2 (4) LMC novae observed with X-
ray gratings. 6 were RN (3 with numerous recorded outbursts). .
Also 5 grating spectra of non-nova supersoft sources. Initial aims:
observe continuum AND absorption features

* The first huge surprise were strong, prominent emission lines from
the ejecta in the very “soft” range....(H-like and He-like). They
complicate the spectral analysis. Some novae exhibit almost only
an emission line spectrum. The copious X-ray emission from the
ejecta (up to 103® erg/s) can even be very hard.



Main open problems to solve

* Physical mechanism of continuum and emission lines from the
shell: importance of shocks vs. photoionization. Learn about mass
outflow and ejecta conditions.

* Variability discovered thanks to much longer exposures. Must now
understand the variability of the hot WD observed in supersoft X-
rays (Irradiation? Magnetic fields? Non continuous mass ejection
episodes?)

* Is there a conspicuous residual wind after the main nova wind has
ceased, and can we rely on the WD peak atmospheric temperature
as a proxy for the WD mass? (Expanding atmosphere would be
cooler and have lower effective gravity than quasi-static
atmosphere of the same luminosity)



Aperiodic variability: deep dip
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Periodic variability

* ~half hour periods (e.g. previous
slide): non-radial g-mode
oscillations?

* Period due to the WD rotation
(V4743 Sgr seems to show both)

* In RS Oph, KT Eri, and perhaps
V1974 Cyg, periods of ~30 sec are
observed: very short WD spin. Is
the WD spun up by accretion? Why
observed in the SSS? ﬁ

* Orbital variability: hours (up to 1.5 :
days) Are the magnetic fields
playing a role in this variability?

* Flares repeated at each orbital
period: are they common?
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How to model the WD atmosphere?

* A blackbody is not a good fit to the continuum because at very high
temperature the luminosity is overestimated by at least an order of
magnitude (the opposite can be true at much lower T )

* Two basic classes of atmospheric models: static and wind

* The static models give an excellent fit to the absorption features,
abundances and T 4 in agreement with the theoretical models

* The wind models may be motivated by the blue shift of the absorption
lines (~2000 km/s)

* The wind models have shown that, IF there still is mass loss exceeding
mdot=10° Mg yr’, the wind has the effect of reducing Tz and log(g)
for a given luminosity. This is, of course, a big “IF”... many
observational facts seem to indicate that mass loss ceases almost
completely.

* In the wind models, there is a “mass degeneration” so m,, cannot
result from the fit.

* Emission lines are produced mostly in the outer shell, often in shocked
material. We seem to have no “real” P-Cyg profiles to derive residual
mass loss rates.



Rauch static models: example of KT Eri
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Possibility that also the absorption

originates in shock-ionized, thin outer shells?

Pinto et al. (2012) neglect emission and attribute absorption to

shocks in outer shell: interesting possibility, but must be in
addition to nova atmosphere...



T{eff) = 1888 K
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Peak effective temperature obtained with Rauch’s models’ fits shows expected
dependence on t(turn-off) and t,. The spread with respect to a linear relationship is
expected to be due to mdot,

PLAN: try an evaluate modt for the novae in the plot as they return to quiescence.
We should be able to use T_gas a proxy for the mass: very important!
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Will show now that T Pyx does not fall “well” in these plots
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T Pyx: “not so hot”, yet short lived

Spectral Model
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T Pyx: Chandra spectrum: evidence of shocked
ejecta

T Pyxidis (Day 210)
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SSS X-ray clear modulation with orbital (?) period
in nearly face-on system

XMM Newton: EPIC—pn Periodogram Monte—Carlo Bootstrap PDF
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T Pyx: huge nebular lines in optical spectrum
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Conclusions

* Great importance of X-ray observations to probe mass outflow and WD
mass and abundances

* Use of T« as a proxy for the mass(WD) “fully” possible if residual mdot
not conspicuous. Trend of T g with outburst parameters should always be
true (even with van Rossum WT models)

 X-ray gratings best way to test models and parameters’ space
* Importance of X-rays monitoring + high S/N grating observations
* Models’ results well tested, but... T Pyx does not fit the picture

* Must understand WD continuum variability, a “disturbing” indication of
non-spherical effect and more complex physics, e.g. magnetic accretion
onto the poles of the WD: non thermally homogeneous atmosphere?

* Some of this complex physics surely effects T Pyx

* What if this nova is ejecting also, and especially, mass accreted BEFORE
this series of RN outbursts?

* What physical would inhibit a single “full” outburst in T Pyx?



T Pyx: XMM-Newton spectrum

T Pyxidis (Day 235)
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