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Sumnery of Unsolved problems:

Latest results from Fermi/LAT: 3/12 CNe emit > 100MeV photons.

. Are Classical, Recurrent, and Symbiotic Novae SN la progenitors?
. When does the mixing occur during the TNR? How much?

. How much mass is accreted and ejected during the CN outburst
. THEREFORE—>Are the WDs growing in mass?

How well do we know the ejecta abundances (and mass)?

. CV white dwarfs (Dwarf Novae) are probably growing in mass do

they show evidence for mixing?
If not, is there a way to prevent mixing?
If so, are Cataclysmic Variables la progenitors [not CNe]?

10.What is the evolutionary status of the secondary (mass donor)?
11.What are the effects of magnetic fields on the WD and on the

secondary?

12.What is the mass of the White Dwarf?



All Types of Recurrent Novae have Recently gone into Outburst:

RS Oph 2006 455 days Giant
U Sco 2009 1.23 days G3?
T Pyx 2011 0.1 days unknown

And have been or are being studied in X-rays




Why do we care ?

Cataclysmic Variables and Symbiotic Systems may be
Progenitors of Supernovae la (2011fe and PTF 11X)
Classical Novae cannot be the Progenitors since they are losing mass!

Single Degenerate Scenario:
Accretion onto a CO White Dwarf
in a Close Binary System
(SN la 2011fe and PTF11x are members)
Suggestions: Dwarf, Recurrent, or Symbiotic Novae:
MULTIPLE CHANNELS

(and working on SN la is helpful in getting funding in the US)

Actually, of course, They are really, really fun to study




Latest Observational Results for SN la progenitors: Single Degenerate Scenario:

1. SN la 2011fe (M101) discovered by the Palomar Transient Factory about 11 hours after the
explosion. No evidence for circumbinary material and progenitor likely a CO WD.

2. However, PTF 11kx was a SN la that exploded in a system with circumbinary material and
they suggest that the progenitor was a Symbiotic Binary like RS Oph. But maybe not.

3. LMC: Schaefer and Pagnotta (2012) did not “find” a star in the “center” of a la remnant in
the LMC (to stringent but not impossible limits); Edwards, Pagnotta, Schaefer (2012) find
lots of stars in the center of another SN la remnant.

Zorotovic et al. (2011) find that the WDs in Cataclysmic Variables are growing in mass.
5. Forexample: U Gem -1.2M; SS Cyg — 0.8Mg, ; IP Peg —1.16M; ZCam —0.99M,
These are the nearest and brightest CV’s. [Canonical value is 0.6Mg, for single WDs]

“Conclusions”

1. SN Ia’s are a mixed zoo but our la colleagues can “diddle” the data to make them standard
candles.

2. The Single Degenerate scenario is NOT ruled out.

3. Something is probably preventing mixing in CV’s as opposed to Classical Novae where the
mixing must be taking place.



Two parts to this talk:
1. Solar accretion with NOVA

2. Solar accretion with MESA
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The calculations shown on this plot make no assumptions about:

Chemical Composition of accreting material

Chemical Composition of underlying WD and whether or not mixing has
taken place

Thermal structure of the underlying WD and whether or not it has suffered
previous outbursts

How many outbursts it has undergone and how they have changed the
thermal and compositional structure of the underlying WD.

But they do assume static, steady-state envelopes (UNLIKE A REAL
ACCRETING WHITE DWAREF)

Therefore, | can accrete solar material, assume no mixing with the Core, and
follow the “first” outburst on the WD



Simulations (NOVA):

*Accreted Solar material onto 0.4Mg 0.7Mg 1.0Mg 1.25Mg, 1.35Mg
White Dwarfs (no mixing with WD Core matter)

*2 initial luminosities: 4 x 103L, (CWD) and 10Lg (ENV)

*7 Mass accretion rates from 1.6 x 1011 Mg /yr to 1.6 x 10° Mg /yr
(extra simulation at 3 x 107 Mg/yr )

*150 mass zones with surface zone masses less than 10° Mg

Both Complete WDs and just Envelopes: No substantial
differences in results.

«Just the first outburst on the WD (a feature of NOVA)
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LOG TIME to TNR (YR)

Accretion time to TNR as a function of White Dwarf Mass
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TIME to TNR (YR)
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Will they be detected
INn X-rays
while evolving to the

Thermonuclear
Runaway?
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The Supersoft source in RS Oph did not become visible to
Swift
until about day 26 to 30 when its
temperature was about 400,000K to 500,000K
(higher if we believe the atmosphere fits).
This implies that a Super Soft Source
must be around this temperature

to be seen by Swift.

We predict:



Before the TNR

Luminosity and Effective Temperature Before TNR vs White Dwarf Mass and Mdot
4 Ll T I T I T T 1 Ll ] T Ll 1 Ll I I T T T

Log Luminosity(L/Lg)

- ..\.. \_\ R \\\
— '\. \\ h
2 * ~ -\.\ \\\
- ~\. .\.\ e
~N . N, \\
= .\__ N N, s
N, \'\
b "\..
N
0
- From Top to Bottom: 0.40 Mg
i 0.70 Mg
1.00 Mg
-2 1.25 Mg
B 1.35 Mg
_4 1 1 1 1 I 1 1 1 1 I L 1 1 1 I 1 1 1 L
6.0 5.5 5.0 4.5 4.0

Log Effective Temperature (K)

400,000K



Only the most massive white dwarfs
accreting at the highest rates might be
detected by Swift before the TNR.
But they have the shortest “duty” cycles

(accretion time to TNR).

What about at the peak of the TNR?



Log Luminosity(L/Le)

Peak Luminosity and Effective Temperature vs White Dwarf Mass and Mdot
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At the peak of the TNR:

The sequences that are hottest and most luminous are:
Those with the highest mass accretion rate at each mass.
They are the sequences that have accreted the least amount of
material and, therefore, have ejected the least amount of material.
They are “bright” in X-rays for the shortest amount of time

(Solar Accretion ONLY! — this is not true for either CO or ONe accretion).

Peak temperature in X-rays is probably a measure of WD mass.



New calculations with a new code: MESA
Paxton et al. 2010, 2013

Solar accretion onto White Dwarfs
BUT
Multiple outbursts and many more zones
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WD Mass

WD Mass

White Dwarf Mass vs Time:
Each decline in mass is caused by mass loss prior to the next TNR
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Log LHe

Helium Flash

1.35M accretion 6.4d-7 solar masses/yr
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Peak Log (Teff) vs Accretlon Rate for O 7,1.0 and 1 .35M
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Recurrence T|me VS. Accretlon Rate for O 7,1.0 and 1.35M
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% Efficiency

Efficiency: How much mass is left on the WD after the TNR

Efficiency vs. Accretion Rate for 0.7, 1.0 and 1.35M
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Idan, Shaviv, and Shaviv
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At high rates: helium flashes
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Figure 1. The first 10 outbursts for a 1.0My WD with peak accretion rate

of 107°Mgyr~! — only the first outburst ejected mass. At HIOW” rates (10-7MS) WD grOWS in maSS

see also Yaron et al.2005
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Figure 2. The secular sequence of flashes for the model depicted in fig. 1,
3 x 10* years after the onset of accretion. Panel B shows one cycle in detail.
Note the high similarity from cycle to cycle.



4  Idan et al.
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Figure 7. Comparison between the temperature profiles after 3000 outbursts

of a 1 Mg WD, accreting at a rate of 1072 M, /yr (dashed) and at a rate of
The large mass of the accreted envelope, nearly 0.01M,, af- 1075 Mo /yr (solid).

fects the structure of the WD as well. As a consequence, the



Conclusions:

The “Nomoto” Diagram is not correct.

A better discussion is in Yoon et al. 2004.

It also violates the Schwarzschild and Harm
Thin shell instability.

Therefore: The Single Degenerate Scenario Lives

BUT:
How is mixing prevented?

There are no solved problems
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